
Progress In Electromagnetics Research M, Vol. 35, 11–19, 2014

Ultra Slow EM Wave Propagation Characteristics of Left-Handed
Material Loaded Helical Guide

Dushyant K. Sharma* and Surya K. Pathak

Abstract—The dispersion characteristics (ω-β diagram) of a left-handed material (LHM) loaded helical
guide is analytically solved and numerically computed for different medium properties as well as helical
guide parameters. The modal behaviour of this structure has been studied with an aim to achieve ultra
slow EM wave over wide bandwidth which finds potential applications in optical switches and memories
for optical processing. Significant amount of phase velocity reduction has been achieved in comparison
to when helix is in free space or loaded with normal dielectric medium. Other modal properties such
as presence of two fundamental modes — backward and forward wave and their lower cut-off frequency
(LCF) as well as the bandwidth spectrum is also revealed thoroughly.

1. INTRODUCTION

Left-handed material (LHM) is a novel material having negative permittivity ε and permeability µ value
which is usually uncommon in any practical or engineering material applications. In 1964, Veselago [1]
first studied the electrodynamics of such materials and described that phase velocity is anti-parallel to
group velocity which exhibits backward wave properties of such materials. Due to that it also called
backward wave material or LHM. In 2001, Smith et al. [2] experimentally verified the existence of LHM
by designing metamaterial by thin wire (for negative permittivity) and split ring resonator (for negative
permeability) [3]. The spectra of resonance where material behave like metamaterial can be changed
by varying the physical size of the cell (containing split ring resonators and thin wires).

Enormous research interest has been shown by different research groups [4–8, 14–16] around the
world to exploit this property for different engineering as well as physical sciences applications [17–21].
One such application is to find out the electromagnetic complex mode behaviour and wave steering
properties (also called dispersion engineering) of different electromagnetic structures. When these
structures are either embedded with metamaterial or the structure itself made up of metamaterial.
Cory and Blum [4] studied surface wave propagation along metamaterial cylindrical guide for both real
and imaginary transverse wave-number and found that transverse propagation coefficient of first TEz
and TMz mode could be real or imaginary. Shu and Song [5] studied surface wave propagation in the
grounded metamaterial slab in which they discussed about complex wave and evanescent surface wave
mode. They observed that the value of normalized effective dielectric constant (εeff ) for evanescent
surface wave mode is high as compared to εriµri (inside) and εroµro (outside). Cory and Barger [6]
studied metamaterial slab guide and observed that it can be used as filter due to appearance of band-
pass region. Wu et al. [7] studied the guided mode in metamaterial slab having real and imaginary
transverse wave number. They found that cut-off exists for all modes in real transverse wave number
and guided mode are also present in imaginary transverse wave number. Baccarelli et al. [8] studied
metamaterial grounded slab and presents condition for suppression of proper surface wave (ordinary and
evanescent surface wave) that made considered structure a good candidate for planer antenna substrate.
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Ruppin [9] studied surface polaritons modes of a semi-infinite left-handed medium and demonstrated
how they can be observed using the attenuated total reflection (ATR) technique. Darmanyan et al. [10]
studied the properties of surface EM wave at the interface of left-handed and conventional medium and
they observed that both p- and s-surface wave modes are not coexisted in same frequency range. They
also calculated surface modes Poynting vector, density of energy and velocity of energy transfer. Kats et
al. [11] also studied the EM surface wave at the interface of left-handed medium and demonstrated that
2D interfaces separating 3D metamaterial can exhibit properties of 2D left-handed media for surface
waves. They found, total energy flux and group velocity of these waves are anti-parallel to the phase
velocity. Leskova et al. [12, 13] studied scattering of an EM wave from, and its transmission through, a
slab of random surface of a left-handed medium. Engheta [14] presented an idea of phase compensator
using metamaterial in thin sub wavelength cavity.

In recent studies variety of materials have been investigated that have spectral resonant behaviour
for achieving slow wave [22, 23]. That effect could be produced in periodically arranged structures
like artificial material (metamaterial or photonic crystal). Bait-Suwailam and Chen [15] studied
metamaterial slab waveguide and found that both TM and TE modes travel slowly. Erfaninia and
Rostami [24] also observed that group velocity is greatly reduced in passive multilayered metamaterial
waveguide. In these studies it has been observed that presence of metamaterial medium slow down the
wave velocity.

All above-mentioned studies are related to planar as well as cylindrical waveguides where complex
mode behaviour has been studied in context of different applications. For a long-time Helical
guide has been widely used in travelling wave tubes as a slow-wave structure. Recently, Baqir and
Choudhury [25, 26] also proposed the use of helix in optical fibre to create the twisted clad and studied
the energy flux propagation behaviour using DB boundary condition.

The motivation of present study is to superimpose the helical guide slow wave characteristics with
LHM properties to achieve ultra slow EM wave over a wide bandwidth (BW). This paper is arranged
as follows. In Section 2, the dispersion relation of LHM loaded helical guide derived. In Section 3,
numerical/computational results have been analysed and presented. In Sections 4 and 5, results are
discussed, summarized and concluded.

2. DISPERSION RELATION

The structure used for analysis is a sheath helix of radius a and pitch angle ψ as shown in Fig. 1. The
diameter of the wires is infinitesimally small and infinite number of wires in a tape is assumed. Spacing
between adjacent wires is very small at the same time they are insulated with each other. It conducts
only in a direction making an angle ψ with plane tangential to the axis [27]. Region I is LHM media
which is assumed to be non-dispersive, isotropic and homogeneous and region II is free space.

The Borgnis’ potentials for LHM loaded helical guide of radius ρ = a and for ejnφ turn variations

Figure 1. Helix of radius ‘a’, region I (inner region) is LHM media and region II (outer-region) is
free-space.
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are written as:

Ui = An,iCn,i(kiρ)ejnφe−jβz (1)

Vi = Bn,iCn,i(kiρ)ejnφe−jβz (2)

Here, i = 1 for region I (ρ < a) and i = 2 for region II (ρ > a). Ai and Bi are field coefficients,
Cn,i are needed Bessel functions of order n which describe modal behaviour of the wave.

The field equations in two regions are written as:

Ez,i = −k2
i AiCn,i(kiρ)ejnφe−jβz (3)

Eρ,i =
[
−jβkiAiC

′
n,i (kiρ) +

ωµin

ρ
BiCn,i (kiρ)

]
ejnφe−jβz (4)

Eφ,i =
[
nβ

ρ
AiCn,i (kiρ) + (jωµiki) BiC

′
n,i (kiρ)

]
ejnφe−jβz (5)

Hz,i = −ki
2BiCn,i (kiρ) ejnφe−jβz (6)

Hρ,i =
[−ωεin

ρ
AiCn,i (kiρ)− jβkiBiC

′
n,i (kiρ)

]
ejnφe−jβz (7)

Hφ,i =
[
−jωεikiAiC

′
n,i (kiρ) +

nβ

ρ
BiCn,i (kiρ)

]
ejnφe−jβz (8)

Here, (′) is derivative of Bessel function with respect to its argument. ε1 and µ1 are media parameters of
region I those are negative real numbers. ε2 and µ2 are positive real numbers. k1 and k2 are transverse
wave numbers for region I and region II respectively, β is longitudinal phase coefficient. Relation between
ki and β is given by the equation:

ki =
√

β2 − koi
2 (9)

Here, koi (= ω
√

εiµi) is propagation vector. For guided mode propagation, field in region II should decay
exponentially in transverse direction. Due to that Cn,2(k2ρ) is replaced by modified Bessel function of
second kind Kn(k2ρ). Due to skewed boundaries helical guide supports slow wave prorogation therefore
Cn,1(k1ρ) is replaced by modified Bessel function of first kind In(k1ρ).

At boundary (ρ = a), electric field is continuous in the direction of propagation and magnetic field
is continuous normal to the direction of propagation. In term of φ and z, boundary conditions for helical
guide at ρ = a, are written as [28]:

Ez,1 = Ez,2 (10)
Eφ,1 = Eφ,2 (11)
Ez,1 = −Eφ,1 cot(ψ) (12)
Ez,2 = −Eφ,2 cot(ψ) (13)

Hz,1 + Hφ,1 cot(ψ) = Hz,2 + Hφ,2 cot(ψ) (14)

The field expressions from equation numbers (3)–(8) are substituted into the corresponding
boundary conditions in Equations (10)–(14) and a set of four linear homogeneous equations with four
unknown constants A1, A2, B1 and B2 are obtained. A non-trivial solution of the fields exists only if
4× 4 determinants formed by the coefficients of the unknown constants in the set of equations vanish.
The obtained determinant is: ∣∣∣∣∣∣∣

m1 m2 0 0
0 0 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

∣∣∣∣∣∣∣
where,

m1 =
(
−k2

1 sin(ψ) +
nβ

a
cos(ψ)

)
In (k1a)

m2 = jωµ1k1 cos(ψ)I ′n (k1a)
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m3 =
(
−k2

2 sin(ψ) +
nβ

a
cosψ

)
Kn (k2a)

m4 = jωµ2k2 cos(ψ)K ′
n(k2a)

m5 =
(

k2
1 cos(ψ) +

nβ

a
sin(ψ)

)
In(k1a)

m6 = (jωµ1k1 sinψ)I ′n (k1a)

m7 = −
(

k2
2 cosψ +

nβ

a
sinψ

)
Kn (k2a)

m8 = −jωµ2k2 sin(ψ)K ′
n (k2a)

m9 = jωε1k1 cos(ψ)I ′n (k1a)

m10 =
(

k2
1 sin(ψ)− nβ

a
cos(ψ)

)
In (k1a)

m11 = −jωε2k2 cos(ψ)K ′
n (k2a)

m12 = −
(

k2
2 sin(ψ)− nβ

a
cos(ψ)

)
Kn (k2a)

Equating determinant to zero results in eigen-value equation for β is:

koa
2cε1k1 cot(ψ)

I ′n (k1a)
In (k1a)

− Y 2

koa2cµ1k1 cot(ψ)
In (k1a)
I ′n (k1a)

−koa
2cε2k2 cot(ψ)

K ′
n (k2a)

Kn (k2a)
r2 +

X2r2

koa2cµ2k2 cot(ψ)
Kn (k2a)
K ′

n (k2a)
= 0 (15)

Here r = k1a/k2a, X = (k2a)2 − nβa cot(ψ), Y = (k1a)2 − nβa cot(ψ), ko = ω
√

εoµo, εo and µo are
free space permittivity and permeability.

The dispersion relation Equation (15) is further algebraically re-derived for various special cases:
1. For n = 0

koa
2cε1k1 cot(ψ)

I ′0 (k1a)
I0 (k1a)

− k1a

koacµ1 cot(ψ)
I0 (k1a)
I ′0 (k1a)

−koa
2cε2k2 cot(ψ)

K ′
0 (k2a)

K0 ((k2a)
r2 +

k2ar2

koacµ2 cot(ψ)
K0 (k2a)
K ′

0 (k2a)
= 0 (16)

2. For ψ = 0 and n = 0
ε1
ε2

I ′n(k1a)
In(k1a)

− r
K ′

n(k2a)
Kn(k2a)

= 0 (17)

3. For ψ = 0 and n 6= 0

koac

[
ε1k1a

I ′n(k1a)
In(k1a)

− r2ε2k2a
K ′

n(k2a)
Kn(k2a)

]
− n2β2

koac

[
1

µ1k1a

In(k1a)
I ′n(k1a)

− 1
µ2k2a

Kn

K ′
n

]
= 0 (18)

4. For ψ = 90 and any n

r
I ′n(k1a)
In(k1a)

− µ1

µ2

K ′
n(k2a)

Kn(k2a)
= 0 (19)

Propagation vectors in Equation (9) have been normalized with respect to helix radius a, in both
the regions and are rewritten as:

For region-I:
k1a =

√
(βa)2 − (ko1a)2 (20)

For region-II:
k2a =

√
(βa)2 − (ko2a)2 (21)

By solving Equations (20) and (21) one can find:

k2a =
√

(k1a)2 + (ko1a)2 − (ko2a)2 (22)
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3. RESULTS AND ANALYSIS

Dispersion Equation (15) is a transcendental equation, which has been solved numerically as well as
graphically to compute the longitudinal phase coefficient as a function of frequency koa. Mathematica 7.0
software package is used for finding out the roots numerically. Obtained roots are verified by graphical
procedure. For that, βa in Equation (15) is replaced by

√
((ko1ak2a)2 − (ko2ak1a)2)/((k1a)2 − (k2a)2)

using Equations (20) and (21) and plotted between k1a versus k2a. Same variations are also plotted
using Equation (22). Superposition of these two graphs (not shown here) provides the value of βa.

For surface wave propagation k1a and k2a should be positive. Due to that only those values of βa
are considered as a root which are high as compared to ko1a and ko2a.

3.1. Dominant Mode (n = 0)

In Fig. 2, normalized longitudinal phase coefficient (koa/βa) has been plotted as a function of
propagation vector (koa) for three cases when helix is: (i) in free space, (ii) loaded with DPS material and
(iii) loaded with LHM material. A comparative study has been made among three cases to understand
complex mode propagation behaviour such as-backward wave mode, forward wave mode, phase velocity,
and BW spectrum.

In case of LHM loading at low frequencies two fundamental modes (2 and 3 in Fig. 2) propagate
simultaneously having LCF at koa = 1.3. Mode 3 having positive slope in dispersion graph and negative
group velocity which exhibits a backward wave properties. At higher frequencies from koa = 1.6,
onwards only forward ultra slow mode 2 propagates which has positive group velocity. As we increase
the frequency normalize phase velocity (koa/βa = vp/c) of mode 2 start to vary from 0.297 and it
reduces to 0.040 at higher frequencies.

While in case of DPS medium mode 1 (in Fig. 2) have LCF at koa = 0.3. The normalized phase
velocity varies from 0.690 and almost constant at 0.406 at higher frequencies (koa = 7) which is 1.23
times less as compared to free-space case (4 in Fig. 2).

Lowest achieved normalized phase velocity in LHM medium is 10 times less as compared to DPS
medium. This implies that the presence of LHM medium enhances the slow wave behaviour of helical
guide.
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Figure 2. Variation of koa/βa vs koa at n = 0
and ψ = 30◦. free-space case (εr1 = 1, µr1 = 1)
represented by ◦, DPS material (εr1 = 2, µr1 = 1)
loading represented by ?, LHM (εr1 = −2, µr1 =
−1) loading represented by M and O.
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Figure 3. Variation of koa/βa vs koa at n = 1
and ψ = 30◦. DPS material (εr1 = 2, µr1 = 1)
loading represented by ◦ and ¤, LHM (εr1 = −2,
µr1 = −1) loading represented by O and M.
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3.2. Higher Order Modes

Similar graphs are plotted for first (n = 1) higher order mode in Fig. 3. In case of LHM loading at low
frequencies two fundamental modes (3 and 4 in Fig. 3) coexist in the guide. Mode 4 is a backward wave
mode having positive slope in dispersion graph and negative group velocity. From koa = 0.8 onwards
only forward ultra slow mode 3 exists in the guide. Normalized phase velocity of mode 3 starts to varies
from 0.05 and increases up to koa = 0.8, afterwards it reduces and almost becomes constant at 0.04 for
higher frequencies.

In case of DPS medium two fundamental modes, 1 (forward wave mode) and 2 (backward wave
mode) are propagating (in Fig. 3) till koa = 0.4. After that only, forward wave mode propagates and
its normalize phase velocity (koa/βa = vp/c) vary from 0.05 to 0.36.

In case of LHM loading, slowest achieved normalized phase velocity is 0.04 which is 9 times lower
as compared to their DPS medium counter-part. This again signifies the presence of LHM medium
further increases the slow behaviour of helical guide.

3.3. Effect of Physical Design Parameter

Helical guide contains two design parameters namely radius (a) and pitch angle (ψ). In above results
radius (a) is normalized with propagation vector koa, therefore its effect could be understood by making
frequency constant. Helix pitch angle (ψ) effects on slow wave propagation behaviour have been shown
in Figs. 4 and 5.

At lower frequencies two modes (backward and forward wave mode) propagate simultaneously.
Modes described as 1, 3 and 5 (in Figs. 4 and 5) propagate as forward wave mode and modes 2, 4 and 6
(in Figs. 4 and 5) propagate as backward wave mode for pitch angles 30, 20, and 10 degrees respectively.
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Figure 4. Variation of koa/βa vs koa at n = 0 in
LHM (εr1 = −2, µr1 = −1) loading for ψ = 30◦
represented by ? and ◦, 20◦ represented by O and
M and 10◦ represented by ¦ and ¤.
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Figure 5. Variation of koa/βa vs koa at n = 1 in
LHM (εr1 = −2, µr1 = −1) loading for ψ = 30◦
represented by ? and ◦, 20◦ represented by O and
M and 10◦ represented by ¦ and ¤.

Table 1. LCF of dominate mode (n = 0) and Vp/c of dominate and first higher order mode (n = 1)
for different pitch angles.

ψ LCF in koa Vp/c (n = 0) at koa = 7 Vp/c (n = 1) at koa = 7
30◦ 1.3 0.0409 0.0400
20◦ 0.9 0.0177 0.0175
10◦ 0.5 0.0043 0.0043
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In dominate mode, BW spectrum of backward wave mode increases with reduction in pitch angle
(BW in 30◦ is koa = 1.3 to 1.5, 20◦ is koa = 0.9 to 1.4 and 10◦ is koa = 0.5 to 1.3). Similar observations
are seen in higher order (n = 1) mode (BW in 30◦ is koa = 0 to 0.7, 20◦ is koa = 0 to 0.9 and 10◦ is
koa = 0 to 1.2).

Normalized phase velocity of forward wave mode (1, 3 and 5 in Figs. 4 and 5) decreases as decrease
in pitch angle (summarized in Table 1) that enhances the ultra slow wave behaviour of the helical guide.

3.4. Effect of LHM Medium on Guide Dispersion Behaviour

LHM media properties (ε1 and µ1) play very important role in reducing the phase velocity of the wave
in order to achieve ultra slow wave. Three representative examples: (a) case I (εr1 = −1.5, µr1 = −1;
εr2 = 1, µr2 = 1) (b) case II (εr1 = −2, µr1 = −1; εr2 = 1, µr2 = 1) and (c) case III (εr1 = −5,
µr1 = −1; εr2 = 1, µr2 = 1) are considered for analysing these effects by varying εr1 and keeping µr1

constant.
In dominate mode, BW spectrum of backward wave mode (2 and 4 in Fig. 6) reduces (BW in case

I is koa = 2.1 to 2.4 and in case II is koa = 1.3 to 1.5) with increase in |εr1| and it disappears in case III.
Opposite to that BW spectrum of forward wave mode (1, 3 and 5 in Fig. 6) increase due to reduction
in lower cut-off value (summarized in Table 2). Observed normalised phase velocity of forward wave
mode is almost 8 times slower in case III as compared to case I reported in Table 2, which attributes
the role of LHM properties in order to achieve ultra slow wave.

Similar observation is found in first higher order (n = 1) mode where BW spectra of backward
wave mode (2, 4, and 5 in Fig. 7) reduces (BW in case I is koa = 0 to 1.4, case II is koa = 0 to 0.7 and
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Figure 6. Variation of koa/βa vs koa at n = 0
and ψ = 30◦, for case I (εr1 = −1.5, µr1 = −1;
εr2 = 1, µr2 = 1) represented by O and M, case
II (εr1 = −2, µr1 = −1; εr2 = 1, µr2 = 1)
represented by ◦ and ¤, and case III (εr1 = −5,
µr1 = −1; εr2 = 1, µr2 = 1) represented by ?.
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Figure 7. Variation of koa/βa vs koa at n = 1
and ψ = 30◦, for case I (εr1 = −1.5, µr1 = −1;
εr2 = 1, µr2 = 1) represented by ¦ and ?, case II
(εr1 = −2, µr1 = −1; εr2 = 1, µr2 = 1)
represented by ◦ and ¤, and case III (εr1 = −5,
µr1 = −1; εr2 = 1, µr2 = 1) represented by O and
M.

Table 2. LCF of dominate mode (n = 0) and Vp/c of dominate and higher order mode (n = 1) in
different cases.

Case LCF (n = 0) in koa Vp/c (n = 0) at koa = 7 Vp/c (n = 1) at koa = 7
case I 2.1 0.0830 0.0792
case II 1.3 0.0409 0.0400
case III 0.6 0.0101 0.0101
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case III is koa = 0 to 0.2) with increase in |εr1|. The normalized phase velocity of forward wave mode
is summarized in Table 2.

4. DISCUSSION

In above analysis, it has been observed that due to higher value of longitudinal phase coefficient (β),
phase velocity of wave is greatly reduced as compared to normal helical guide.

Modal behaviour study reveals that two fundamental modes, backward and forward wave modes,
propagate simultaneously. BW of backward wave mode is very small and it dies off very fast. On the
other hand forward wave mode has very high frequency spectrum. It has been found that normalized
phase velocity, decreases with increase in |εr1|. Similar variation is also observed when the guide pitch
angle is reduced. For higher frequency spectrum, dispersion plot has similar behaviour but having a
lower phase and group velocity.

The minimum phase velocity is observed in case III with pitch angle ψ = 10◦. If guide radius is
a = 1 mm and koa = 50 (freq = 2.38THz) then wave propagates with speed of 45860.46 meter per
second which is 6541 times less as compared to speed of light (in Fig. 8). This reduction can be further
enhanced by optimizing the LHM properties as well as helix dimensions.
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Figure 8. Variation of normalized phase velocity (koa/βa) vs frequency (koa) over a very large
frequency range (up to THz) for the case III (εr1 = −5, µr1 = −1; εr2 = 1, µr2 = 1) at n = 0
and ψ = 10◦.

5. CONCLUSION

In this paper we introduce an idea of achieving ultra slow wave over wide BW by utilizing helical
guide slow wave behaviour with LHM properties. This type of structure finds major application
where controlled or tunable delay is required, such as optical switches, optical memories and microwave
photonics. Another proposed future application of slow wave is in quantum computing.
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