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A Hybrid Optimization for Pattern Synthesis
of Large Antenna Arrays

Jiazhou Liu1, 2, Zhiqin Zhao1, *, Kai Yang1, and Qing-Huo Liu2

Abstract—The pattern synthesis for large antenna arrays has drawn significant attention because of its
wide applications. This paper introduces a hybrid approach for the fast pencil beam pattern synthesis
of the large non-uniform linear or planar array, which can significantly reduce the computational cost,
the number of antenna in the array, the minimum sidelobe level and the null control. The proposed
method has an iterative scheme which is composed of the nonuniform Fourier transform (NUFFT) and
the global optimization method to minimize the peak sidelobe level and control the null. The NUFFT
is utilized to determine excitation magnitudes for a fixed positions non-uniform array. Alternatively,
the global optimization is used to find the optimal positions which lead to the minimum peak sidelobe
level ( PSL). The lower excitations can be deleted due to yielding less performance on sidelobe level,
which is called the array removal strategy. Compare with conventional methods, the simulations on
synthetic models show that a minimum sidelobe level and null control can be obtained in processing
sparse linear and concentric circular antenna arrays more efficiently.

1. INTRODUCTION

Antenna array has attracted growing attention in a wide range of applications, such as sonar, radar, and
mobile communications. The conventional methods which avoid the grating lobe, such as the Dolph-
Chebyshev [1] and the Taylor-Kaiser methods [2], are well known for synthesizing a narrow beam and
low sidelobe in a uniformly spaced array. However, the antenna arrays obtained from these methods
are densely spaced, and the array requires a large number of elements to radiate the desired pattern.
Large array limits the usage of the applications, especially for the radar on aircrafts or satellites.

The synthesis of nonuniformly spaced antenna arrays has much more freedom to improve array
performance. Several practical techniques have been developed to optimize the element positions and the
excitations for pattern synthesis or to obtain a given pattern [3–5]. The problem addressed in this paper
is to optimize the antenna element excitations and positions for synthesizing peak sidelobe level (PSLL)
and controlling the null with minimum number of antennas, especially for large linear and planar arrays.
There are several array pattern synthesis techniques, such as the analytical method [6], the synthesis
techniques [7–9], the global optimization, the convex optimization and the hybrid methods for lowing
peak sidelobe levels. The global optimization includes the particle swarm optimization (PSO) [10–
12, 17], the simulated annealing (SA) [13, 14], and genetic algorithms (GA) [15, 16]. Although these
methods have been successfully used in the design of antenna arrays, challenges still exist. For example,
these methods easily fall into local optimization, the computation cost is huge and grow rapidly with
the antenna array size. The PSO algorithm proposed in [17] is used to synthesis the linear array with
a minimum sidelobe level and null control. Due to whole array uses identical excitation, the variances
are positions only. Therefore, the PSLL obtained from the PSO algorithm is hard to be minimized.
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Compared to the PSO algorithm, the pattern synthesis methods are proposed in a convex form [18–20]
to optimize the excitations and positions. They can be solved with a good performance by SeDuMi and
CVX. However, these optimization solvers are complicated and have a relatively high computational
cost for very large arrays due to superposition samples. The effective hybrid approach in [21, 22]
uses antenna selection for the optimal synthesis of pencil beams. The approach takes advantage of
the convexity property of the problem with respect to excitation variables, and exploits a simulated
annealing procedure by treating element locations variables are concerned. Although the PSLL and the
number of elements are used to control in this approach, the null control is skipped. Therefore, they
cannot obtain a fully optimized solution.

Recently, an iterative fast Fourier transform (FFT) method [23] was presented to synthesize the
large arrays with uniform element spacing. Through this method, it is found that there is an inverse
Fourier transform relationship between the array factor and the element excitations. Then, [24] proposed
the low-sidelobe pattern synthesis method with nonuniform element spacing, which the idea comes from
the NUFFT [25]. The nonuniform distributed elements are firstly converted into a virtual uniform array,
then apply FFT to synthesis SLL. This method has a much better computational performance for large
arrays due to the efficiency of FFT. However, the positions must be known and fixed through the
procedure. Therefore, the PSLL is not fully optimal and the number of the antenna cost is very large.

Thanks to the ideas of [16, 21], and [22], we propose a new hybrid approach based on nonuniform
Fourier transform (NUFFT) and the global optimization to optimize the sidelobe level suppression, the
null control and antenna layout. This method firstly initializes the array with a nonuuniform layout.
With these element positions, the excitations are optimized. Each element in the initial nonuniform
array is interpolated by several virtual uniform arrays. Therefore, the sparse antenna arrays are replaced
by several virtual uniform arrays. The FFT is applied to optimize the virtual element excitations in
order to achieve the minimum sidelobe level of the array pattern. Thereafter, the real excitations are
calculated within a smaller interpolation error. With solved excitations on antennas, the layout of the
array will be re-optimized and the position of each element will be re-located. Re-locating the positions
is a nonlinear optimization, so a global optimization method can be used. Here, we employ the simulated
annealing (SA), which has been verified as a good global optimization method. Finally, the approach
uses the NUFFT with respect to excitations as variables, and exploits a SA procedure with element
locations as variables alternatively until the sidelobe level is minimized with a maximally sparse array.
Here, the antenna removal strategy [16] is used to re-optimize the number of the array elements when
the new element excitations are obtained. Elements that contribute less to the array performance are
removed systematically. The proposed method iteratively re-calculates the array excitations and re-
locates the antenna array until the PSLL is unchanged or the maximum iteration number is reached.
Therefore, the sidelobe level is minimized and the null level is controlled by adjusting the element
positions and the excitation coefficients. The simulations on synthetic models show that, for large
arrays, our method has a smaller PSLL than the CVX and the global optimization methods.

The paper is organized as follows. The sidelobe minimization based on the NUFFT and the basic
concept of SA is present in Section 2. In Section 3, a hybrid optimization by adjusting the element
positions and the excitation coefficients is discussed. The simulation results are given in Section 4. The
last section is the conclusion.

2. PATTERN SYNTHESIS WITH THE NUFFT AND GLOBAL OPTIMIZATION

2.1. The NUFFT for Calculating the Array Excitation

The Fast Fourier Transform (FFT) [23] is utilized to obtain the minimum peak sidelobe level by adjusting
the excitations in a uniform array. However, the antenna positions are usually preferred to achieve a
sparse array. Thus, the traditional FFT cannot be applied. Fortunately, the NUFFT can handle this
challenge very well. First, for a linear antenna array with M identical elements, the element positions
can be defined as d = [d1, d2, . . . , dM ]T , where di represents the position of the i-th element. The array
factor can be written as

AF (u) =
M∑

i=1

wie
jkdiu (1)
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where j =
√−1, k = 2π/λ is the wave number, λ the wavelength, w = [w1, w2, . . . , wM ]T the element

excitations, and wi the excitation located in i-th element. u = cosφ is [−1, 1], and φ is the angle
between the direction of observation and the linear array.

To fix the nonuniform element positions, a optimization based on NUFFT with respect to the
element excitations is employed to synthesis the nonuniform excitations. Here, the i-th element in the
array is converted into the superposition of a virtual equally spaced array. Then, the nonuniform array
is represented by a large uniform array. The interpolation function for each element factor can be
written as

ej2πdiu/λ =
q/2∑

k=−q/2

xk(di)ej2πt([rcn]+k)/L (2)

where the left side of (2) is the i-th element factor, and the right side of (2) is the superposition of
virtual equally spaced elements factor. [rcn] denotes the nearest integer of rcn. q is an even positive
integer representing the number of the virtual equally spaced element arrays. xk(di) is the virtual
excitations and r the real integer oversampling factor which is larger than 1. cn = 2dn/λ and [rcn] + k
are the new virtual array positions. t = uN/2, which is the number of the uniform sampling points in
u ∈ [−1, 1]. L = rN , N = bcn − c1c+ p. Here, q, p, and r determine the interpolation accuracy and the
computational cost. How to choose q, p, and r is discussed in [24].

(2) can be present in a matrix and vector forms

Ax(di) = v(di) (3)

where

x(di) = [x−q/2(di), x−q/2+1(di), . . . , xq/2(di)]T (4)

A =




ej2πu(−N/2)([rcn−q/2])/L ej2πu(−N/2)([rcn−q/2+1])/L . . . ej2πu(−N/2)([rcn+q/2])/L

ej2πu(−N/2+1)([rcn−q/2])/L ej2πu(−N/2+1)([rcn−q/2+1])/L . . . ej2πu(−N/2+1)([rcn+q/2])/L

...
...

. . .
...

ej2πu(N/2)([rcn−q/2])/L ej2πu(N/2)([rcn−q/2+1])/L . . . ej2πu(N/2)([rcn+q/2])/L


 (5)

v(di) =
[
ej2πdiu(−N/2)/λ, ej2πdiu(−N/2+1)/λ, . . . , 1, . . . , ej2πdiu(N/2)/λ

]T
(6)

Insert (2) into (1), (1) can be rewritten as

AF (u) =
M∑

i=1

wi

q/2∑

k=−q/2

xk(di)ej2π([rcn]+k)t/L =
L∑

l=1

βle
j2πlt/L (7)

where l = [rcn] + k, β = [β1, β2, . . . , βL]T = Tw contains the previous and new elements excitations,
T ∈ CL×M . The element at l-th row and nth column of the matrix T is given as

Tl,n =
{

xk(di), l = [rcn] + k, k = −q/2, . . . , q/2
0, else (8)

Due to the fact that the matrix T is fixed during the procedure [24], it can be calculated once
only. The matrix β is the excitations of the oversampling virtual uniform array. The matrix w is the
excitations of the real nonuniform array, which is obtained by the least square, w = T†β, where the
superscript † stands for the Moore-Penrose pseudoinverse.

(7) can be rewritten in a matrix and vector form as well

AF = Aβ (9)

where AF is the matrix form of AF (u). The matrix β is obtained by least square, β = A†AF, where
the superscript † stands for the Moore-Penrose pseudoinverse.

After the interpolation is finished, the nonuniform arrays are converted into virtual uniform arrays.
The excitations βl for the virtual array are optimized by the iterative FFT method. The details of the
iterative FFT are referred in [23]. The updating schema to solve element excitations in the proposed
method is shown as follows:
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a) The oversampled virtual uniform arrays are obtained by (2); define the mainlobe region, the silelobe
region, the null regions, the desired PSLL and null value; define the q, p, and r, respectively.

b) Initialize the excitation randomly, calculate x(di) by (3) with the least square method and obtain
matrix T by (8), then obtain the initial β by (9).

c) Apply a K points IFFT to β, the array pattern is obtained.
d) Find all values in the sidelobe region and null region, and adjust the sidelobes and nulls whose

values are greater than the desired PSLL and null. If all the values of the sidelobes are less than
the desire PSLL, the desire PSLL is decreased by 0.5 dB.

e) Utilize the FFT to adjust the pattern, and then obtain the new β.
f) Repeat the steps c)–e) until all the sidelobe values are smaller than the desired PSLL or the number

of the maximum iteration is reached.

In addition, this method can be extended to two-dimension, in which, (2) can be rewritten as

ej2π(dxu+dyv)/λ =
q/2∑

kx=−q/2

q/2∑

ky=−q/2

akx(dx)aky(dy)× ej2π(([rcx]+kx)tx/Lx+([rcy ]+ky)ty/Ly) (10)

where (dx, dy) is the element position. u = sin θ cosφ, v = sin θ sinφ, cx = 2dx/λ, cy = 2dy/λ,
tx = uMx/2, ty = uMy/2, Lx = rMx, and Ly = rMy. (θ, φ) is the impinged angle. The 2D NUFFT
is similar to the 1D NUFFT. The virtual excitations in x and y-axis are obtained by the least square
method. Then, the transformation matrix T is constructed. The procedure of the 1D NUFFT can be
similarly utilized in 2D.

2.2. The Simulated Annealing Method

The SA is a general probabilistic algorithm used in a fixed period of time to find an optimal solution
in a large searching space, which is introduced by S. Kirkpatrick et al. The idea is similar to the metal
annealing approximation principle. To apply the theory of thermodynamics to statistics, every point
within the searching space can be treated as the air molecular. Then, an energy function with respect
to molecular will be minimized. The energy function is the fitness function with respect to positions.
The main idea is to find the optimization results of the element positions within fixed element weights
in order to minimize the PSLL and control the null. The fitness function [17] is defined as

Fitness(dn) =
∑

i

1
∆ui

uui∫

uli

|AF (u)|2 du +
∑

k

|AF (uk)|2 (11)

where [uli, uui] are the spatial regions in which the SLL is restricted. ∆ui = uui − uli and uk are the
direction of the sidelobe and nulls (if necessary). dn is the vector of position variables, which can be
1D or 2D. The first term on the right-hand side of (11) is used to evaluate the sidelobe level and the
second term is used to evaluate the null level.

The maximum temperature, iteration number, positions variables are initialized. The sidelobe and
null ranges are given in NUFFT process. The method has an annealing schedule which contains the
cooling procedure, the cooling rate, and the stop threshold. After reaching the maximum iteration
number, the temperature is decreased with the cooling rate. For each iteration (n is the iterative
number), if the new position dn cause the fitness function decrease, it is accepted (dn+1 = dn).
Otherwise, if the new positions dn cause the value of the fitness function to increase, it is acceptable
only there is a probability criterion on the system temperature in accordance with Metropolis manner.
The higher temperature introduces bigger difference and cause a higher probability as

P (dn+1 = dn) =
{

e−∆f/T , if ∆f ≤ 0
1, if ∆f > 0 (12)

where P (x) is a probability coherent with current temperature. ∆f = f ′ − f is the difference value
between the fitness f in n iteration and fitness f ′ in n + 1 iteration.
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To update the positions dn is important for the global optimization due to non-linear problem.
The position update procedure of PSO is utilized to generate the new position in an iteration of the
algorithm [18]. To achieve this, the velocity is updated as follows

vn+1 = w ∗ vn + (C1 ∗ rand1()) ∗ (Pn
i − dn) + (C2 ∗ rand2()) ∗ (Pn

g − dn) (13)

where n and n + 1 represent the iteration index. Pn
i and Pn

g are the best position and the global best
position in the n-th iteration, respectively. C1 and C2 are the acceleration coefficients. w is the inertia
weight given by [17]. A large inertia weight is preferred to explore the whole search space. However, a
smaller inertia weight is required to exploit around the local area. Therefore, the position is updated
in iteration as

dn+1 = dn + vn (14)

The SA procedure stops until the temperature is lower down to the minimum. The re-located
positions are obtained after the SA procedure finish.

3. A HYBRID APPROACH WITH THE ANTENNA REMOVAL STRATEGY

With the aim to minimize the sidelobe level and the null control with fewer elements, a hybrid approach
is used to adjust the excitations and positions of the antenna array. The minimization of the number of
array is then achieved by iteratively removing the elements that contribute the least to the array factor.
The antenna removal strategy [16] is utilized to achieve this goal.

Obviously, to remove elements in antenna array distort the array pattern inevitably, such as the
PSLL increased and the mainlobe changed. In order to calculate this effect, the removal factor, δi, is
defined as the PSLL performance when removing one of elements.

δi =
|PSLorg| − |PSLi|

|PSLorg| (15)

where PSLorg is the original PSL and PSLi is the PSL which removes the i-th element.
We can use an example to demonstrate the performance. Considering a 170-elements nonlinear

array with a sidelobe range as 0.0048 ≤ |cos(φ)| ≤ 1, the relationship between the removal factor δi

and wi is shown in Figure 1. The figure implies that elements with smaller excitation are likely to
contribute less to the PSLL. Hence, the sensors with excitations smaller than the threshold value wt

can be removed from the array with a smallest effect. The detail of the removal strategy is introduced
in [16]. Based on our observation, the threshold wt is better in the range of [0.25wmax, 0.4wmax].

The overall procedure is summarized in the flow chart of Figure 2, where i and j are represented
to the iteration number of the whole procedure and the global optimization, respectively. The desired
PSLL is set to determine whether the removal array strategy is implemented. In particular, the initial

Figure 1. The relationship between the PSL and the removal weight.



86 Liu et al.

The nonuniform positions and the temperature are given, 
initiate the weight randomly and desired PSLL, set i=0, j=0

Use NUFFT procedure to obtain the PSLL 
and new weight, set i=i+1

Use fitness function to obtain the value with 
fixed weight

Update new position, set j=j+1 

Accept new 
position? 

(Metropolis 
manner)

Set optimal= new position j=M?

Decrease T (T_new=0.8T_old)T<T_min?

End

Removal array strategy is used and the 
optimal positions are obtained, 

PSLL< desired 
PSLL?

No

No

No PSLL is not 
changed or i=N?

No

No

Figure 2. Flow chart of the proposed hybrid approach.

nonuniform positions are provided by the MPM [3] in the first step and the weight is initiated randomly.
Then, this approach is alternately used the NUFFT and the SA. In the NUFFT step, the nonuniform
positions are fixed to use the FFT with respect to the excitations. After several iterations, the PSLL
and the new weights are obtained. If the obtained PSLL is smaller than the desired PSLL, the removal
array strategy is used to delete the elements which have less contribution to the PSLL. Thereafter,
the SA step is carried out. The fitness value is calculated from finding the minimum value with fixed
weights. Compared to the original value, the Metropolis manner is used for accepting the new optimal
values with new positions. After the new positions are obtained, the number of the updated position is
determined. If it does not reach the minimum temperature, go back to the position updating process
with a decreased temperature. Then reaching the minimum temperature, the SA step is done, then go
back to the NUFFT process if the PSLL is not changed or the i doesn’t reach the maximum. Finally,
the PSLL, the element positions and the excitations are obtained alternatively.

4. SIMULATION

In order to assess the efficiency of the proposed method, several simulations were performed for the
pattern synthesis. The simulations employ large nonuniform linear arrays and concentric circular arrays
with low SLL and null control. In all cases, the mainlobe is unchanged.

4.1. Minimize the PSLL for Large Linear Array

This example uses a 678-element sparse linear array, whose element positions are given by MPM. The
array aperture is initialized to 249.46λ, the half power beam width is 0.4◦ and the desired PSLL is
−34 dB, which is the threshold to determine whether the removal array strategy will be performed.
In the NUFFT process, r = 1.5, q = 8 and p = 4 are chosen. The iteration number in NUFFT is
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Table 1. The simulation results in the CVX, the PSO, and the Proposed method with different initial
elements.

Elements
CVX PSO Proposed method

PSLL (dB) Element PSLL (dB) Element PSLL (dB) Element
403 −28.82 263 −20.52 282 −27.87 263
524 −33.04 384 −23.76 375 −32.23 384
628 −34.17 450 −25.54 432 −34.42 450
737 Failed 521 −31.57 515 −44.78 521

Figure 3. The pattern synthesis with 473 ele-
ments, the PSLL is −35.12 dB.

Figure 4. The array pattern with 247 elements
and all the null regions are smaller than −52 dB.

3000. The initial temperature is 30◦, and the minimum temperature is 1◦. The iteration number of
position updating is 200. The simulation result shows that the PSLL of the pattern is −35.12 dB with
473 elements, as shown in Figure 3. The proposed method saves 30% antenna. As a comparison, the
CVX is carried out on this problem as well, and the optimized PSLL is equal to −34.95 dB. In addition,
the optimized PSLL from the stochastic algorithm (here, we use PSO) is −26.43 dB with 463 elements.
The excitation amplitude dynamic range ratio (|wmax|/|wmin|, DRR) is found to be 3.8427. Table 1
shows the PSLL and the reduced array number in CVX, PSO, and the proposed method with different
initial elements. The PSLL of the CVX is better than the proposed method in smaller array due to
the initial element positions of the CVX are given by the proposed method, only the excitations are
required to be optimized. If the initial positions are not provided appropriately, the CVX maybe time
consuming. Table 1 shows that the CVX is failed when the element number is increased to a relative
large number. The CVX is failed when the element number is 737. This case validates that the proposed
method has a better performance than others methods in PSLL.

4.2. PSLL Minimum and Null Control for Large Linear Array

In this case, the null control is added into design requirement for a sparse linear array. The sparse
element positions are given by the matrix pencil method also. The pattern is the Chebyshev without
null region. A 353-elements array is initialized from the matrix pencil method and the array aperture is
349.46λ. The desired pattern is to minimize the PSLL and control the null with a prescribed mainlobe
area as [−0.036, 0.036]. In addition, two regions, [−76.7◦, −74.4◦] and [14.1◦, 15.9◦], are restricted to
be smaller than −52 dB, which are represented to the null regions. The optimization objective is to set
them lower than −52 dB in the null regions; in the all the other regions of the sidelobe, the optimization
objective is to minimize the peak sidelobe level. The parameters r, q, and p are chosen as 2, 8, and 8,



88 Liu et al.

respectively. Figure 4 shows the PSLL is equal to −32.23 dB and the null regions are smaller than
−52 dB with the 247 elements. Obviously, the number of array elements is reduced more than 30%
through the proposed method. The DRR is found to be 3.9228. As a comparison, the PSLL of the
CVX is −32.18 dB with the positions given by the proposed method. In addition, the PSO decreases
the PSLL to −19.83 dB with 251-element. Therefore, we know that the proposed method has a better
performance on the PSLL and null control in large linear array.

4.3. Minimize the PSLL for a Concentric Circular Array

In the third example, a 2D concentric circular array is utilized to demonstrate that the proposed
method can handle 2D array with high efficient as well. A concentric circular array is a planar array
with elements lying on a circle. Several arrays with different radii can share a common center. Here,
20 rings and a single element at the center are used. The radius of the n-th array is rn = 0.6nλ. Each
ring has d2πne elements equally spaced in a circle. The total elements number is 1310. The iteration
number in the NUFFT is 5000. The mainlobe region is restricted to {(u, v)|√u2 + v2 ≤ 0.074}. The
parameters r, q, and p are chosen as 2, 16, and 12, respectively. The desired PSLL is −35 dB. Figure 5
shows the 3D array pattern with 718 elements and −37.05 dB PSLL. Only 55% antenna array is used
in this case. The v-cut pattern of the array is shown in Figure 6. Due to the large number of elements,
the CVX cannot handle this problem anymore. As a comparison, the PSLLs in the PSO and the IWO-
IFT [26] are −26.92 dB with 730 and −27.13 dB with 694 elements, respectively. The PSLLs are much
worse than the array comes from the proposed method.

Figure 5. The 3D pattern of the concentric
circular array with 718 elements.

Figure 6. v-cut plot of the array pattern shown
in Figure 5.

4.4. PSLL Minimum and Null Control for a Concentric Circular Array

The fourth case includes the PSLL and the null control optimization for a concentric circular array
with same model in Example 3. The parameters r, q, and p are given as 1.5, 16, and 12. The
number of virtual uniform element is 20960. The mainlobe region and the null region are restricted to
{(u, v)|√u2 + v2 ≤ 0.086} and {(u, v)|−0.06 ≤ u ≤ −0.03, 0.67 ≤ v ≤ 0.78}, respectively. The iteration
number in NUFFT is 5000. The null region is prohibited to be smaller than −54 dB and the initial
desired PSLL is −33 dB. Figure 7 shows the pesudocontour plot of the 3D pattern. The square in the
figure is the null region. The v-cut pattern is in Figure 8. The proposed method obtains a 780-elements
array, which saves 40% antenna array. The position of array elements is shown in Figure 9. The PSLL
from the propose method is −36.44 dB. On the contrary, the CVX cannot be applied on this case because
of the large array size is too large. The result from the IWO-IFT [26] has a PSLL of −25.61 dB with
772 elements. The simulation shows the proposed method has a better performance on PSLL, and the
null control in concentric circular array.
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Figure 7. Pesudocontour plot of the concentric circular array with a null region, which is restricted to
be smaller than −54 dB.

Figure 8. v-cut plot of the array pattern shown
in Figure 7.

Figure 9. The location of 780-elements in the
circular array.

5. CONCLUSIONS

A hybrid optimization approach based on the NUFFT and global optimization has been proposed for
large nonuniform array pattern synthesis. The nonuniform arrays are interpolated by the several virtual
uniform arrays. Then the FFT is used to minimize the peak sidelobe and control the null. Antenna
removal strategy is applied after the new excitations are obtained. Then, to fix the new excitations,
simulated annealing method is used to solve the optimal elements positions. The NUFFT and SA are
combined to implement the pattern synthesis alternatively. The simulations illustrate that the proposed
method is more efficient than the CVX and PSO for large arrays. Meanwhile, the PSLL and the null
have a better control in the proposed method.
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