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Efficient Multi-Objective Optimization of Frequency Selective
Radome with Nonuniform Wall Thickness

Xin Ma* and Guo-Bin Wan

Abstract—An efficient optimization technique for frequency selective surface (FSS) radome with
nonuniform wall thickness is proposed to improve the power transmission efficiency and the boresight
error (BSE) of FSS radome simultaneously. The high-frequency method based on the approximate
locally planar technique is used to evaluate the transmission performance of FSS radome. An efficient
multi-dimensional adaptive sampling method combined with spectral domain method of moment (MoM)
is employed to analyze transmission performance of FSS structure. The immune clone algorithm (ICA)
is applied to the design of a FSS radome, in which the linear combination of the maximizing power
transmission efficiency and the minimizing BSE is adopted as the affinity function, and the radome
wall thickness is optimized. A design example for the three-dimensional tangent ogive radome with
nonuniform thickness is given. The results show that the power transmission efficiency is improved
significantly and the BSE of the optimal antenna-radome system is also reduced over the antenna scan
volume.

1. INTRODUCTION

FSS has been used in optical and microwave field owing to its capability of spatial filters. One example
of the applications is the integration of a FSS with a protective radome in stealth technology to reduce
the radar cross section (RCS) of the enclosed antenna outside its operating band. The geometry of an
airborne or streamlined FSS radome, largely determined by aerodynamic considerations, often leads to
the broad range of incident angles along the curved radome surface. Steering the incident angle will
lose the stability of the resonant frequency of FSS. Thus, the FSS radome may influence the electrical
performance of the enclosed antenna, such as loss of power transmission efficiency or deflection of the
antenna main beam. It is well known that the dielectric profile plays the most important role in
realizing stable transmission response of FSS [1]. As a consequence, in order to improve the electrical
performance of FSS radome, effective optimization of dielectric thickness for different incident angles
along the curved radome surface is necessary.

In recent years, much more optimization strategies concentrate on the optimization of planar
FSS structures. There are several publications in which genetic algorithm (GA) or its counterparts,
such as the micro-genetic algorithm (MGA), have been applied to find patch shapes with the best
performance [2–4]. Chakravarty and Mittra present a procedure for synthesizing single and multilayered
FSS screens embedded in multilayered dielectric media at near-grazing angles of incidences via MGA [3].
A modal-based parameter estimation is introduced in GA aided FSS design [4]. The particle swarm
optimization (PSO) is an evolutionary computation technique inspired by social behavior of a flock of
birds and insect swarms. It has been introduced to the synthesis of infinite planar FSS structure [5]
and design of planar FSS-equipped radome [6]. Clone selection algorithm is one of the many branches
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of the artificial immune system algorithms that has recently drawn considerable attention in a wide
range of applications [7]. It has been shown that the clone selection algorithm is very effective on
multimodal problems due to its inherent properties [8]. A real-valued parallel clone selection algorithm
was successfully applied in optimization of multi-layered planar FSS [9]. From the low number of
manuscripts published, it seems that there is lack of an efficient method for the curved FSS radome
optimization, owing to complex and tremendous computational burden.

For practical antenna-FSS radome systems, the full wave analysis is usually unaffordable due to the
excessive computation. Thus, high-frequency method based on the approximate locally planar technique
method is required for an approximate description [10–13]. The incidence angles continuously vary along
the curved radome surface. If the scattering properties of the planar selective structure for arbitrary
incidences are obtained only by means of a full-wave method, it would be unfeasible to analyze the
FSS radome, not to mention the optimization. An efficient solution to this problem is provided by the
method of multi-dimensional adaptive sampling method (ASM) [14], which allows one to obtain the
electromagnetic characteristics of FSS for multi-dimensional parameter space more efficiently.

An efficient method to optimize the radome-wall thickness profile for curved FSS radome is proposed
in this paper. The paper is organized as follows. The design problem for FSS radome is briefly
summarized in Section 2. In Section 3, the electromagnetic performance of the antenna-radome system
is determined by the high-frequency method, and combined with spectral domain MoM, the multi-
dimensional ASM is employed to evaluate the transmission performance of FSS efficiently. The immune
clone algorithm (ICA) is presented in Section 4. A design example for the three-dimensional tangent
ogive radome is given and the obtained results are presented in Section 5. Finally, conclusions are drawn
in Section 6.

2. POSING THE DESIGN PROBLEM

Figure 1 depicts cross-sectional view of a general FSS radome and its global coordinate system. The
FSS cells are arranged periodically along the cross-sectional generatrix with the local coordinate system
(x, y, z) placed at the FSS cell center. La is the gimbal arm length. The scan angles of the antenna about
the radome axis is θ. The parameters of FSS radome, such as the parameters of FSS array, the number
and the thickness of dielectric layers etc., are degrees of freedom for the optimization. Considering that
any function can be represented as digital sample series, these parameters of FSS radome are defined as
a vector

⇀

X. The assessment functions of the power transmission efficiency, boresight error, etc. of FSS
radome can be expressed as Ag (g = 1, 2, . . . , G) with lower limit Lg or upper limit Ug. The optimization

problem for the electrical performance of FSS radome is to find the appropriate resolution
⇀

Xopt to make
the performance indicators of FSS radome fulfill a request. The optimization problem is formulated as

Figure 1. Cross-sectional view of three-dimensional antenna-FSS radome system.
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a nonlinear programming model:

F
(

⇀

X
)

=
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ξ(f)
∫
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η(θ)
G∑
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[
wgAg

(
⇀

X, θ, f
)]

dθ df max(or min)
{
F

(
⇀

X
)

:
⇀

X ∈ DX

}
Lg≤Ag≤Ug (1)

where ξ(f) and η(θ) are weighting functions for the range of operating frequency and the antenna scan
angle respectively. Θ is the antenna scan volume and Λ the range of operating frequency. wg is weighted
coefficients for different Ag.

For the optimization of radome with nonuniform wall thickness, the thickness of dielectric layer
is chosen as major degree of freedom for the optimization under the premise that other parameters
remain unchanged. The thickness profile is parameterized as d(~s) corresponding to location at ~s on the
radome surface. A realistic way is to use sampling method that the nonuniform thickness of radome wall
at selected positions sp (p = 1, 2, . . . , Np) is chosen as the discrete thickness profile d(sp). Therefore,
⇀

X = [d(s1), d(s2), . . . , d(sNp)]t.
For the optimization problem of power transmission efficiency and the boresight error, the objective

is to search for the best possible thickness profile
⇀

X to maximize the power transmission efficiency
P (

⇀

X, θ, f) and minimize the BSE δ(
⇀

X, θ, f). Therefore, the Eq. (1) can be represented as:
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where Pmin is the minimal power transmission efficiency, δmax the maximal boresight error, d0 the initial
thickness which can be the thickness of uniform radome, and ε a constant determining the range of d(sp).
The problem is reduced to a standard form of multidimensional global optimization.

3. SOLVING TRANSMISSION PERFORMANCE OF RADOME BASED ON ASM

In view of computational efficiency, the physical optics approach, which can get acceptable results for
the analysis of radome with smooth and large curvature radius surface [13, 15], is adopted. The field
radiate from the aperture of the antenna is assumed as a Huygens’ source and transmits through the
FSS radome. The curved frequency selective structure is replaced by the tangent locally planar one
at the incidence point sp. The transmitted field on the outer surface is calculated from the infinite
inductive FSS analysis with the plane of the FSS positioned tangent to the surface at each location.
Once the transmitted fields on the outer surface are found, the fields the equivalent electric and magnetic
currents can be obtained. Finally, the Stratton-Chu formulation is adopted to determine the radiation
performances of the antenna-radome system in the far region. The power transmission efficiency and the
boresight error can be derived. The crux of the problem is how to receive the transmission characteristic
of the tangent locally planar frequency selective structure.

The direction of incidence is (θi
p, ϕ

i
p) which is defined by projecting the propagation vector to the

surface normal of FSS radome at each position sp [15]. The incident fields and the induced currents on
the conducting surfaces for an infinite planar array with periodicities Tx and Ty in x, y directions are
related as:

−Ei(x, y) =
1

TxTy

∞∑
α=−∞

∞∑

β=−∞

˜̄GJ̃ (kxαkyβ) ejkxαxejkyβy (3)

where Ei represents the incident filed, and ˜̄G denotes the pertinent dyadic Green’s function [16] in
the spectral domain which is related with the parameters of FSS structure. kxα and kyβ are Flouqet
wavenumber in x, y directions and defined by

kxα =
2απ

Tx
+ k0 sin θi

p cosϕi
p, kyβ =

2βπ

Ty
+ k0 sin θi

p sinϕi
p (4)
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where k0 is the free-space wavenumber.
The induced current on the perfectly conduct is expanded into the RWG basis functions [17].

Through application of Galerkin’s technique, Eq. (3) can be discretized into the following linear equation

[Zmn] · [In] = [Vm] (n, m = 1, 2, . . . , Mb) (5)

where In is unknown coefficient. The elements of impedance matrix and voltage vector are

Zmn = f̃∗xmG̃xxf̃xn + f̃∗xmG̃xyf̃yn + f̃∗ymG̃yxf̃xn + f̃∗ymG̃yyf̃yn (6)

Vm = Ei
xf̃∗xm + Ei

yf̃
∗
ym (7)

where f̃ denotes the Fourier transforms of RWG basis functions.
Once Eq. (5) is solved, the scattering fields Es radiated by the conducting screens can be obtained

through ˜̄G. Then the scattering parameters of FSS can be found rather easily. The transmission
coefficients of TE and TM polarization are represented as

STE =
j
(
kyβE+

x − kxαE+
y

)
(
k2

xα + k2
yβ

) (8)

STM =

(
kxαE+

x + kyβE+
y

)
(
k2

xα + k2
yβ

)
γαβ/ωε

(9)

where γαβ is the Flouqet wavenumber in the z directions, and E+ is a sum of the transmission fields
radiated by the conducting screens and the transmission fields of the incident wave through the dielectric
structures with all the conducting screens removed.

The transmission coefficients of FSS structure, which are related with the direction of incidence
and the thickness of dielectric layers, are defined as S(d(sp), θi

p, ϕ
i
p). In order to obtain the radiation

performances of the antenna-radome system, it is required to solve S(d(sp), θi
p, ϕ

i
p) at every position

sp. The computation time for the direct MoM simulation of FSS radome is proportional to the number
of discrete positions on the radome. However, there are generally thousands of discrete positions for
electrically large radome. Therefore, it will be time-consuming to get S(d(sp), θi

p, ϕ
i
p) by traditional

MoM. In order to eliminate repetitive computation, one effective method is the multi-dimensional ASM
to interpolate the complex valued transmission efficiency of FSS radome-wall structure through multi-
dimensional rational function

All variables affecting the transmission characteristics of FSS structure, for instance the direction
of incidence, geometric parameters of FSS, the thickness and permittivity of dielectric slab, can be
expressed as a vector (x1,x2, . . . , xN )t in N -dimensional parameters space and the relationship with
transmission parameters can be expressed as a multi-dimensional rational function S(x1,x2, . . . , xN )
defined as

S(x1, x2, . . . , xN ) =

a0 +
M∑

j=1

aj

(
N∏

i=1

x
µi(j)
i

)

b0 +
D∑

j=1

bj

(
N∏

i=1

x
υi(j)
i

) (10)

where µi(j) and υi(j) are integer functions of j and represent orders of parameters xi in numerator and
denominator polynomials respectively. a and b are unknown coefficients. To determine the unknown
coefficients of rational function, the numerical error for the linear equation system of Eq. (10) is always
caused because of the resultant ill-conditioned coefficient matrix whose inverse is inevitable. To avoid
coefficients matrix inversion, the Eq. (10) can be solved through the interpolation on tabulated data in
a recurrence manner.

In the interpolation method, it is necessary to find some support points for tabulated data. Let
[xmin

i , xmax
i ] denote the calculating rang of the ith-dimensional parameter xi (i = 1, 2, . . . , N). The

possible points xp
i,ti

(ti = 1, 2, . . . , Ti) scatter in all range of [xmin
i , xmax

i ] with sufficiently fine space.



Progress In Electromagnetics Research M, Vol. 35, 2014 43

1i
x

2i
x

1, −
i

Ki
x

i
Ki

x
,

11
S

21
S

1,1−
i

K
S

1,
i

K
S

..
.

..
.

..
.

..
.

12
S

22
S

2,2−
i

K
S

2,1−
i

K
S

..
.

1,1 −
i

K
S

1,2 −
i

K
S

i
K

S
,1

..
.

..
.

..
.

..
.

Figure 2. The tabular chart of the S-B algorithm. Figure 3. Finding new sample points.

xs
i,ki

(ki = 1, 2, . . . , Ki) are the support points for xi. Perform the interpolation on tabular chart in a
recurrence manner analogous to the S-B algorithm of the Neville-type [18], as shown in Fig. 2. In the
initializing process, let Ki to be 2. Then the values of scattering parameters Sj1(xi) (j = 1, 2, . . . , Ki)
which are calculated by the MoM at xs

i1 = xmin
i , xs

i2 = xmax
i are used as the initializing value of the

first column in tabular chart. Let xi to be every xp
i,ti

for the ith-dimensional parameter, implement
interpolation as tabular chart at every constant xs

s,ks
(s = 1, 2, . . . , N, but s 6= i) along the xi-axes, as

shown in Fig. 3. The recurrent rules for Sj,l (l = 1, 2, . . . , Ki) in Fig. 2 are as follow:

Sj,l

(
xi

∣∣xs
s,ks

, s = 1, 2, . . . , N, but s 6= i
)

=

(
xi − xs

i,j

)
Sj+1,l−1(xi) +

(
xs

i,j+l − xi

)
Sj,l−1(xi)

xs
i,j+l − xs

i,j

(11)

Sj,l

(
xi

∣∣xs
s,ks

, s = 1, 2, . . . , N, but s 6= i
)

=
xs

i,j+l − xs
i,j

xi−xs
i,j

Sj+1,l−1(xi)
+

xs
i,j+l − xi

Sj,l−1(xi)

(12)

Sj,l

(
xi

∣∣xs
s,ks

, s = 1, 2, . . . , N, but s 6= i
)

= Sj+1,l−2(xi)

+
xs

i,j+l − xs
i,j

xi − xs
i,j

Sj+1,l−1(xi)− Sj+1,l−2(xi)
+

xs
i,j+l − xi

Sj,l−1(xi)−Sj+1,l−2(xi)
(13)

By using a distinct combination of the three recursive rules Eqs. (11)–(13) in association with a step
sequence, an analytical function implemented along a path establishes a rational function model. There
are two approximate rational function models required in each of iterative steps. With the increase
of the number of samples, two approximate models will be close to each other until the convergence
error satisfies a termination criterion. At the areas of highest error of iterative process, xp

i,ti
would be

a new support point and Ki add 1. The new support points in each dimension are chosen in adaptive
way until the difference between the rational function value from interpolation and the actual sampling
value from the MoM satisfies a given error tolerance. The support points must completely fill grid of
points which do not have to be equidistant. The full set is given by the Cartesian product of the support
points for each variable

(x11, x12, . . . , x1K1)× (x21, x22, . . . , x2K2)× . . .× (xN1, xN2, . . . , xNKN
) (14)
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In order to receive the objective function value S(x∗1, x
∗
2, . . . , x

∗
N ) at a given point (x∗1, x

∗
2, . . . , x

∗
N ),

it needs to conduct N -dimension recursive interpolation. Set xi in Eqs. (11)–(13) be x∗i , and implement
recursive interpolation as tabular chart at every constant xs

s,ks
(s = 1, 2, . . . , N but s 6= i) along the xi-

axes. The last interpolation in one dimension hands the result of its interpolation to next dimension as
initializing value. The recursive interpolation is terminated with processes that interpolate from known
sample points.

In the computation of the transmitted field for FSS radome, the ASM is applied to efficiently derive
the transmission coefficients of FSS under different incident angles and different thickness of dielectric.
Let x1 and x2 in Eq. (10) be the incident angle θi

p and ϕi
p for the locally planar FSS respectively and

set x3 to be the thickness of dielectric d(sp). The transmission response of FSS S(d(sp), θi
p, ϕ

i
p) can be

obtained in the recursive way.

4. IMMUNE CLONE ALGORITHM

The immune clone algorithm starts with the generation of an initial population that is consisted of N
a

possible solutions of thickness profile
⇀

Xu (u = 1, 2, . . . , Na). The affinity function is defined as

F ′
(

⇀

Xu

)
= w1 min

[
P

(
⇀

Xu, θ, f
)]

+ w2

{
1−max

[
δ
(

⇀

Xu, θ, f
)]}

(15)

Each of these individuals receives a number of copies proportional to its affinity. Then the clone
population ~Xc

v (v = 1, 2, . . . , N c) generate. Gaussian Mutation (GM) and Cauchy Mutation (CM)
which retain diversity within the population have been successfully applied in genetic algorithm [19].
In this paper, hypermutation process consists of GM and CM strategies according to the arithmetic
mean of affinity function (AMAF ) to avoid falling into local optimal solution. A clone ~Xc

v is altered
stochastically at a certain percentage (Pr) and undergo as:

Xc′′
v (p) = Xc

v(p) + σp∆p (p = 1, 2, . . . , Np) (16)

where σ is standard deviation. If the affinity of clone molecule selected random is lower than AMAF, ∆
is Cauchy random variable calculated by one-dimensional Cauchy density function [19]. If the affinity
of clone molecule selected random is larger than AMAF, the mutation process undergo GM which
is mutates in a small step mutation. ∆ is Gaussian random variable by standard Gaussian density
function. In addition to hypermutation, a part of the low affinity members are deleted and replaced by
newly generated members [6]. This promotes the introduction of diverse members to the population,
particularly if they achieve better affinity.

5. NUMERICAL RESULTS

5.1. Verification of ASM

In order to demonstrate the feasibility of applying the ASM to analysis of FSS, the FSS structure
described as Fig. 1 in [20] is chosen. Fig. 4 shows the comparison of the transmission coefficients between
the direct MoM, one-dimension ASM and experimental results given by [20]. Excellent agreement
between these results has been achieved. The direct MoM responses are smoothed with 130 support
points of equal space, whereas the responses of the ASM are interpolated by a rational function obtained
only by 36 support samples, as shown in Fig. 4. All the computation is carried out on an Intel Core2
Duo CPU 2.4 GHz and 2.0GB personal computer. The CPU time to obtain accurate results is 1.5 CPU
hours for direct MoM calculation but only 0.45 CPU hours for ASM calculation.

To test the accuracy of S(d(sp), θi
p, ϕ

i
p) solved by multi-dimension ASM described in Section 3,

the transmission coefficients of the FSS structure which consists of aperture-type ring elements on a
dielectric layer, as shown in Fig. 5, are calculated over wide range of d, θi and ϕi. The ring width is
wr = 0.3 mm and radius is r = 3.09mm. The periodicity is Tx = Ty = 7.24mm. The permittivity of
dielectric slab is 3.5 and the tangent loss is 0.003. The transmission characteristic of the ring FSS is
investigated under 11GHz incident wave with changing of incident angle and d. The testing ranges of
θi are from 15◦ to 75◦ according to the incident angles for FSS along the curved radome surface. Owing
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Figure 4. Frequency response of FSS in [20]
under a normal incidence.

xT

yT

r

rw

x

z

d

FSS
i

θ

(a) (b)

Figure 5. Geometry of ring FSS array on a dielectric
slab. (a) Top view of a cell. (b) Side view.

(a) (b)

Figure 6. Transmission coefficient of ring FSS at f = 11 GHz and ϕi = 24◦. (a) Magnitude of
transmission coefficient. (b) Phase of transmission coefficient.

to symmetry of ring element, the testing ranges of ϕi are from 0◦ to 45◦. The thickness of dielectric
slab d ∈ [5.5, 10] (unit: mm).

For the comparison, both results of the direct MoM and the multi-dimension ASM are shown in
Fig. 6 and Fig. 7. Fig. 6 shows the transmission coefficients of the FSS structure illuminated by an
incidence wave at f = 11 GHz and ϕi = 24◦ for d = 7 mm, 9mm. Fig. 7 depicts the transmission
coefficients of the FSS when d = 7.87mm under an incidence wave at f = 11 GHz and ϕi = 10◦, 30◦. As
seen, the model of ASM simulation is in very good agreement with the MoM simulated result. It takes
only 1.2 CPU hours by multi-dimension ASM method to solve S(d, θi, ϕi), but it requires 56 hours by
direct MoM to obtain the same information.

To validate the feasibility of applying the ASM to analysis of FSS radome, Fig. 8 shows the measured
plane wave transmission response of an FSS manufactured with ring slot elements in [12] compared with
the result predicted by the proposed method in this paper. The FSS was curved into a parabolic cylinder
of focal length 10 mm and aperture size 140 mm. The two curves show good agreement. Very small
focal length of parabolic cylinder results in high loss.



46 Ma and Wan

(a) (b)

Figure 7. Transmission coefficient of ring FSS with d = 7.87 mm at f = 11GHz. (a) Magnitude of
transmission coefficient. (b) Phase of transmission coefficient.

Figure 8. Power transmission response of
parabolic cylindrical FSS in [12].

Figure 9. Power transmission efficiency for E-
plane and H-plane scans.

5.2. Optimization of Nonuniform Wall Thickness

A design example is three-dimensional tangent ogive radome of revolving symmetry with a material of
dielectric constant 3.5 and the tangent loss is 0.003. As shown in Fig. 1, the parameters are L = 40λ,
W = 20λ, La = 10λ. λ is wavelength in free space. The operating frequency is 11 GHz. The antenna
is a circular aperture with radius ra = 5λ. The antenna is assumed to be a uniform linear polarized
distribution.

The FSS screen is loaded on the inner surface of radome. The aperture-type ring FSS structure same
with Fig. 5 is investigated. The initial substrate parameters d0 of FSS structure were optimized with
respect to the maximum magnitude of transmission coefficient illuminated by an 11 GHz 45◦ oblique
incident wave. The initial design process is accomplished with the results of d0 = 7.87mm.

The thickness profile function is investigated by ICA. In the ICA process, the utilized parameter
values were Np = 15, Pr = 70%, w1 = 5/6, w2 = 1/6. The scan angles θ are from 0◦ to 30◦ with
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2.5◦ step. S(d, θi, ϕi) in Section 5.1 is employed. Fig. 9 shows the power transmission efficiency against
gimbal angles for E-plane and H-plane scans. As a reference, the power transmission efficiency of
uniform thickness radome with d0 = 7.87mm are also shown in Fig. 9. In the case of uniform thickness,
the power transmission efficiency has a lowest level of 70% at an antenna look direction near 0◦. After
optimization, it is improved to 86% maximum, a significant improvement as compared to the case of
uniform thickness. The BSE against gimbal angles for E-plane and H-plane scans are shown in Fig. 10.
It shows that the BSE of the optimal antenna-radome system is reduced from 0.3◦ to 0.07◦. The
resulting optimal thickness profile function is given in Fig. 11.

Figure 10. BSE of the uniform thickness and
optimized radome by ICA.

Figure 11. Optimized thickness profile func-
tions.

6. CONCLUSIONS

For the multi-objective optimization problem of FSS radome, the ICA combined with high-frequency
method and ASM is proposed to optimize the power transmission efficiency and the BSE simultaneously.
Two FSS structures with different shape elements are investigated by multi-dimension ASM. The results
using multi-dimension ASM compare very well to electromagnetic simulation by the direct MoM. The
successful completion of a realistic design example of a tangent ogive radome with circular ring FSS is
given. After entire thickness optimization, the power transmission efficiency is improved significantly
and the BSE of the optimal antenna-radome system is also reduced over the antenna scan volume as a
result of adjusting the thickness. It is found that the proposed method offers tremendous computational
savings in terms of CPU time that makes it possible to analyze and design FSS radome more efficiently.
The proposed technique has been demonstrated as a powerful approach for curved FSS radome design.
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