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Effects of Non-Fixed Scatterers’ Random Movements on
Ultra-Wideband MISO Channels

Ana-Maria Pistea*

Abstract—Most wireless channel models assume fixed scatterers with specific geometrical distributions
in the propagation environment. In reality most scatterers move with random movements on the azimuth
plane. In this paper, the effects of such scatterers’ random movements on the cross-correlation function
(CCF) of wideband (WB) and ultra-wideband (UWB) non-isotropic multiple-input multiple-output
(MIMO) channels are characterized. The CCF of WB/UWB MIMO channels is calculated not by
assuming a specific geometry for scatterers in space but based on specific mathematical relationships
between physical parameters of the wireless channel along with appropriate assumptions on their
probability density functions (pdfs). The CCF is used to determine the influence of moving scatterers,
in a stationary scenario, on the power spectral density (PSD) and the coherence time of WB and UWB
multiple-input single-output (MISO) channels, as a particular case of MIMO channels. Unlike the fixed
scatterers case, the PSD is not a band-limited process, it decays with frequency.

1. INTRODUCTION

Most propagation models assume that the scatterers are immobile or have a specific geometrical
distribution on the azimuth plane. In reality only some of these scatterers are fixed, most of them
move in a non-systematic manner while their displacement rarely has a geometric shape.

Since the influence of random displacements of scatterers on wideband (WB) and ultra-wideband
(UWB) multiple-input multiple-output (MIMO) non-isotropic outdoor wireless channels has not been
studied in a closed-form in literature, the contribution of this paper consists in developing a model
which realistically predicts the impact of moving scatterers on these types of channels [1–3]. This topic
is of great concern since UWB technology in combination with MIMO systems finds more and more
applications in areas such as location tracking for outdoor emergency services [4, 5], location tracking and
sensor for mobile outdoor users [6], medical [7] and electronic warfare applications [3]. Moreover, some
research results [8–10] proved that a joint radar and wireless communication system would constitute
a unique platform for future intelligent environmental sensing and ad-hoc communication networks, in
terms of both spectrum efficiency and cost effectiveness. This evolution regarding the use of UWB
systems in outdoor environments as radar or communication systems has led to the formulation of
specific requirements aimed at investigating the influence of outdoor propagation on UWB mobile
systems [11].

The proposed model is an extension of the work presented in [12] where the scatterers were
considered to be fixed. The impact of moving scatterers is analyzed by determining the statistical
behavior of the space-time-frequency channel transfer function which is used to calculate the cross-
correlation function (CCF) between two sub-channels of a mobile multicarrier MIMO channel. The
Fourier analysis of the CCF is used to determine the influence of moving scatterers on the power
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spectral density (PSD) of multiple-input single-output (MISO) channels as a particular case of MIMO
channels. The CCF is also used to determine the coherence time for both WB and UWB MISO channels.

The rest of the paper is organized as follows: notations and assumptions are introduced in Section 2.
The effects of scatterers’ displacements on the CCF are examined in Section 3. The proposed CCF is
used to analyze the PSD and the coherence time in Section 4. Conclusions are summarized in Section 5.

2. NON-ISOTROPIC SCATTERING ENVIRONMENT WITH MOVING
SCATTERERS

The propagation environment that underlies the derivation of the channel transfer function and CCF
with random movements of scatterers is illustrated in Figure 1 where a pair of base station — mobile
station antennas of a MIMO system is displaced in a two-dimensional (2D) non-isotropic propagation
environment. The variations of WB and UWB channels parameters with frequency and the tendency
of the multipath waveforms, i, to group into clusters, l, are also considered.

Figure 1. Moving MS on the azimuth plane with constant speed vector V ; pth and mth antennas of
the BS and MS located at aB

p and at aM
m in their local coordinates, OB and OM .

Scatterers’ motion is Brownian (random) based on stationary-increment Wiener process, while
the mobile station moves with constant speed on the azimuth plane. The mobile station and base
station receive a large number of waveforms reflected from moving scatterers. The movements of each
scatterer change the relative distance of the scatterer to the mobile station coordinate. Therefore, it has
a direct effect on the propagation delay caused by that scatterer. While the mobile station moves with
a constant speed on the azimuth plane, it may have other movements like arbitrary rotations around
the azimuth axis. In this situation, almost all rotational movements of the mobile station are to align
the coordinate with the direction of its trajectory. These rotations are usually very slowly varying with
time and with low impacts on the CCF, therefore are ignored in this paper [13].

Scatterers’ distribution in space does not have a specific geometry: in contrast to most MIMO-
CCF models that employ a certain geometry for scatterers around the mobile station, the proposed
model is based on mathematical relationships among channel gain, time-delay and pathloss exponent,
rather than the scatterers’ geometry. These relationships substitute the role of the scatterers’ geometry
to represent the power of the multipath components. Such an approach enables the model to consider
different propagation environments along with different antenna patterns in the CCF expression.

Assumptions A1)–A4) illustrate how the above mentioned properties are integrated into the model:

A1) Base station antennas array are fixed. The displacement of the mobile station is represented

by a 2D constant vector, V . The displacements of the i × lth scatterer, Xs
il (t) ,

[
xs

il,1 (t)
xs

il,2 (t)

]
,

follow a 2D stationary-increment Wiener random vector [14, Chapter 10]. The two components
of Xs

il(t), xs
il,1(t) and xs

il,2(t), are independent non-stationary zero-mean Normal random processes
with stationary-independent increments [14].

A2) The complex antenna propagation patterns (APPs), GB
p (ΘB

il , ω) and GM
m (ΘM

il , ω), of the pth antenna
at the base station and the mth antenna at the mobile station give the response of the pattern



Progress In Electromagnetics Research C, Vol. 47, 2014 77

elements in terms of the propagation directions and the central frequency, ω. Antenna elements are
located around the mobile station and the base station local coordinates, OM and OB, with relative
position vectors aB

p and aM
m , respectively. These are periodic functions with period 2π. Therefore,

are represented by their Fourier series expansions (see [12, 13] for the Fourier series expansions of
some APPs):

G (Θ;ω)=
∞∑

k=−∞
Gke

jkΘ, Gk =

∫ π

−π
G (Θ;ω)

2π
e−jkΘdΘ (1)

A3) The pdf of the propagation directions, known as azimuth angle spreads, fB(ΘB) and fM (ΘM ),
for the range [−π, π) characterizes the non-isotropic propagation channel. These pdfs are periodic
functions with period 2π and can be represented by their Fourier series expansions as follows.

fΘ (Θ) =
+∞∑

k=−∞
Fke

jkΘ, Fk =

∫ π

−π
fΘ (Θ) e−jkΘdΘ

2π
(2)

Reported measurement results suggest Laplace and von-Mises pdfs for WB and UWB propagation
channels [12]. Since these pdfs are periodic functions with period 2π, in Table 1 are represented by
the corresponding Fourier series expansions:

Table 1. Non-isotropic azimuth angle spread and corresponding Fourier series expansions.

PDF, fΘ (Θ), ∀Θ ∈ [−π, π), Fk

Laplace fΘ (Θ) = e

∣∣∣∣−
√

2Θ
σ

∣∣∣∣
√

2σ

Fk =
e−

π(
√

2+jkσ)
σ

(
e

2
√

2π
σ −ej2kπ

)

2π(j
√

2kσ−2)

von-Mises fΘ (Θ) = e
|n∗cos(Θ−µ)|

2πJ0(n)

Fk = Jk(n)
J0(n)

Von-Mises pdf is strongly influenced by parameter n which determines the order of the channel
non-isotropy. In other words, n controls the width of direction of arrival (DOA) of scattered
components, and n can take values in the range n ∈ [0,∞). When n → ∞, fΘM (Θ) = δ(Θ − µ),
the propagation environment is considered extremely-nonisotropic-scattered centrated at Θ = µ,
where µ ∈ [−π, π) is the mean DOA at the mobile station. For large n, say 3 ≤ n ≤ 20, a typical
non-isotropic environment can be considered. When Fourier series coefficients are determined,
parameter n appears in the argument of the Bessel functions represented by the modified Bessel
function of the first kind, Jk(·), and the zero-order modified Bessel function, J0(·). The isotropic
propagation environment can be mathematically represented in a similar way, using the following
expression of the Fourier series expansions: Fk = 1

2π δk.
A4) The propagation delay over the ith path within lth cluster is time-varying. This is the consequence

of both linear speed of the mobile station and random displacements of the i× lth scatterer from its
initial position. This consequence appears when the random movement of each scatterer changes
the relative distance of the scatterer to the mobile station coordinate. Therefore, it has a direct
effect on the propagation delay caused by that scatterer. In these circumstances, the time-varying
propagation delay over the ith path within the lth cluster is given by:

τpm,il (t) , τpm,il (0) +
1
c

(
XS

il (t) + V t
)T

ΘM
il (3)
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where (·)T is the transpose operator and c the speed of light. At time zero, the propagation delay
of the ith path within the lth cluster, τpm,il (0), is decomposed into three components: one major
propagation delay and two relative propagation delays with respect to the base station and the
mobile station local coordinates, OB and OM , as follows: τpm,il (0) = τil − (τB

p,il + τM
m,il), where

τB
p,il , aB

p ΘB
il

c and τM
m,il , aM

m ΘM
il

c . The term τil represents the propagation delay between OB and
OM , τB

p,il and τM
m,il are the relative propagation delays from antennas, aB

p , aM
m .

Based on the above mentioned properties of scatterers and using Assumptions A1)–A4), the channel
transfer function expression with moving scatterers influence is given by:

hpm(t, ω)=
(ωbw

ω

)η
L∑

l=1

I∑

i=1

GB
p

(
ΘB

il , ω
)
GM

m

(
ΘM

il , ω
)× gpm,ile

j
(
φil−ω

c (XS
il(t)+V t)T

ΘM
il −ωTpm,l−ωτpm,il(t)

)
(4)

In Equation (4), the channel transfer function is represented by a sum of propagation waveforms
over a number of i paths and l clusters (with maximum I paths and L clusters). Each i path within
each l cluster is associated with the following parameters: direction of departure (DOD) — ΘB

il from the
base station and DOA — ΘM

il to the mobile station, complex gain of WB and UWB APPs — G (Θil, ω),
time-varying delay, τpm,il (t), of the ith path within lth cluster and fixed cluster delay, Tpm,l, path phase
shift, φil, frequency dependent path gain, gpm,il = 1

2ωτil
.

The channel frequency selectivity is considered by introducing, for both WB and UWB channels,
the term (ωbw

ω )η, where ω was previously defined, and ωbw is the channel bandwidth and η the path-loss
exponent [12]. In the case of UWB channel, this term is not enough to have a realistic representation
of the frequency selectivity phenomenon since UWB APP is frequency selective while WB APP is not.
Thus, two approaches for 2D APP calculation are used: for WB signals, APP is calculated depending
on the central angular frequency while for UWB channels, APP is calculated depending on the central
frequency and by integrating G(Θil, ω) across all the frequencies of the transmitted signal.

Based on the previous assumptions, the space-time-frequency CCF between the channel transfer
functions of two arbitrary MIMO communication links hpm(t1, ω1) and hqn(t2, ω2) is derived using the
following equation:

Rpm,qn (t1, t2, ω1, ω2) , E
[
hpm (t1, ω1) h∗qn (t2, ω2)

]
(5)

After some mathematical manipulations the expression of Rpm,qn(t1, t2, ω1, ω2) is decomposed as it is
presented in Equation (6), where Fsel = (ωbw1ωbw2)η

(ω1ω2)η(4ω1ω2)
. The calculation methodology for the first three

expectations in Equation (6) is the same as the one presented in [12] since they have the same expression
as in the fixed scatterer case.

Rpm,qn (t1, t2; ω1, ω2) = Fsel

L∑

l=1

I∑

i=1

{
E

[
(τi2l2τi1l1)

−1 ej((ω2τi2l2
−ω1τi1l1)+(ω1Tpm,l1

−ω2Tqn,l2))
]

× E
[
ej(φi1l1

−φi2l2)
]}

E

[
GB

p

(
ΘB

i1l1 ; ω1

)
GB∗

q

(
ΘB

i2l2 ; ω2

)
e
j
(

ω1
c

aBT
p ΘB

i1l1
−ω2

c
aBT

q ΘB
i2l2

)]

×E

[
GM

m

(
ΘM

i1l1 ; ω1

)
GM∗

n

(
ΘM

i2l2 ; ω2

)
e
j
(

ω1
c (−XS

il(t1)−V t1+aM
m )T

ΘM
i1l1

)
e
j
(

ω2
c (XS

il(t2)+V t2−aM
n )T

ΘM
i2l2

)]
(6)

In order to calculate the last expectation in (6), first the calculation is performed on a simplified
version of this expectation and for an arbitrary Wiener displacement process vector X(t), as follows:

E
[
e

j
c
(ω2X(t2)−ω1X(t1)+d)ΘM

il

]
= E

[
EX

[
e

j
c
(ω2X(t2)−ω1X(t1))T ΘM

il

]
e

j
c
dT ΘM

il

]
(7)

EX [·] denotes the expectation with respect to the pdf of X, E[·] the expectation with respect to the
pdf of all remaining random variables, and d an arbitrary 2D vector.

The frequency shift of the i × lth received multipath waveform is caused by both random
displacements of the i × lth scatterer, XS

il (t), and the mobile station movements, i.e., V t. After some
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manipulations and using the results in [12], the expectations in (6) are calculated, and the CCF can be
formulated as follows:

Rpm,qn (t1, t2; ω1, ω2) = FselΦ(−1)
τ (j (ω1 − ω2))× ΦT (j (ω2 − ω1))

×
(

L∑

l=1

I∑

i=1

e−ζi1l1
t1

ω2
1

2c2 eζi2l2
t2

ω2
2

2c2

)
×W

(
dB

pq,HB
k1,2

)
×W

(
dM

mn,HM
k1,2

)
(8)

The elements denoted by Φτ,T (s) represent the moment generating functions (MGFs) of the delay
profile (τ, T ) evaluated at the difference between two frequencies. The definition of the MGF of a
random variable x with the PDF fX(x) is defined as follows: ΦX(s) = E[ejsX ] =

∫∞
−∞ ejsξfX(ξ)dξ. The

probability densities of the absolute times of arrival of clusters and paths used to calculate the MGFs
are represented by:

pTl
(T ) =

ΛL+1TLe−ΛT

L!
, pτi,l

(τ) =
λIτ I−1e−λτ

(I − 1)!
(9)

where Λ and λ are the cluster arrival rate and ray arrival rate. The parameter 1
Λ is typically in the range

10–50 ns, while 1
λ shows a wide variation from 0.5 ns in non line-of-sight (NLOS) situations, to more than

5 ns in LOS situations [2]. W(d,Hk) , 2π
∞∑

k=−∞
jkejk∠dHk(ω)Jk(

|d|
c ) and Hk , Gp,k(ω)⊗G∗q,−k(ω)⊗Fk.

The norm of the vectors, dB
pq, dM

mn, indicates the distance between antennas and shows the shifted
distances between ω1a

B
p and ω2a

B
q at the base station, and between ω1(aM

m − t1V ) and ω2(aM
n − t2V ) at

the mobile station, respectively. Parameters d
(·)
(·) contain space, time, and frequency separations between

hpm(t1, ω1) and hqn(t2, ω2). As it is seen in (8), the contribution of each moving scatterer is represented
by its corresponding variance factor, ζil. A larger value of the variance factor indicates a faster decay of
the i× lth associated term in the CCF expression. It implies that scatterers with larger displacements
have less effect on the CCF, while the effect of slow moving scatterers lasts longer.

3. NUMERICAL EVALUATION OF THE CCF

In this section, the CCF expression is used to examine the scatterers’ random displacement influence on
the PSD and on the coherence time, for I = 10, L = 4 and ζ = 0.008. The propagation environment is
non-isotropic (represented by two distributions of azimuth angle spread (Laplace and von-Mises)) and
omnidirectional antennas are employed at the mobile station. When ζ → 0, the scatterers are fixed. As
ζ → ∞ the correlation goes to zero regardless the antenna type or the distribution of the propagation
environment.

This extensive simulation for different propagation environments as well as the mobile station speed
covers basically all aspects of this modeling and all related parameters. For both PSD and coherence
time evaluation, the presented results correspond to: WB channel — fc = 2.5 GHz, ωbw = 200MHz,
UWB channel — fc = 6.8GHz, ωbw = 10.5 GHz.

3.1. Effects of Scatterers’ Random Displacements on the PSD

In order to investigate how the scatterers’ random movements affect the PSD, ω1 = ω2 and m = n = 1,
which transforms the MIMO channel in a multiple-input single-output (MISO) channel, is considered
the stationary case. Considering ∠dM

1,1 = ∠V +(1−∠(t2−t1))π
2 (in Radian) results the Fourier transform

of the CCF versus the time-difference index ∆t , t2 − t1:

Rp1,q1(Λ, ω) ,
∫ ∞

−∞
e−jΛ∆tRp1,q1 (t1, t2, ω, ω) d∆t

= 2πF 2
sel×

{∞∑

k=1

jkejk∠V
(GM

1,k(ω)⊗ GM∗
1,−k(ω)⊗FM

k

)×W(
dB

p,q,HB
k

)×
L∑

l=1

I∑

i=1

Ck
1

jΛ+ ζilω2

2c2

}
(10)
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Λ is a frequency variable in the interval −ω|V |
c < Λ ≤ ω|V |

c , Ck =
Tk( cΛ

|V |ω )√
1−( cΛ

|V |ω )2
, and the parameter

Tk(·) , cos[k cos−1(Λ)] represents the Chebyshev polynomials which form a complete orthogonal set
on the interval −1 6 u < 1, with respect to the weighting function 1√

1−u2
. The term Jk(u) ,

j−k

π

∫ π
0 ej(kξ+ucosξ)dξ is the kth-order Bessel function. Using (10) and Fourier transform of Jk(u), the

Fourier transform of the CCF versus ∆t results in:

RM
ζ (Λ) ,

∞∑

k1,2=−∞
HM

1,k1,2
ejk1∠V Ck

L∑

l=1

I∑

i=1

1

jΛ + ζilω2

2c2

(11)

Equation (11) represents the PSD, RM
ζ (Λ), for the 2D propagation environment, which reflects the

channel variations caused by the mobile station and the dispersion of the signal energy caused by the
moving scatterers.

Figures 2 and 3 show the PSD of WB and UWB MISO channels for rectangular (omnidirectional)
antenna in an environment with moving scatterers.
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Figure 2. Moving scatterers influence on the PSD of (b) WB and (a) UWB channels, the mobile
station moves on the positive direction of the x-axis.
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Figure 3. Moving scatterers influence on the PSD of (b) WB and (a) UWB channels, the mobile
station moves on the positive direction of the y-axis.

The mobile station is moving in the positive direction of x-axis or y-axis. The PSD shape is
asymmetrical or symmetrical as a consequence of the interaction among the beam of the APP, the
direction of the mobile station speed and the distribution of the propagation directions around the
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mobile station. It can be observed that the mobile station movement in the positive direction of the
x-axis produces a PSD with larger values at positive Λ than at negative Λ. This asymmetry of the PSD
is also determined by the Doppler spectrum which concentrates towards positive frequency axis. It can
be observed how the energy is concentrated in the positive part of the x-axis giving rise to peaky spectra
when Λ = 0. This is because of the random scatterers displacements which produce more pronounced
waves scattering and hence increased angular spreads. Also, it is clearly observed that the movement of
scatterers has a great impact on the channel PSD causing the PSD to be a non-bandlimited process, in
contrast to the case when scatterers are fixed [12]. The envelope fluctuation of the PSD is significantly
influenced by the antenna bandwidth, hence WB channels have a less fluctuating PSD than UWB
channels because of the frequency selectivity which increases with signal frequency and bandwidth.

3.2. Effects of Scatterers’ Random Displacements on the Coherence Time

Using CCF expression, the coherence time is determined with the following equation: D∆t,∆ω ,
|R(t1,t2;ω1,ω2)|2
|R(t1,t1;ω1,ω1)|2 = 0.5, where ∆ω = ω2 − ω1 > 0, ∆t = t2 − t1 > 0 and coherence time = D∆t,0. When
the mobile station moves in any direction in space, the averaged coherence time over these directions is
given by: coherence time , 1

2π

∫ π
−π coherence time (∠V ) d (∠V ).

Figures 4(a), (b) show the influences of both fixed and moving scatterers on the averaged coherence
time depending on the mobile station speed and different distributions of the environment (Laplace,
von-Mises).
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Figure 4. Average coherence tine of (a) WB and (b) UWB channels depending on the mobile station
speed values, |V |, considering Laplacian and von-Mises pdfs.

In the mentioned figures the coherence time is designated as CT, and the mobile station is designated
as MS for the sake of brevity. In the literature the coherence time is reported to be mostly a function
of the mobile station speed [15]. This numerical investigation also confirms such a claim; however, it
is also observed that the coherence time is influenced by other parameters. This result is expected
based on the Fourier analysis of stationary CCF, since the Doppler effect appears as a function of the
non-isotropic environment, the employed antenna at the mobile station and the mobile station speed
direction. If the mobile station has a linear speed, the coherence time is usually reported to have a linear
dependence on speed [15]. In this numerical evaluation, the same relation is observed. The average
values of the coherence time are in harmony with available references and approximation formula for
the coherence time in the literature. Regarding the fixed scatterers case in [16] it was stated that the
coherence time of a UWB channel may take values up to 200 ms. In [17], the coherence time of the
UWB channel is selected as 10 ms, which corresponds to human walking speed (≈ 2 meters/second)
at the operating frequencies 3.1–4.8 GHz. In [18], an approximation formula was presented for the
coherence time ≈ 9c

8|V |ω when CCF = 0.5. If in the case of a WB channel we choose |V | = 30Km/h



82 Pistea

and ω = 2πf , f = 2.5GHz, the resulted coherence time is equal to 32.37 msec which is very close to the
results obtained using this model. Based on the same formula, the coherence time of a UWB channel
when f = 6.8GHz corresponds to a coherence time of 9.52 msec.

4. CONCLUSION

In this paper, an outdoor channel model for WB/UWB MIMO systems was proposed, with moving
scatterers and moving receiver, based on the mathematical expression of a 2D space-time-frequency
CCF. The impact of channel bandwidth, non-isotropic propagation and direction of the mobile station
on the CCF was evaluated. The impact of scatterers’ random displacements on the CCF of WB/UWB
MIMO channels was investigated in terms of temporal, frequency, and spatial correlations. The CCF
expression was used to calculate the PSD and coherence time of these two types of channels. For both
WB and UWB channels, the PSD is a non-bandlimited process and reflects the channel variations
caused by the mobile station speed and direction and the dispersion of the signal energy caused by
the moving scatterers. To achieve uncorrelated MISO channels, it is necessary to have small coherence
time values which are much easier to achieve for UWB signals with a bandwidth much larger than the
coherence time of the channel. Results may be effectively employed in fields such as networking and
signal processing where the channel time variations are important, e.g., signal detection, recognition,
interception.
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