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Influence of SOLT Calibration Standards on Multiport VNA
S-Parameter Measurements

Wei Zhao*, Jiankang Xiao, and Hongbo Qin

Abstract—For the GSOLT calibration algorithm of n-port vector network analyzers (VNA), the
sensitivity coefficients for the S-parameters of the n-port device under test (DUT) are developed as
functions of the S-parameter deviations of SOLT standards. By introducing the generalized flow graph
of the 3n-term error model, analytic formulas for the S-parameter deviations of the n-port DUT with
respect to the error terms have been deduced. In addition, expressions for the deviations of the error
terms in regard to the nonideal calibration elements are given by a series of matrix operations. Finally,
the analytic expressions of the sensitivity coefficients are concluded, which can be used for establishing
the type-B uncertainty budget for S-parameter measurements.

1. INTRODUCTION

With the development of microwave technology, multiport devices, whose S-parameters are typically
measured by multiport vector network analyzers (VNA), are becoming more widespread in RF
systems [1]. To achieve high precision, the calibration procedure should be implemented before the
measurement [2, 3]. For the n-port VNA with n+1 measurement channels, the general short-open-
load-thru (GSOLT) procedure is now widely used [4–6]. In practical application, the S-parameters
associated with the calibration standards short (S), open (O), load (L) and thru (T) are not ideal as
expected. Through the GSOLT calibration based on such non-ideal standards, the error terms and,
consequently, the S-parameters of the DUT will deviate from their true values, so it is necessary to
investigate the impact that the S-parameter deviations of SOLT standards have on the uncertainty
of the Sij . Although some techniques have been developed for the estimation of uncertainties in two-
port VNA measurements, they are inapplicable to the multiport VNA due to the lack of use of matrix
formalisms [7–9]. To solve this, the sensitivity coefficients for the S-parameters of n-port DUT have been
deduced in matrix form by using the concept of general node equation for the GSOLT calibration [10].
However, it is still unclear how the nonideal SOLT standards affect the calibrated Sij .

In this paper, the generalized flow graph of the 3n-term error model, where nodes and branch
gains are expressed by column vectors and square matrixes respectively, is proposed for the GSOLT
calibration of the n-port VNA. Based on this flow graph, the dependence of the S-parameter deviations
on the error term deviations is solved in the error correction procedure. Then the error term deviations
associated with the non-ideal standards are calculated in the process of error calibration. Finally, the
analytic expressions for the sensitivity coefficients, which use the S-parameters of SOLT standards as
input quantities and the S-parameters of the n-port DUT as output quantities, can be further concluded.

2. THEORY

The 3n-term error model of the n-port VNA with n+1 measurement channels is shown in Fig. 1, where
the number “1” represents the source port [6]. In Fig. 1, Smj1 (j = 1 ∼ n) are defined as the raw
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Figure 1. Error model of the n-port VNA with the resource connected to port 1.

   

(a) (b)

Figure 2. Transformations of the flow graph of the 3n-term error model. (a) Use of the node splitting
rule. (b) Use of the GSM concept.

scattering parameters, meanwhile, the power waves at port j of the DUT are defined as aj1 and bj1. As
compared with the model given in [4], this model also includes n-1 leakage errors between the excited
port and the unexcited ports.

Before the error correction procedure, all the error coefficients EDii, ESii, ERii, EXji, ELji and
ETji (i, j = 1 ∼ n, i 6= j) are solved by the GSOLT procedure [4]. Then when the S-parameter
measurements of an n-port DUT are performed, the error correction will be applied to compute the
actual S-parameters [6]. To further simplify the error correction algorithm, the following transformations
are made for the flow graph of the 3n-term error model in Fig. 1.

The flow graph (Fig. 2(a)) is constructed from Fig. 1 by using the node splitting rule and then
further converted into the generalized flow graph (Fig. 2(b)) by the concept of the generalized scattering
matrix (GSM) [11–13]. In Fig. 2(b), the generalized nodes and branch gains are defined as
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


1
...
1
...
1
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.

Finally, the generalized flow graph of the 3n-term error model for port i (i = 1 in Fig. 1) excitation can
be summarized below:

Table 1. Relationship between error terms and error matrixes.

Error Matrix Error Term Source

[EDXi]
EDii Directivity
EXji Leakage

[ESLi]
ESii Source match
ELji Load match

[ERTi]
ERii Reflection tracking
ETji Transmission tracking

The relationship between error terms and error matrixes is described in Table 1. For the error
matrix [EUV i], the subscript “UVi” means that the (i, i)th element is EUii and the (j, i)th element is
EV ji (i 6= j). The generalized branch gain [Ii] has only one nonzero element “1” at the (i, i)th position.
According to the generalized 3-term error model, we can obtain the matrix equation as{

[Smi]
[ai]

}
=

{
[EDXi] [ERTi]

[Ii] [ESLi]

}{
[E]
[bi]

}
(2)

where the generalized power waves [E] =



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...
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Sm1i
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Smii
...

Smni




on the VNA side and [ai] =




a1i
...

aii
...
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
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b1i
...

bii
...

bni




on the DUT side. From Eq. (1), the reflected wave vector [bi] and the incident wave

vector [ai] can be deduced as follows:

[bi] = [ERTi]−1{[Smi]− [EDXi][E]} (3)
[ai] = [Ii][E] + [ESLi][bi] (4)

Once the reflected wave vectors [bi] (i = 1 ∼ n) and the incident wave vectors [ai] (i = 1 ∼ n) are
calculated by Eq. (2) and Eq. (3), the S-matrix of the n-port DUT can be concluded as

[S] = [B][A]−1 (5)
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where [A] = {[a1], . . . [ai], . . . [an]} and [B] = {[b1], . . . [bi], . . . [bn]}. However, nonideal calibration
elements will cause the deviation of [S] from its true value. In this paper, the effect of nonideal
calibration elements (S, O, L and T) on the S-parameter measurements is investigated by the following
steps:

2.1. Deviations of S-parameters

In the first step, the dependence of [δS] of a DUT on the deviations of the error matrixes [EDXi], [ERTi]
and [ESLi] is derived. According to the self loop rule [12], the generalized flow graph in Fig. 3 can be
simplified into that in Fig. 4(a). Then, the series rule and the parallel rule are successively used to
obtain the ratio between [E] and [Smi] in Fig. 4(b) [12].

Figure 3. Generalized flow graph of the 3n-term error model.

(a) (b)

Figure 4. Simplification of the generalized flow graph. (a) Removal of self-loop. (b) Combination of
paths..

[I] is the identity matrix and the branch gain in Fig. 4(a) can be also expressed as

{[I]− [S][ESLi]}−1[S] = [S]{[I]− [ESLi][S]}−1 (6)

From Fig. 4(b), we can get the following equation.

[EDXi][E] + [ERTi]{[I]− [S][ESLi]}−1[S][Ii][E] = [Smi] (7)

Assumed that the deviation [δS] is not affected by the variations of the raw values [Smi], the incorrectly
defined error terms will lead to the incorrect [S] + [δS].

[EDXi + δEDXi][E] + [ERTi + δERTi]{[I]− [S + δS][ESLi + δESLi]}−1[S + δS][Ii][E] = [Smi] (8)

To solve the deviation matrix [δS], we need find the inverse of matrix in Eq. (7). Let [D + δD]−1 =
[D]−1 + [δX] where the deviation [δX] is underdetermined, when the deviation [δD] of a random non-
singular matrix [D] is very close to zero. By using the definition of the inverse matrix [D+ δD]{[D]−1 +
[δX]} = [I], and omitting the product of small terms [δD][δX], we can get [δX] = −[D]−1[δD][D]−1

and the equation given below [14, 15]:

{[D] + [δD]}−1 = [D]−1 − [D]−1[δD][D]−1 (9)
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Using Eq. (8) and omitting the smaller term [δS][δESLi] can obtain

{[I]− [S + δS][ESLi + δESLi]}−1 = {[I]− [S][ESLi]}−1 + {[I]− [S][ESLi]}−1{[δS][ESLi]
+[S][δESLi]}{[I]− [S][ESLi]}−1 (10)

Substituting Eq. (9) into Eq. (7) and subtracting Eq. (6) form the result, we can deduce the following
equation by omitting the products of deviations.

−{[I]−[S][ESLi]}[ERTi]−1[δEDXi][E]− {[I]−[S][ESLi]}[ERTi]−1[δERTi][S]{[I]−[ESLi][S]}−1[Ii][E]
−[S][δESLi][S]{[I]−[ESLi][S]}−1[Ii][E] = [δS]{[I]− [ESLi][S]}−1[Ii][E] (11)

Because of the dependence among error terms, raw measured S-parameters and actual S-parameters,
we can rewrite vectors [bi] and [ai] by substituting Eq. (5) and Eq. (6) into Eq. (2) and Eq. (3).

[bi] = [S]{[I]− [ESLi][S]}−1[Ii][E] (12)
[ai] = {[I]− [ESLi][S]}−1[Ii][E] (13)

Substituting Eq. (11) and Eq. (12) into Eq. (10) can obtain the equation given below:

[δS][ai] = −[Ci][δEDXi][E]− [S][δESLi][bi]− [Ci][δERTi][bi] (14)

where the matrix [Ci] = {[I]− [S][ESLi]}[ERTi]−1. With the subscript i in Eq. (13) varied from 1 to n,
we can establish an equation for the deviation [δS] and consequently derive

[δS] = −{[C1][δEDX1][E], . . . [Ci][δEDXi][E], . . . [Cn][δEDXn][E]}[A]−1

−{[S][δESL1][b1], . . . [S][δESLi][bi], . . . [S][δESLn][bn]}[A]−1

−{[C1][δERT1][b1], . . . [Ci][δERTi][bi], . . . [Cn][δERTn][bn]}[A]−1 (15)

It is observed that the deviation matrix [δS] is developed as a function of [δEDXi], [δESLi] and [δERTi].
Finally, the scattering parameter deviation δSkl can be concluded as

δSkl = −
∑

i=1...n

dil[cT
ik][δeDXi]−

∑

i=1...n

dil[Sk1, . . . Skn][diag(bi)][δeSLi]−
∑

i=1...n

dil[cT
ik][diag(bi)][δeRTi](16)

where [cT
ik] is the kth row of [Ci] and dil is the (i, l)th element of [A]−1. For the diagonal matrix [diag(bi)]

the diagonal elements are composed of [bi]. Meanwhile, the deviations [δeDXi], [δeSLi] and [δeRTi] are
defined as n× 1 column vectors:

[δeDXi] =




δEX1i
...

δEDii
...

δEXni




, [δeSLi] =




δEL1i
...

δESii
...

δELni




, [δeRTi] =




δET1i
...

δERii
...

δETni




To explore how the deviations of errors [δeDXi], [δeSLi] and [δeRTi] affect the S-parameter deviation,
we need further deduce the analytical expressions for [cT

ik], dil and [diag(bi)]. Because the error terms
are |EDii| ≈ 0, |ESii| ≈ 0, |EXji| ≈ 0, |ELji| ≈ 0, |ERii| ≈ 1 and |ETji| ≈ 1 in the high-performance
VNA, EDii, ESii, EXji and ELji can be regarded as small terms and their products will be neglected
in the following calculation.

As mentioned before, the matrix [Ci] = {[I]− [S][ESLi]}[ERTi]−1 and so we can get

[Ci] =




1−EL1iS11
ET1i

. . . −ESiiS1i
ERii

. . . −ELniS1n
ETni

...
. . .

...
. . .

...
−EL1iSi1

ET1i
. . . 1−ESiiSii

ERii
. . . −ELniSin

ETni
...

. . .
...

. . .
...

−EL1iSn1
ET1i

. . . −ESiiSni
ERii

. . . 1−ELniSnn

ETni




(17)
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As the kth row of [Ci], the vector [cT
ik] is given below:

[cT
ik] =

[
ε1−k −EL1iSk1

ET1i
, . . .

εi−k −ESiiSki

ERii
, . . .

εn−k −ELniSkn

ETni

]
(18)

where εi−k = 1 for i = k and εi−k = 0 for i 6= k.
To deduce the variable dil defined as the (i, l)th element of [A]−1, we first represent [ai] with

{[I] + [ESLi][S]}[Ii][E] by using Eq. (8) and Eq. (12), and thus obtain an approximate expression for
[A].

[A] = [I] +




ES11S11 . . . EL1iS1i . . . EL1nS1n
...

. . .
...

. . .
...

ELi1Si1 . . . ESiiSii . . . ELinSin
...

. . .
...

. . .
...

ELn1Sn1 . . . ELniSni . . . ESnnSnn




(19)

Then inverting the matrix [A] with Eq. (8), we can deduce

[A] −1 = [I]−




ES11S11 . . . EL1iS1i . . . EL1nS1n
...

. . .
...

. . .
...

ELi1Si1 . . . ESiiSii . . . ELinSin
...

. . .
...

. . .
...

ELn1Sn1 . . . ELniSni . . . ESnnSnn




(20)

From Eq. (19), the variable dil is finally described as

dil =
{

1− ESllSll i = l
−ELilSil i 6= l

(21)

Based on the expression for [ai] in Eq. (18) and the S-matrix definition [bi] = [S][ai], we can have

[bi] =




S1i + ESiiS1iSii +
j 6=i∑

j=1...n
ELjiS1jSji

...

Sii + ESiiSiiSii +
j 6=i∑

j=1...n
ELjiSijSji

...

Sni + ESiiSniSii +
j 6=i∑

j=1...n
ELjiSnjSji




(22)

Based on Eq. (21), the diagonal matrix [diag(bi)] can be easily obtained. Form the above analysis, the
coefficients [cT

ik], dil and [diag(bi)] are solved, and then substituting them into Eq. (15) can derive the
analytical expression for δSkl in the following two cases:

1) When k = l, the deviation δSkl is expressed as

δSll =
2ESllSll − 1

ERll
δEDll +

i 6=l∑

i=1...n

ELilSli

ETil
δEXil +

i6=l∑

i=1...n

ELilSil

ET li
δEXli

−Sll

(
Sll +

i6=l∑

i=1...n

ELilSliSil

)
δESll +

i6=l∑

i=1...n

ELilSliSiiSilδESii
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−
i6=l∑

i=1...n

Sli


Sil +

j 6=l∑

j=1...n

ELjlSijSjl


 δELil +

i6=l∑

i=1...n

j 6=i∑

j=1...n

ELilSljSjiSilδELji

−
Sll −ESllS

2
ll +

i6=l∑

i=1...n

ELilSliSil

ERll
δERll +

i6=l∑

i=1...n

ELilSliSil

ETil
δETil +

i 6=l∑

i=1...n

ELilSliSil

ET li
δET li (23)

2) When k 6= l, the deviation δSkl is expressed as

δSkl =
ESllSkl

ERll
δEDll +

ELklSkl

ERkk
δEDkk +

ESllSll + ELklSkk − 1
ETkl

δEXkl +
i6=k,l∑

i=1...n

ELilSki

ETil
δEXil

+
i6=k,l∑

i=1...n

ELilSil

ETki
δEXki − Skl

(
Sll +

i 6=l∑

i=1...n

ELilSliSil

)
δESll +

i6=l∑

i=1...n

ELilSkiSiiSilδESii

−
i6=l∑

i=1...n

Ski


Sil +

j 6=l∑

j=1...n

ELjlSijSjl


 δELil

+
i6=l∑

i=1...n

j 6=i∑

j=1...n

ELilSkjSjiSilδELji +
ESllSklSll

ERll
δERll +

ELklSkkSkl

ERkk
δERkk

−
Skl +

i6=k,l∑

i=1...n

ELilSkiSil

ETkl
δETkl +

i6=k,l∑

i=1...n

ELilSkiSil

ETil
δETil +

i6=k,l∑

i=1...n

ELilSkiSil

ETki
δETki (24)

From Eq. (22) and Eq. (23), we can calculate the sensitivity coefficients with respect to the error terms
as input quantities and the S-parameters of the DUT as output quantities.

2.2. Deviations of Error Terms

In the second step, the deviations of error terms associated with SOLT calibration standards are solved.
By measuring standards SOL at port i, we can use the 3-term error model in Fig. 5 to deduce the
system errors EDii, ESii and ERii by the linear equations below:




1 Smii(S)ΓSi ΓSi

1 Smii(O)ΓOi ΓOi

1 Smii(L)ΓLi ΓLi







EDii

ESii

ERii − EDiiESii


 =




Smii(S)
Smii(O)
Smii(L)


 (25)

Figure 5. Error model of SOL calibration.
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where Smii(X) is the raw reflection coefficient of the standard X at port i. The S-parameter deviations
of standards SOL (δΓSi, δΓOi and δΓLi) will cause the error deviations (δEDii, δESii and δERii).








1 Smii(S)ΓSi ΓSi

1 Smii(O)ΓOi ΓOi

1 Smii(L)ΓLi ΓLi


 +




0 Smii(S)δΓSi δΓSi

0 Smii(O)δΓOi δΓOi

0 Smii(L)δΓLi δΓLi















EDii

ESii

ERii − EDiiESii


 +




1 0 0
0 1 0

−ESii −EDii 1







δEDii

δESii

δERii






 =




Smii(S)
Smii(O)
Smii(L)




(26)

Subtracting (25) from (26) and substituting Smii(X) = EDii + ERiiΓXi/(1 − ESiiΓXi) into the result,
we can get the expression for the deviation vector [δEDii, δESii, δERii]T via a series of matrix
operations [10]. Finally, we can deduce

δEDii = ERii

[
ΓOiΓLi

(ΓOi−ΓSi)(ΓSi−ΓLi)
δΓSi+

ΓLiΓSi

(ΓLi−ΓOi)(ΓOi−ΓSi)
δΓOi+

ΓSiΓOi

(ΓSi−ΓLi)(ΓLi−ΓOi)
δΓLi

]

(27)

δESii =
(1−ESiiΓOi)(1−ESiiΓLi)

(ΓOi−ΓSi)(ΓSi−ΓLi)
δΓSi+

(1−ESiiΓLi)(1−ESiiΓSi)
(ΓLi−ΓOi)(ΓOi−ΓSi)

δΓOi+
(1−ESiiΓSi)(1−ESiiΓOi)

(ΓSi−ΓLi)(ΓLi−ΓOi)
δΓLi

(28)

δERii = ERii

[
2ESiiΓOiΓLi−ΓOi−ΓLi

(ΓOi−ΓSi)(ΓSi−ΓLi)
δΓSi+

2ESiiΓLiΓSi−ΓLi−ΓSi

(ΓLi−ΓOi)(ΓOi−ΓSi)
δΓOi+

2ESiiΓSiΓOi−ΓSi−ΓOi

(ΓSi−ΓLi)(ΓLi−ΓOi)
δΓLi

]

(29)

It is worth noting that δEXji is independent on the S-parameter deviations of SOLT standards, that is
to say δEXji = 0.

Measuring standard T between port i and port j, we can use the flow graph combined with the
transmission matrix (T -matrix) to represent the measurements Smii(T ) and Smji(T ) in Fig. 6.

The T -matrix of the error box at port i and that of the 2-port network of standard T , both selected
by dash in Fig. 6, are defined as [Ti] and [Tij ] respectively. Cascading the T -matrixes [Ti] and [Tij ] can
deduce the equation as follows:




Smii(T )
Smji(T )− EXji

1
Smji(T )− EXji


 = [Ti][Ttij ]




ELji

ETji

1
ETji


 (30)

Figure 6. Error model of T calibration.
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If the left hand of (30) is invariable, the deviations [δTi], [δTtij ], δELji and δETji occur.



Smii(T )
Smji(T )− EXji

1
Smji(T )− EXji


 = {[Ti] + [δTi]}{[Ttij ] + [δTtij ]}








ELji

ETji

1
ETji


 +




δ
ELji

ETji

δ
1

ETji








(31)

Subtracting (30) from (31) and omitting the product of small terms, we can deduce
[

δELji

δETji

]
=

[ −1 ELji

0 ETji

]
[Ttij ]−1[Ti]−1[δTi][Ttij ]

[
ELji

1

]
+

[ −1 ELji

0 ETji

]
[Ttij ]−1[δTtij ]

[
ELji

1

]
(32)

The right hand of (32) is composed of two terms. The first term contains the deviation [δTi], which
associates with the deviations δΓSi, δΓOi and δΓLi of standards SOL. The second term contains the
deviation [δTtij ], which associates with the deviations δSTij

ii , δST ij
ij , δSTij

ji and δSTij
jj of the 2-port

network of T connection. From Fig. 6, we can get the expressions for [Ti] and [Tij ] given below:

[Ti] =
[

ERii −EDiiESii EDii

−ESii 1

]
(33)

[Tij ] = − 1

STij
ji

[
STij

ii ST ij
jj − STij

ji STij
ij −STij

ii

STij
jj −1

]
(34)

By taking the total differential of Eq. (32) and Eq. (33), we can get

[δTi] =
[ −ESiiδEDii −EDiiδESii + δERii δEDii

−δESii −δERii

]
(35)

[δTij ] =
1

(STij
ji )2

−STij
ji ST ij

jj δSTij
ii +STij

ii STij
jj δSTij

ji +
(
STij

ji

)2
δST ij

ij −STij
ii STij

ji δSTij
jj STij

ji δSTij
ii −STij

ii δSTij
ji

STij
jj δSTij

ji −STij
ji δSTij

jj −δSTij
ji


 (36)

Substituting Eqs. (32) to (35) into Eq. (31) can determine the deviations δELji and δETji as follows:

δELji =
M2 + N2ΓOiΓLi −MN(ΓOi + ΓLi)

STij
ji STij

ij (ΓSi − ΓOi)(ΓSi − ΓLi)
δΓSi +

M2 + N2ΓLiΓSi −MN(ΓLi + ΓSi)

ST ij
ji STij

ij (ΓOi − ΓLi)(ΓOi − ΓSi)
δΓOi

+
M2 + N2ΓSiΓOi −MN(ΓSi + ΓOi)

STij
ji STij

ij (ΓLi − ΓSi)(ΓLi − ΓOi)
δΓLi

− N2

STij
ji STij

ij

δSTij
ii − NELji

ST ij
ji

δSTij
ji − NELji

STij
ij

δSTij
ij − E2

LjiδS
T ij
jj (37)

δETji =
METjiS

Tij
jj (ΓOi + ΓLi)− PETjiΓOiΓLi −MQETji

STij
ji STij

ij (ΓSi − ΓOi)(ΓSi − ΓLi)
δΓSi

+
METjiS

Tij
jj (ΓLi + ΓSi)− PETjiΓLiΓSi −MQETji

STij
ji STij

ij (ΓOi − ΓLi)(ΓOi − ΓSi)
δΓOi

+
METjiS

Tij
jj (ΓSi + ΓOi)− PETjiΓSiΓOi −MQETji

STij
ji ST ij

ij (ΓLi − ΓSi)(ΓLi − ΓOi)
δΓLi

+
NETjiS

Tij
jj

STij
ji STij

ij

δSTij
ii − NETji

ST ij
ji

δSTij
ji +

ETjiELjiS
Tij
jj

STij
ij

δST ij
ij −ETjiELjiδS

Tij
jj (38)
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where the variables M = STij
ii −ELjiQ, N = 1−ELjiS

T ij
jj , P = STij

jj +ESiiS
Tij
ji STij

ij −ELjiS
T ij
jj STij

jj and
Q = ST ij

ii STij
jj −ST ij

ji STij
ij . From the above analysis in part B, the deviations of error terms are expressed

by the S-parameter deviations of SOLT standards, which implies that the sensitivity coefficients with
respect to the S-parameters of SOLT standards as input quantities and the error terms as output
quantities can be determined.

2.3. Combination of Part A and Part B

In the last step, combining the results of part A and B can obtain the sensitivity coefficients of S-
parameters for arbitrary n-port DUT with respect to the nonideal calibration standards. In general,
the system errors are solved in the ideal condition (ΓSi = −1, ΓOi = 1, ΓLi = 0, STij

ii = STij
jj = 0,

STij
ji = STij

ij = 1), therefore the results in Part B can be simplified as

δEDii = −ERiiδΓLi (39)

δESii =
ESii − 1

2
δΓSi − 1 + ESii

2
δΓOi + δΓLi (40)

δERii =
ERii

2
δΓSi − ERii

2
δΓOi − 2ERiiESiiδΓLi (41)

δELji = −ELji

2
δΓSi +

ELji

2
δΓOi + δΓLi − δSTij

ii − ELjiδS
T ij
ji −ELjiδS

Tij
ij (42)

δETji =
ETjiELji

2
δΓSi+

ETjiELji

2
δΓOi −ETji(ESii+ELji)δΓLi−ETjiδS

Tij
ji −ETjiELjiδS

Tij
jj (43)

Substituting Eqs. (38)–(42) into Eq. (22) and Eq. (23), we can finally conclude the sensitivity coefficients
for the S-parameters as follows:

1) When k = l, the deviation δSkl is expressed as

δSll = −
Sll

(
1− Sll −

i6=l∑
i=1...n

ELilSliSil

)

2
δΓSl −

i6=l∑

i=1...n

ELilSliSiiSil

2
δΓSi

+

Sll

(
1 + Sll +

i6=l∑
i=1...n

ELilSliSil

)

2
δΓOl −

i6=l∑

i=1...n

ELilSliSiiSil

2
δΓOi

+δΓLl −
∑

i=1...n

Sli


Sil +

j 6=l∑

j=1...n

ELjlSijSjl


 δΓLl +

i6=l∑

i=1...n

∑

j=1...n

ELilSljSjiSilδΓLi

+
i 6=l∑

i=1...n

Sli


Sil +

j 6=l∑

j=1...n

ELjlSijSjl


 δSTil

ll −
i 6=l∑

i=1...n

j 6=i∑

j=1...n

ELilSljSjiSilδS
Tij
ii (44)

2) When k 6= l, the deviation δSkl is expressed as

δSkl =

Skl

(
Sll − ELkl +

i 6=l∑
i=1...n

ELilSliSil

)
+

i6=l∑
i=1...n

ELilSkiSil

2
δΓSl +

ELklSkkSkl

2
δΓSk

−
i 6=l∑

i=1...n

ELilSkiSiiSil

2
δΓSi +

Skl

(
Sll −ELkl +

i6=l∑
i=1...n

ELilSliSil

)
−

i 6=l∑
i=1...n

ELilSkiSil

2
δΓOl
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−ELklSkkSkl

2
δΓOk −

i6=l∑

i=1...n

ELilSkiSiiSil

2
δΓOi + ELklSklδΓLl

−
∑

i=1...n

Ski


Sil +

j 6=l∑

j=1...n

ELjlSijSjl


 δΓLl − ELklSklδΓLk +

i6=l∑

i=1...n

∑

j=1...n

ELilSkjSjiSilδΓLi

+
i6=l∑

i=1...n

Ski


Sil +

j 6=l∑

j=1...n

ELjlSijSjl


 δSTil

ll + ELklSklδS
Tkl
kk −

i6=l∑

i=1...n

j 6=i∑

j=1...n

ELilSkjSjiSilδS
Tij
ii

+

(
Skl +

i6=l∑

i=1...n

ELilSkiSil

)
δSTkl

kl +
i6=l∑

i=1...n

ELilSkiSilδS
Til
li −

i6=k,l∑

i=1...n

ELilSkiSilδS
Tik
ki (45)

From Eq. (43) and Eq. (44), we can find out how the S-parameter deviations of SOLT standards affect
the uncertainty of Sij .

3. MEASUREMENT RESULTS

To verify the proposed method, three steps are needed: first solving the system errors by GSOLT
calibration, then determining the corrected S-parameters of the multiport DUT, and finally calculating
the sensitivity coefficients of the S-parameters. During the whole analysis process, because the test port
connectors are of the same sex, the reflection coefficients satisfy the relationship of ΓSi = ΓS , ΓOi = ΓO

and ΓLi = ΓL. Meanwhile, it is established that ST ij
ii = ST

11, STij
ij = ST

12, STij
ji = ST

21 and STij
jj = ST

22 with
the port number “j” larger than the port number “i”. In these cases, there are totally 7 uncertainty
sources associated with the nonideal SOLT standards: ΓS , ΓO, ΓL, ST

11, ST
12, ST

21 and ST
22. Based on

the above and by applying the GSOLT calibration (Fig. 5 and Fig. 6), all the errors in Table 1 can
be deduced from Eq. (24) and Eq. (29). After that, measurements are performed on a four-port dual
directional coupler using the commercial four-port VNA (Agilent E5071B). Once the system errors and
the raw measured data are obtained in the ideal condition (ΓS = −1, ΓO = 1, ΓL = 0, ST

11 = ST
22 = 0,

ST
21 = ST

12 = 1), the S-parameters of the four-port dual directional coupler are calculated by Eq. (4)
and compared with the Agilent E5071B results in Figs. 7–10.

Experiment results in Figs. 7–10 can attest the good performance of the calibration method based
on the generalized flow graph of the 3n-term error model. However, because the results by this method

(a) (b)

Figure 7. Comparison of S11. (a) Magnitude. (b) Phase.
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(a) (b)

Figure 8. Comparison of S21. (a) Magnitude. (b) Phase.

(a) (b)

Figure 9. Comparison of S31. (a) Magnitude. (b) Phase.

(a) (b)

Figure 10. Comparison of S41. (a) Magnitude. (b) Phase.
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(a) (b)

Figure 11. Comparison of δS11(δΓS). (a) Magnitude. (b) Phase.

(a) (b)

Figure 12. Comparison of δS11(δΓl). (a) Magnitude. (b) Phase.

is based on the assumption that ΓS = −1, ΓO = 1, ΓL = 0, ST
11 = ST

22 = 0 and ST
21 = ST

12 = 1, there
will be the S-parameter deviations of the DUT caused by the nonideal standards, such as the phase
deviation of corrected S11 in Fig. 7(b). To explore how the SOLT standards affect the S-parameter
deviations of the DUT, the sensitivity coefficients are calculated by Eq. (43) and Eq. (44). The following
results (Fig. 11–Fig. 18) show that the sensitivity coefficients calculated by this paper are in very good
agreement with those given in [10], demonstrating the correctness of proposed method.

The sensitivity coefficients δSll(δST
21) and δSll(ST

12), which are ignored in Eq. (43) due to the
approximation, are assigned a value of 1.0e-6 (e.g., δS1l(δST

21) in Fig. 14). In fact, the modulus of the
actual sensitivity coefficients δSll(δST

21) and δSll(ST
12) are mostly less than 1.0e-5 for this four-port dual

directional coupler. In addition, because the sensitivity coefficient δSll(δΓl) contains a constant term “1”
in Eq. (43), the modulus of δSll(δΓl) generally has a large value, which can explain the phase deviation
of S11 in Fig. 7(b). The great deviation of S21 in Fig. 8 is also caused by the nonideal L standard,
whose impact can be estimated by the expression δSkl(δΓL) = − ∑

i=1...n
SkiSil in this experiment. In

conclusion, these results demonstrated that the analytical expressions for the sensitivity coefficients are
correct and useful in the multiport DUT measurement.
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(a) (b)

Figure 13. Comparison of δS11(δST
11). (a) Magnitude. (b) Phase.

(a) (b)

Figure 14. Comparison of δS11(δST
21). (a) Magnitude. (b) Phase.

(a) (b)

Figure 15. Comparison of δS11(δΓS). (a) Magnitude. (b) Phase.
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(a) (b)

Figure 16. Comparison of δS31(δΓl). (a) Magnitude. (b) Phase.

(a) (b)

Figure 17. Comparison of δS31(δST
11). (a) Magnitude. (b) Phase.

(a) (b)

Figure 18. Comparison of δS31(δST
21). (a) Magnitude. (b) Phase.
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4. CONCLUSION

In this paper, the analytical expressions for the sensitivity coefficients of the S-parameters are developed
for the GSOLT calibration of the n-port VNA. Using the generalized flow graph of the 3n-term error
model can conveniently deduce the S-parameters of the n-port DUT. To investigate the influence of
SOLT standards on the Sij , the following steps are involved: Firstly, the S-parameter deviations of the
n-port DUT with respect to the error terms are solved during the error correction procedure. Then,
expressions representing the deviations of the error terms in regard to the nonideal SOLT calibration
standards are determined in the process of error calibration. Finally, the sensitivity coefficients, with
respect to the S-parameters of SOLT standards as input quantities and the S-parameters of the n-port
DUT as output quantities, are derived and can be used for establishing the type-B uncertainty budget
for S-parameter measurements.
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