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Influence of SOLT Calibration Standards on Multiport VNA
S-Parameter Measurements

Wei Zhao™, Jiankang Xiao, and Hongbo Qin

Abstract—For the GSOLT calibration algorithm of n-port vector network analyzers (VNA), the
sensitivity coefficients for the S-parameters of the n-port device under test (DUT) are developed as
functions of the S-parameter deviations of SOLT standards. By introducing the generalized flow graph
of the 3n-term error model, analytic formulas for the S-parameter deviations of the n-port DUT with
respect to the error terms have been deduced. In addition, expressions for the deviations of the error
terms in regard to the nonideal calibration elements are given by a series of matrix operations. Finally,
the analytic expressions of the sensitivity coefficients are concluded, which can be used for establishing
the type-B uncertainty budget for S-parameter measurements.

1. INTRODUCTION

With the development of microwave technology, multiport devices, whose S-parameters are typically
measured by multiport vector network analyzers (VNA), are becoming more widespread in RF
systems [1]. To achieve high precision, the calibration procedure should be implemented before the
measurement [2,3]. For the n-port VNA with n+1 measurement channels, the general short-open-
load-thru (GSOLT) procedure is now widely used [4-6]. In practical application, the S-parameters
associated with the calibration standards short (S), open (O), load (L) and thru (T) are not ideal as
expected. Through the GSOLT calibration based on such non-ideal standards, the error terms and,
consequently, the S-parameters of the DUT will deviate from their true values, so it is necessary to
investigate the impact that the S-parameter deviations of SOLT standards have on the uncertainty
of the S;;. Although some techniques have been developed for the estimation of uncertainties in two-
port VNA measurements, they are inapplicable to the multiport VNA due to the lack of use of matrix
formalisms [7—9]. To solve this, the sensitivity coefficients for the S-parameters of n-port DUT have been
deduced in matrix form by using the concept of general node equation for the GSOLT calibration [10].
However, it is still unclear how the nonideal SOLT standards affect the calibrated S;;.

In this paper, the generalized flow graph of the 3n-term error model, where nodes and branch
gains are expressed by column vectors and square matrixes respectively, is proposed for the GSOLT
calibration of the n-port VNA. Based on this flow graph, the dependence of the S-parameter deviations
on the error term deviations is solved in the error correction procedure. Then the error term deviations
associated with the non-ideal standards are calculated in the process of error calibration. Finally, the
analytic expressions for the sensitivity coefficients, which use the S-parameters of SOLT standards as
input quantities and the S-parameters of the n-port DUT as output quantities, can be further concluded.

2. THEORY

The 3n-term error model of the n-port VNA with n4+1 measurement channels is shown in Fig. 1, where
the number “1” represents the source port [6]. In Fig. 1, Spj1 (j = 1 ~ n) are defined as the raw
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Figure 2. Transformations of the flow graph of the 3n-term error model. (a) Use of the node splitting
rule. (b) Use of the GSM concept.

scattering parameters, meanwhile, the power waves at port j of the DUT are defined as a;j; and bj;. As
compared with the model given in [4], this model also includes n-1 leakage errors between the excited
port and the unexcited ports.

Before the error correction procedure, all the error coefficients Fp;i, Fsii, Erii, Exji, Erji and
Erji (i, 7 =1 ~ n, i # j) are solved by the GSOLT procedure [4]. Then when the S-parameter
measurements of an n-port DUT are performed, the error correction will be applied to compute the
actual S-parameters [6]. To further simplify the error correction algorithm, the following transformations
are made for the flow graph of the 3n-term error model in Fig. 1.

The flow graph (Fig. 2(a)) is constructed from Fig. 1 by using the node splitting rule and then
further converted into the generalized flow graph (Fig. 2(b)) by the concept of the generalized scattering
matrix (GSM) [11-13]. In Fig. 2(b), the generalized nodes and branch gains are defined as

1 'm1l ain [ D11 ]
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Finally, the generalized flow graph of the 3n-term error model for port i (i = 1 in Fig. 1) excitation can
be summarized below:

Table 1. Relationship between error terms and error matrixes.

Error Matrix | Error Term Source
(Epxi] Epi; Directivity
bxi Exji Leakage
Esi; Source match
[Esri] Z T
Lji oad match
FErii Reflection tracking
[ERrTi] z T — :
Tji ransmission tracking

The relationship between error terms and error matrixes is described in Table 1. For the error
matrix [Eyy;], the subscript “UVi” means that the (4, ¢)th element is Ey;; and the (4, 4)th element is
Evji (i # j). The generalized branch gain [I;] has only one nonzero element “1” at the (i, ¢)th position.
According to the generalized 3-term error model, we can obtain the matrix equation as

(= B 6T} >

[ 1] [ Smi1i | [ ani |
where the generalized power waves [E] = 1 ; [Smil = Smm on the VNA side and [a;] = a.n‘ ,
_i_ _Smni_ _a;u'_
by T
[bi] = | bii | on the DUT side. From Eq. (1), the reflected wave vector [b;] and the incident wave
| b |
vector [a;] can be deduced as follows:
[bi] = [Erri] " {[Smi] — [Epxil[E]} (3)
[ai] = [LIE] + [Eswi][bi] (4)

Once the reflected wave vectors [b;] (i = 1 ~ n) and the incident wave vectors [a;] (i = 1 ~ n) are
calculated by Eq. (2) and Eq. (3), the S-matrix of the n-port DUT can be concluded as

[S] = [B][A]™! (5)
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where [A] = {[a1],...[ai],...[an]} and [B] = {[b1],...[bi],...[bn]}. However, nonideal calibration
elements will cause the deviation of [S] from its true value. In this paper, the effect of nonideal
calibration elements (S, O, L and T) on the S-parameter measurements is investigated by the following
steps:

2.1. Deviations of S-parameters

In the first step, the dependence of [§S] of a DUT on the deviations of the error matrixes [Epx;|, [Erri]
and [Fgr;] is derived. According to the self loop rule [12], the generalized flow graph in Fig. 3 can be
simplified into that in Fig. 4(a). Then, the series rule and the parallel rule are successively used to
obtain the ratio between [E] and [Sy,;] in Fig. 4(b) [12].

[E]o— >
(£, 1Y ALE, 1Y IS
[S, ]Jo—=t -
[Ey] (5]

Figure 3. Generalized flow graph of the 3n-term error model.
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Figure 4. Simplification of the generalized flow graph. (a) Removal of self-loop. (b) Combination of
paths..

[I] is the identity matrix and the branch gain in Fig. 4(a) can be also expressed as
{1 = [S)[Es2i]} 8] = [SH[I] - [Eswil[S]} (6)
From Fig. 4(b), we can get the following equation.
[EpxillE] + [Erri{[I] - [S1[EsLil} ™~ [SILIE] = [Smi] (7)

Assumed that the deviation [0.5] is not affected by the variations of the raw values [S,,;], the incorrectly
defined error terms will lead to the incorrect [S] + [05].

[EDXi + 5EDX1'} [E] + [ERTi + 5ERTZ]{[I} — [S + (55] [ESLi + 5E5LZ-]}’1[S + 5S] [IZHE] = [sz] (8)

To solve the deviation matrix [65], we need find the inverse of matrix in Eq. (7). Let [D + 6D]~! =
[D]~! + [6X] where the deviation [0X] is underdetermined, when the deviation [6D] of a random non-
singular matrix [D] is very close to zero. By using the definition of the inverse matrix [D +&§D]{[D]~! +
[6X]} = [I], and omitting the product of small terms [§D][§X], we can get [§X] = —[D]~1[§D][D]~}
and the equation given below [14, 15]:

{[D]+ D)}~ = D] — [D] 7' [8D][D] ™ (9)



Progress In Electromagnetics Research, Vol. 144, 2014 307

Using Eq. (8) and omitting the smaller term [§.5][0 Egr;] can obtain
[

{11 =[S+ 6S)[EsLi + 0Esri]} ™" = {[I] = [S1[Esril} " + {[I] — [S][EsL} " {[65][EsLi]
+[SIOEsLi 1] — [S][Eswi} (10)

Substituting Eq. (9) into Eq. (7) and subtracting Eq. (6) form the result, we can deduce the following
equation by omitting the products of deviations.

—{1=[SNEsil}[Erri)  [6Epxil[E] — {[I] - [SI[EsLi Y Erri] " 0 Erril [SH[I] - [Eswi[S1} ' [L][E]
—[S)6 sl [SHT] - [EsLil[S]} ' [LIIE] = [6SK 1] — [EszilS]} " [L][E) (11)

Because of the dependence among error terms, raw measured S-parameters and actual S-parameters,
we can rewrite vectors [b;] and [a;] by substituting Eq. (5) and Eq. (6) into Eq. (2) and Eq. (3).

[b:] = [SI{1] - [EsL][S]} " L] [E] (12)
[ai] = {[1] — [Eswil[S]}L[E] (13)
Substituting Eq. (11) and Eq. (12) into Eq. (10) can obtain the equation given below:
[05)[ai) = —[Cil[6 Epxil[E] — [S][0 EsLil[bi] — [Cil[0 Erril [bi] (14)
where the matrix [C;] = {[I] — [S][EsL:]}[Erri]~'. With the subscript i in Eq. (13) varied from 1 to n,

we can establish an equation for the deviation [0S] and consequently derive

(05] = —{[C1l[0Epx1][E], . .. [Ci][0Epxi][E], - . - [Col[0 Epxal] [E] [ ]!
—{[S0EsL1][b1], - - - [S)6 EsLil[bil, - - - [S0Espn] [bn] }A]
—{[Cl][5ERT1][bl]7--~[Cz‘][fSERTiHbi]a [Cul[0ERra]ba] A (15)

It is observed that the deviation matrix [§.5] is developed as a function of [0 Epx;l, [0 Esri] and [§ Err].
Finally, the scattering parameter deviation §5%; can be concluded as

08w =— > dulchllbepxi] — Y dulSk1, - . Skalldiag(bi)][Sesri] — Y dalch)[diag(bi)][derr:] (16)

i=1...n i=1..n i=1...n

where [c}] is the kth row of [C;] and dy; is the (4, [)th element of [A] 1. For the diagonal matrix [diag(b;)]
the diagonal elements are composed of [b;]. Meanwhile, the deviations [depx;], [desri| and [derr;] are
defined as n x 1 column vectors:

[ 5EX11' 1 I 5EL11’ i [ 5ET11' i
depxil = | 0Epii |, [desril=| 0Esi |, [berri]l= | 0ER:
L 5EX7LZ i L 6Ean | L 5ETnz |

To explore how the deviations of errors [depx;], [0esri| and [derr;] affect the S-parameter deviation,
we need further deduce the analytical expressions for [c}], d;; and [diag(b;)]. Because the error terms
are |ED“| ~ 0, |ES’L’L‘ ~ 0, |Ein| ~ 0, |ELj'L'| ~ 0, |ER”| ~ 1 and |ETji| ~ 1 in the high—performance
VNA, Epii, Esii, Exj; and Erj; can be regarded as small terms and their products will be neglected
in the following calculation.

As mentioned before, the matrix [C;] = {[I] — [S][Esr:]}[Err:]~* and so we can get

- 1-Fr1;811 —Esii51i —ErniSin 1
Eri; T ERi; T Ern;
1 —Er1:5i 1-FEs5iSii —ErniSin
[CZ] - Eri; et ERi; T Erpni (17)
—Er1iSn1 —FEsiiSni 1—FrniSnn
L Eri; T ERi; T Ern; -
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As the kth row of [C;], the vector [c}] is given below:

T €1—k — Er1iSi €i—k — Es5iiSki En—k — ErniSkn (18)
Er1; T Eri; T Eryi

where ¢;_, =1 for i = k and g;_p = 0 for ¢ # k.

To deduce the variable d; defined as the (i, [)th element of [A]~!, we first represent [a;] with
{[I] + [EsLi][S]}L][E] by using Eq. (8) and Eq. (12), and thus obtain an approximate expression for
[A].

[ Es11511 ... EruSu .. ErinSin |
[Al =[]+ | EriaSia ... FEsiSi ... ELinSin (19)
B ELTLISnl s ELm'Sni o ESnnSnn |

Then inverting the matrix [A] with Eq. (8), we can deduce

[ Es11S11 ... EriiStu ... ErinSin |
[A] -1 = [I] — FEriSa ... FeuSiu ... FErLinSin (20)
L ErniSn1t oo ErniSni -+ EsnnSnn |

From Eq. (19), the variable d;; is finally described as

o 1—-FEquSy i=1
i = { —EpaSu  i#l 21

Based on the expression for [a;] in Eq. (18) and the S-matrix definition [b;] = [S][a;], we can have

i J#i T
S1i + EsiiS1:Si + Y. Er;iS1;Sji
j=l.n

j#i
b)) = | Sii+ EsiiSiiSu+ >, FErjiSijSji (22)
j=1l..n

JFi
Sni + E5iiSniSii + Y. ErjiSn;Sji
i=1...n

L J .

Based on Eq. (21), the diagonal matrix [diag(b;)] can be easily obtained. Form the above analysis, the
coefficients [c]], di and [diag(b;)] are solved, and then substituting them into Eq. (15) can derive the
analytical expression for Sy, in the following two cases:

1) When k = [, the deviation §.S; is expressed as

41 il
2EqSy — 1 < EriSi EruSu
0Sy = ———0Epy + OEx + ——0Exy;
Eruy z:lzn Erj ’ z:lzn Ery; ’

i#£l i#£l
—Su <5u + > ELz'lSliSil) SEsu+ Y EraSiSiSudEsii

i=1...n i=1..n
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il £l A
- Z S | Su + Z Erj1S:i;S1 | 0ELa + Z Z Er451;85:Su0ELj;
i=1...n j=1l..n i=1l..nj=1...n
il
Sy — EsuS? + Z Er45:Su i

- EriS5S FEri151S;
B E;;lln (5ER”—|- Z LilRli Zl(SETil‘i‘ Z Lil l7,‘ Zl&ETli (23)

i=1..n

2) When k # [, the deviation §S; is expressed as

FE FE F E -1
55y = gZSkléEDll-i- gklskl(SEDkk+ suSu + Erii Sk SExu + Z

Rl Rkk Erpy

ki

i#k,l EraS 1#£l 1#£l
+ > gl L5Exri — Sk (5u+ > ELzlSlezl> SEsu+ Y ELuSkiSiSudEsii

i=1...n i=1l...n i=1...n
il j#
= > Sk | Sa+ D ErjiSiSi | 6ELa
i=1..n j=l.n
A
EsuSkiSu EpkiSkkSk
+‘Z1: 21: ELilSkijiSil(SELji+E7R”5ERZZ+ Frs OERkk
i=l..nj=l..n
ikl
Sk + Z Eri1SkiSa il L o g
i=1...n LilPki 'Ll Lil P kil
— OFETR + —————6F7 + ——————0Fyi 24
Eri Z;n Eri ’ Z;n Ery; ’ (24)

From Eq. (22) and Eq. (23), we can calculate the sensitivity coefficients with respect to the error terms
as input quantities and the S-parameters of the DUT as output quantities.

2.2. Deviations of Error Terms

In the second step, the deviations of error terms associated with SOLT calibration standards are solved.
By measuring standards SOL at port i, we can use the 3-term error model in Fig. 5 to deduce the
system errors Ep;;, Fs;; and Egry; by the linear equations below:

1 Smi(S)s; I's Epi; Smii(S)
1 Snii(O)Toi To; Egi; = | Sni(O) (25)
1 Spu(L)Cr; Ty, Erii — EpiiEsii Spmii (L)
1 o—p» -
Et')ff ES'L" F}ﬁ
ERH
Smii (X)H ‘

Figure 5. Error model of SOL calibration.
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where Sp,;i(X) is the raw reflection coefficient of the standard X at port ¢. The S-parameter deviations
of standards SOL (6T'g;, 6T'0; and dI'z;) will cause the error deviations (0E py;, 0 Egi; and 0 E Ry;).

1 Smii(S)FSi Tg; T 0 sz‘z‘(s)5FSi 0lg;
1 Sni(O)Toi Toi | + ] 0 Sni(0)éTo; oLo;
i Epii 1 0 0 dEDii Smii(S) 20
Egii + 0 1 0 dEs;; = | Smi(O)
| Erii — EpiiEsii | —Esi —Epiu 1 dERi; Spmii (L)

Subtracting (25) from (26) and substituting Sy.i(X) = Epi; + Eriil'xi/(1 — Esilx;) into the result,
we can get the expression for the deviation vector [§Ep, 6Esi, 0ERi;]T via a series of matrix
operations [10]. Finally, we can deduce

Loil'ri I'pils; I'siloi

0Epi; = ERii [ 0lg;+ 6L o;+ o1,

" “L(Toi-Ts))Tsi—Tri) 7 Tri—-Toi)(Toi-Tsi)) " (Tsi—Tr)Tri—Toi)
(27)

(1-Esiil'0i)(1—EsiI'1i) (1-Egyil'1i)(1—Egil'si) (1-Esiil'si)(1—EgiiLo4)
0Fqg; = olg;+ ol o+ o',
“ (Toi—Tsi)(Tsi—T'r:) ! (Tri—Toi)Toi—Tsi) ‘ (Tsi—Tri)Tri—Tos) b
(28)
2Esiiloil'i—Toi—T'L; 2Es;il'il'si—T'i—I'g; 2Es;il'sil'oi—T'si—To; ]
0F i = Eri olg;+ oToi+ ol
i RM{ (Foi—T'si)(Tsi—T'r:) " (Tri—Toi)(Toi—Ts) T Tsi-T)Ti—-Toy) 7
(29)

It is worth noting that 0 Exj; is independent on the S-parameter deviations of SOLT standards, that is
to say 0Ex;; = 0.

Measuring standard 7' between port i and port j, we can use the flow graph combined with the
transmission matrix (7-matrix) to represent the measurements Sy,;; (1) and Sy,;;(T) in Fig. 6.

The T-matrix of the error box at port 7 and that of the 2-port network of standard T', both selected
by dash in Fig. 6, are defined as [T;] and [T};] respectively. Cascading the T-matrixes [T;] and [T};] can
deduce the equation as follows:

Smii (T) EL]z
maiT) = Exsi | _ ) | (50)
Sm]z(T) - Eij Esz
E.\'/f‘
| [T _ ATl _
loot———f——— 1 05 (D
| ! | s I Ey,
"EDH ES:': I ‘rS e . ST”‘l | Lji
| 5 | | T - g7 | j
I Rit 1 ‘; >
Smi!(T) Y ]_ _-._ — 1 -

Figure 6. Error model of T calibration.
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If the left hand of (30) is invariable, the deviations [07}], [07%;], 0Er;; and d E7j; occur.

Smii(T) Eprji 5 Erji

Smji(T) — Exji Erj; Erj;
10 =Xt | ) 4+ pnIH ) + 0T} | F | P (31)

J
Smji(T) — Ex i Erji Erji
Subtracting (30) from (31) and omitting the product of small terms, we can deduce
0ELji] [ =1 FEgLji -1 Erji -1 Erji ~1 Er;i

B e ol e e e B e [ R e R T e

The right hand of (32) is composed of two terms. The first term contains the deviation [07;], which
associates with the deviations 6I'g;, d'0; and 0I'y; of standards SOL. The second term contains the

deviation [6T%;], which associates with the deviations 55;‘?7 , 5S£»ij , 55};” and 5S;Fjij of the 2-port
network of 7' connection. From Fig. 6, we can get the expressions for [T;] and [T;;] given below:

[T}] = [ Erii - 5;1“]55” Ei)ii } (33)
Tij oTij Tij oTij Tij
T] = ——L | S S S5 ST S (34)
SJ?;Z] Sjjl] —1
By taking the total differential of Eq. (32) and Eq. (33), we can get
1 | —EsiidEpii — EpiioEsii +0ERii  dEpj
0T} = —0Egi; —0ERi; (35)
1
0Ty = —
[ ”] (S£1J)2
N S s P
7Sjilj Sjj@] 65” z]+ Su 17 Sjjzg 5sz‘” + gsjilj) 6Sijl] 7517;7; 1) Sjilj 6Sjjlj Sjiw 551” 1) 75%13 5Sjiw (36)

Tij ¢ oTij ij ¢ oTij Tij
55570857 =557 68; —4S;
Substituting Egs. (32) to (35) into Eq. (31) can determine the deviations 6 Erj; and 6 E7j; as follows:
M?+ N?To;l'; — MN(To; + ') M?+ N°T;Ts; — MN(Tp; + T's;)
0ELji = Tij oTij olsi + Tij oTij oL'o;
Sji Sij (FSi - FOi)(FSi - FLi) Sji Sij (FOi - FLi)(FOi - FSi)

M? + NTg;To; — MN(T'g; + FOi)5F

Sﬁ'” Sij;'” (F'ri —Tsi)(Tri — Toi)
N? 1ij  NFErji..rij NFErLji o 7ij 9 < oTij
—TirgT Sk g 055 — i 98— BRs (37)
i i ji ij
MEsz‘SjTjU (Toi + ') = PE7jil'oil'ni — MQErj;
5ETji = Si

Sﬁ”SZij(Psz- —T0i)(T'si — I'Li)

N METjiSJTjU(FLi +I'si) — PErjil'Lil'si — MQETj;
Sﬁ” 5'1;‘” (Foi —T'Li)(Toi — I's;)
+METjiSfjif (Tsi + Toi) — PEr;iTsToi — MQErj;
Sﬁ” S;S” (Pri —Tsi)(Tri — Toq)
NEr:8T9  NEpe .. BEpuaBEpStYo 5
7STU?;TZ 55T Sﬁ;”“ﬁ” + —’ZSTj; 2§19 — BrjiBri88LY (38)
Ji Mg Ji tj

Oi

ol
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where the variables M = Si? —EBpriQ, N =1-Er; S, P=S[7 + Eg;S;" ST — B8] 7 ST and
Q= S;TS Y Sfjl] - S;.Z;” Sg;” . From the above analysis in part B, the deviations of error terms are expressed
by the S-parameter deviations of SOLT standards, which implies that the sensitivity coefficients with
respect to the S-parameters of SOLT standards as input quantities and the error terms as output
quantities can be determined.

2.3. Combination of Part A and Part B

In the last step, combining the results of part A and B can obtain the sensitivity coeflicients of S-
parameters for arbitrary n-port DUT with respect to the nonideal calibration standards. In general,

the system errors are solved in the ideal condition (I's; = —1, T'p; = 1, I'; = 0, Sgij = Sfjij =0,
S}-;ij = Sg;-ij = 1), therefore the results in Part B can be simplified as
0Epii = —ERriidl'Li (39)
Bsii — 1 1+ Egi
0Esi; = SZZT(SFSi - %517% + 0l (40)
0ERi; = gm ol — ;“ 0loi — 2ERiiEsiiol' i (41)
0ELji = — ;JZ&PSi + §]Z5Fo¢ +0Tp; — 0857 — BrjioS}7 — Ep;i0S." (42)
dETj; = TIZLIE T gy —ZHIL ST 6 — ETji(ESii+ELj¢)5TLi—ETji55;-Z;U—ETjiELji55£Z] (43)

Substituting Eqgs. (38)—(42) into Eq. (22) and Eq. (23), we can finally conclude the sensitivity coefficients
for the S-parameters as follows:
1) When k = [, the deviation §.Sy; is expressed as

il
Sy (1—511— > ELilSliSil> A oo g
i=l.n LilS1iSiiil
88y = — 5 0T — AZ — 0T
i=1...n
il
Sul1+Su+ > EraSuSa i opoog g
i=1..n Lil S99
+ 5 5P0l — Z deOi
1=1...n
i#l il
+6; — Z Sy | S+ Z Er1SiSj | 0l + Z Z EraS1;S;5iSa0l ;
i=1...n Jj=l..n i=1..nj=1l..n
il #l N b i
+ > S| Su+ D EraSiySu | 6Sit— " Y EpaSi;S;iSadS;? (44)
i=1l...n j=l.n i=1l..nj=1l..n

2) When k # [, the deviation §Sy; is expressed as

i#l i#l
Ski <Su — B+ X ELilSliSil> + > EruSkiSu
S = :

=1.. i=1... ErwSkiS
i=l.n n 5T, + Pk SenSu sp
2 2
il il
il S| Su—Erm+ Yo EraSuSa | — Y. EraSkiSu
ELilSkiSiiSil(S i=1l..n i=1..n
-y — i + 5 6T o

i=1...n
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ErmSinS FL EriSiiSuSi
_Epp Qkk K ST — Z Lil ];Z WU g4 By ST
i=1...n
J#l il
= Y Sk Su+ D EraSiSi| 0n— EpwSwoTor+ > > EraSi;SjiSudTLi
i=1...n Jj=1l..n i=1l..nj=1l..n
il J# Al Gt B
+ Z Ski | Su + Z Er;iSi;Si | 0SE" + ErpSudSHE — Z Z ELilSkijiSil(SSgw
i=1...n j=1l..n i=1l..nj=1l...n
il il ikl
+ <5kl+ > ELilSkiSil> SSH™ + Y BraSkiSadSi" — Y EruSkiSudSi* (45)
i=1...n i=1...n i=1...n

From Eq. (43) and Eq. (44), we can find out how the S-parameter deviations of SOLT standards affect
the uncertainty of \S;;.

3. MEASUREMENT RESULTS

To verify the proposed method, three steps are needed: first solving the system errors by GSOLT
calibration, then determining the corrected S-parameters of the multiport DUT, and finally calculating
the sensitivity coefficients of the S-parameters. During the whole analysis process, because the test port
connectors are of the same sex, the reflection coefficients satisfy the relationship of I'g; = I's, I'o; = T'o
and I'z; = I',. Meanwhile, it is established that Sg” =51, Sl-j;-” = Si,, S;‘-Fi” = S and Sﬁ” = SZ, with
the port number “;” larger than the port number . In these cases, there are totally 7 uncertainty
sources associated with the nonideal SOLT standards: I'g, I'p, I'z, Sﬂ, SITQ, Sgl and Sl‘2r2‘ Based on
the above and by applying the GSOLT calibration (Fig. 5 and Fig. 6), all the errors in Table 1 can
be deduced from Eq. (24) and Eq. (29). After that, measurements are performed on a four-port dual
directional coupler using the commercial four-port VNA (Agilent E5071B). Once the system errors and
the raw measured data are obtained in the ideal condition (I's = —1, T'p =1, I', = 0, SlTl = SgQ =0,
ST = ST, = 1), the S-parameters of the four-port dual directional coupler are calculated by Eq. (4)
and compared with the Agilent E5071B results in Figs. 7-10.

Experiment results in Figs. 7-10 can attest the good performance of the calibration method based
on the generalized flow graph of the 3n-term error model. However, because the results by this method
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is based on the assumption that I's = —1, Tp = 1, ', =0, S, = SL, = 0 and SI; = ST, = 1, there
will be the S-parameter deviations of the DUT caused by the nonideal standards, such as the phase
deviation of corrected Si; in Fig. 7(b). To explore how the SOLT standards affect the S-parameter
deviations of the DUT, the sensitivity coefficients are calculated by Eq. (43) and Eq. (44). The following
results (Fig. 11-Fig. 18) show that the sensitivity coefficients calculated by this paper are in very good
agreement with those given in [10], demonstrating the correctness of proposed method.

The sensitivity coefficients §5;(65%) and §5;(S7,), which are ignored in Eq. (43) due to the
approximation, are assigned a value of 1.0e-6 (e.g., 5515(5551) in Fig. 14). In fact, the modulus of the
actual sensitivity coefficients §5;;(057;) and 6.5;;(S7,) are mostly less than 1.0e-5 for this four-port dual
directional coupler. In addition, because the sensitivity coefficient §.5;;(6T;) contains a constant term “1”
in Eq. (43), the modulus of §.5;;(6T";) generally has a large value, which can explain the phase deviation
of Si1 in Fig. 7(b). The great deviation of So; in Fig. 8 is also caused by the nonideal L standard,

whose impact can be estimated by the expression 65k (6I'z) = — > SkiSy in this experiment. In
i=1...n

conclusion, these results demonstrated that the analytical expressions for the sensitivity coefficients are

correct and useful in the multiport DUT measurement.
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4. CONCLUSION

In this paper, the analytical expressions for the sensitivity coefficients of the S-parameters are developed
for the GSOLT calibration of the n-port VNA. Using the generalized flow graph of the 3n-term error
model can conveniently deduce the S-parameters of the n-port DUT. To investigate the influence of
SOLT standards on the S;;, the following steps are involved: Firstly, the S-parameter deviations of the
n-port DUT with respect to the error terms are solved during the error correction procedure. Then,
expressions representing the deviations of the error terms in regard to the nonideal SOLT calibration
standards are determined in the process of error calibration. Finally, the sensitivity coefficients, with
respect to the S-parameters of SOLT standards as input quantities and the S-parameters of the n-port
DUT as output quantities, are derived and can be used for establishing the type-B uncertainty budget
for S-parameter measurements.
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