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Energy Characteristics of a Slot Cut in an Impedance End-Wall
of a Rectangular Waveguide and Radiating into the Space

over a Perfectly Conducting Sphere

Sergey L. Berdnik, Victor A. Katrich, Yuriy M. Penkin,
Mikhail V. Nesterenko*, and Svetlana V. Pshenichnaya

Abstract—A mathematical model of a spherical antenna excited by a slot cut in an impedance end-wall
of a semi-infinite rectangular waveguide was built using a rigorous solution of the problem. Control
of energy characteristics is accomplished by changing impedance distributed on the end-wall of the
waveguide section. If the waveguide is excited by the wave H10, the wavelength tuning reaches (30–
35)%, i.e., about a half of the wavelength range of single mode waveguide regime.

1. INTRODUCTION

Low-power microwave devices controlled by lumped components, e.g., by PIN diodes, are extensively
used in modern electronics [1, 2]. Further progress in microwave technology is characterized by using film
hybrid circuits. Application of hybrid circuits can significantly improve the technical and operational
performance of microwave devices; it determines the device miniaturization and increases efficiency
of device functioning in the automatic control mode. However, development of controlled microwave
devices with hybrid circuits is hampered by lack of adequate mathematical models. This is especially
true for waveguide radiators, in which the controlled film element can be a part of the surface, affecting
formation of radiation field. The role of mathematical modeling in developing new microwave devices
is very important, since experimental design and optimization of the functional elements are time
consuming and expensive processes.

The integration of various elements in a single device demands more complicated mathematical
models for devices design and analysis. As a rule, for each element used in combined devices a rigorous
numerical-analytical method of analysis can be selected that takes into account geometrical and physical
features of a local electrodynamic problem. A direct reconciliation of such methods for finding the total
electromagnetic field in most cases is impossible, and a direct numerical simulation is usually required.
Conversely, the use of direct numerical simulations for the open surface antenna devices are also become
limited by their electrical dimensions. In some cases it is possible to use a general formulation of the
problem using approximate one-sided boundary conditions, for example, impedance boundary conditions
allowing to reduce the number of coupled electrodynamic volumes that must be taken into account. The
impedance boundary conditions are known for ability to exclude a need to define fields inside metal and
dielectric structural elements at the stage of problem formulation [3–5].

The paper is aimed at creation of new radiating microwave devices with controllable energy
characteristics, namely, a spherical antenna, excited by a narrow slot cut in a semi-infinite impedance
end-wall of a rectangular waveguide. The paper is based on a solution of a problem of electromagnetic
waves radiation into the space above a sphere through a slot in the end-wall of a semi-infinite rectangular
waveguide under conditions that all surface elements are perfectly conducting [6]. Design of the external
controller for changing the surface impedance will not be considered in the paper.
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2. PROBLEM FORMULATION AND INTEGRAL EQUATION SOLUTION

Let a fundamental wave H10 propagates in a hollow semi-infinite rectangular waveguide with perfectly
conducting walls (index V i) from z = ∞ (Fig. 1). The waveguide cross-section is {a× b}. A Cartesian
coordinate system related to the waveguide is shown in Fig. 1(a). A narrow transverse slot is cut in the
waveguide end-wall symmetrically relative to the waveguide’s longitudinal axis (x0 = a/2). The width
of slot aperture Si is d and its length is 2Li are such that inequalities [d/(2Li)] ¿ 1, [d/λ] ¿ 1 hold (λ
is free space wavelength). Constant surface impedance, Z̄S = ZS/Z0, normalized to the impedance of
free space, Z0 = 120π Ohms is distributed continuously over the internal side of the waveguide end-wall.
The slot radiates into the free space outside a perfectly conducting sphere (index V e). The radius of
the sphere is R. A spherical coordinate system, associated with the spherical scatterer (flange) is shown
in Fig. 1(c). The geometric center of the slotted element in the Cartesian coordinate system is defined
by coordinates (a/2, y0, 0); the coordinates of external aperture Se center in the spherical coordinate
system are (R, π/2, 0). The length of slot aperture Se measured along the arc on the sphere is 2Le.

(a) (b) (c)

Figure 1. The geometry of the spherical antenna.

The tunneling slot cavity is an area (index V v), bounded between apertures Si and Se, represents
an irregular shape resonator, whose boundaries could not be described in either coordinate system
(Fig. 1(c)). This defines the principal difficulty for analytical problem analysis. The cavity volume
changes as the sphere radius and waveguide cross-sectional dimensions {a × b} are varied, since these
geometrical parameters determine the mutual positions of the slot apertures Si and Se (Fig. 1(b)).

The initial system of integral equations for the spherical antenna can be formulated using continuity
conditions for tangential components of the magnetic fields on the inner and outer slot apertures as

{
for Si : ~H i

τ (~esi) + ~H i
0τ = ~Hv

τ (~esi) + ~Hv
τ (~ese) ,

for Se : ~Hv
τ (~esi) + ~Hv

τ (~ese) = ~Hv
τ (~ese) ,

(1)

where ~esi, ~ese are the electric fields on the surfaces Si and Se; ~H i
τ (~esi), ~He

τ (~ese), ~Hv
τ (~esi), ~Hv

τ (~ese) are
tangential components of magnetic fields with respect to the slot aperture, excited by fields ~esi, ~ese, in
the corresponding electrodynamic volumes, and ~H i

0τ is the component of the extraneous magnetic field
in the waveguide.

A rigorous mathematical justification concerning reduction of simultaneous Equation (1) to a single
equation

~H i
τ (~esi) + ~H i

0τ = ~He
τ (~ese) (2)

can be found in [6]. The equation does not contain fields, defined in the slot cavity V v and it is written
for a fictitious slot aperture whose equivalent width is de. The magnetic fields in Equations (1) and (2)
can be expressed in local coordinate system for each of the coupled volumes.

We will solve Equation (2), following the procedure described in [6], by the generalized method of
induced magnetomotive force (MMF) justified in [7]. Then, under the conditions that the fields ~esi(e)

are constant in the direction transverse to the slot, and the parameters θ0 = π/2 and x0 = a/2 are
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constant, we obtain using the local coordinate systems (Fig. 1)

Le/R∫

−Le/R

θ0+ de
2R∫

θ0− de
2R

~He
τ

(
f(ϕ′)~θ0

)
f(ϕ) dθdϕ−

x0+Li∫

x0−Li

y0+de/2∫

y0−de/2

~H i
τ

(
f(x′)~y0

)
f(x)dydx =

1
I0

x0+Li∫

x0−Li

y0+de/2∫

y0−de/2

~H i
0τf(x)dydx.

(3)
In deriving the equality (3) we have made use of the following relations:

~ese = ~θ 0 I0

de
δ(r′ −R)f(ϕ′) = ~θ 0 I0

de
δ(r′ −R)

[
cos(kRϕ′) cos

π

a
Le − cos kLe cos

πRϕ′

a

]

in the spherical coordinate system, and

~esi = ~y0
I0

de
δ
(
z′

)
f(x′) = ~y0

I0

de
δ
(
z′

) [
cos k

(
x′ − a

2

)
cos

π

a
Li − cos kLi cos

π

a

(
x′ − a

2

)]

in the rectangular coordinate system. Here k = 2π/λ is wavenumber of the free space; ~θ0, ~y0 are the
unit vectors in the corresponding coordinate system, δ(x′) is the Dirac delta function, ω is circular
frequency. We took into account that the electromagnetic fields depend on time t as eiωt.

The complex current amplitude

I0 =
1

Y i + Y e

a/2+Li∫

a/2−Li

y0+de/2∫

y0−de/2

H i
0xf (x) dydx (4)

can be found as solution of Equation (3). The slot conductivities in corresponding electrodynamic
volumes are

Y e =

Le/R∫

−Le/R

π
2
+ de

2R∫

π
2
− de

2R

He
ϕ

(
f(ϕ′)~θ 0

)
f (ϕ) dθdϕ, Y i = −

a/2+Li∫

a/2−Li

y0+de/2∫

y0−de/2

H i
x

(
f(x′)~y 0

)
f (x) dydx. (5)

The external conductivity on the sphere is equal

Y e = Y e(kde, kLe, kR) = − 4kR

(kde)2

∞∑

n=1

1
n(n + 1)

× 1

(n + 1)− kRh
(2)
n+1(kR)/h

(2)
n (kR)

×
{

k2R2C2
0

(
A0

n

)2 − 2
n∑

m=1

C2
m

[
m2

(
n(n + 1)− k2R2

)
(Bm

n )2 − k2R2 (Am
n )2

]}
, (6)

where

Am
n ≈ sin θ

[
P̄m

n

(
cos

(
θ0 +

de

2R

))
− P̄m

n

(
cos

(
θ0 − de

2R

))]
, Bm

n =

θ0+
de
2R∫

θ0− de
2R

P̄m
n (cos θ) dθ,

Cm =
cos(πLe/a)
m2 − (kR)2

[
m sin

mLe

R
cos kLe − kR cos

mLe

R
sin kLe

]

− cos kLe

m2 − (πR/a)2

[
m sin

mLe

R
cos

πLe

a
− πR

a
cos

mLe

R
sin

πLe

a

]
= CI

m − CII
m ,

CI
m

∣∣
m→kR

=
(

Le

2R
+

sin(2kLe)
4kR

)
cos

πLe

a
, CII

m

∣∣
m→πR

a
=

(
Le

2R
+

sin(2πLe/a)
4πR/a

)
cos kL,

P̄m
n (cos θ) = (2n+1)(n−m)!

2π(n+m)! Pm
n (cos θ) are associated Legendre functions of the first kind; h

(2)
n (kr) =

√
π

2krH
(2)
n+1/2(kr) are the spherical Hankel function of the second kind; H(2)

n+1/2
(kr) are Hankel function

of the second kind [9, 10].
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The internal slot conductivity in the waveguide section is equal

Y i =Y i(kde, kLi, Z̄S)=
4π

ab

∞∑

m=1,3,5...

∞∑

n=0

εn

(
k2 − k2

x

)

kkz
(cos kyy0)

2

(
sin(kyde/2)

kyde/2

)2

FZ(kz, Z̄S)g2(kLi), (7)

where

FZ(kz, Z̄S) =
kkz

(
1 + Z̄2

S

)
(
ik + kzZ̄S

) (
kZ̄S − ikz

)
(

1− i
kkzZ̄S

k2 − k2
x

)
, g(kLi) = I(kLi) cos

πLi

a
− I

(
πLi

a

)
cos kLi,

kx =
mπ

a
, ky =

nπ

b
, kz =

√
k2

x + k2
y − k2, εn =

{
1, n = 0
2, n 6= 0

,

I(kLi) =
2

k2 − k2
x

(k sin kLi cos kxLi − kx cos kLi sin kxLi) ,

I

(
πLi

a

)
=

2
(π/a)2 − k2

x

(
π

a
sin

πLi

a
cos kxLi − kx cos

πLi

a
sin kxLi

)∣∣∣∣
kx=π

a

=
sin 2πLi

a + 2πLi
a

(2π/a)
.

The expressions (6) and (7) were obtained by replacing the electric field in the slot with equivalent
currents and by using Green’s functions of Helmholtz equations for the Hertz potentials presented in
Appendix A. Details of obtaining the expression (6) can be found in [6]. The expression (7) was derived
using methodology presented in works [7, 11], where the expression for external conductivity of the slot
cut in the impedance end of the rectangular waveguide and radiating in the half-space above a perfectly
conducting plane was given.

If the waveguide section is excited by a fundamental wave

H10(x, z) = H0 sin
πx

a
e−iγz,

where H0 is amplitude and γ =
√

k2 − (π/a)2 is propagation constant, the formula for the magnetic
current in the slot aperture may be written as

J(s) = − iω

k2
H0F (kLi)

cos ks cos(πLi(e)/a)− cos kLi(e) cos(πs/a)
Y i(kde, kLi, Z̄S) + Y e(kde, kLe, kR)

, (8)

where
F (kLi) =

2
π
× π sin kLi cos(πLi/a)− ka cos kLi sin(πLi/a)

1− [π/(ka)]2
,

Here the coordinates s = Rϕ′ and s = x′ − a/2 if the fields are defined outside the sphere and inside
the waveguide section, respectively.

Thus, both energy and spatial characteristics can be defined by using the asymptotic solution (8)
of the Equation (2) for the magnetic field in the slot. For example, the reflection coefficient in the
waveguide can be written as

S11 =
{

1− (γ/k) Z̄S

1 + (γ/k) Z̄S
− 8πγ g2(kLi)

iabk (Y i + Y e)
· 1 + Z̄2

S

1 + (γ/k) Z̄S

}
e−2iγz (9)

and the radiation coefficient as

|SΣ|2 =
PΣ

P10
=
|I0|2

2
ImY e(kde, kLe, kR), (10)

where PΣ is the mean power radiated through the slot aperture, i.e., flux of a Umov-Poynting vector
through the slot, P10 the power of H10 wave, and ImY e(kde, kLe, kR) the imaginary part of the external
slot conductivity.

If the slot parameter h satisfy the inequality h
d ≥ 1, the equivalent slot width can be evaluated

using the formula [12] de ≈ 8d
π exp(− πV

2dSi
+ 1) where V is the slot cavity volume, Si is the square of

the internal slot aperture and h is maximal dimension of the tunnel slot cavity in the radial direction
adjusted for the thickness of impedance coating of the waveguide end-wall. The loss power Pσ in the
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impedance coating can be found using the energy balance condition, |S11|2 + |SΣ|2 + Pσ = 1. The same
condition will be used for verification of computational procedures during energy parameter estimation
for imaginary values of surface impedance Z̄S , when the losses in the impedance element are absent and
Pσ = 0.

3. NUMERICAL RESULTS

Truncation of infinite series in the formula (6) was carried out according to the method proposed
in [6]. The maximum value of the summation index was selected so that the value of the imaginary
part of the conductivity was calculated with accuracy of 1%. The number of members in double
series in the expression for Y i (7) was selected, as in [7, 8], to provide calculation |Y i| with accuracy
up to 0.1%. To establish correspondence between our mathematical model and the real physical
process we have conducted: (1) analytical comparison and (2) test calculations. In the first case,
the formulas obtained in this study were compared with corresponding expressions presented in [6],
where surfaces of all antenna elements were supposed to be perfectly conducting. It is easy to see
that formulas (6), (7), (8) (9) and (10) are transformed to corresponding formulas in [6] if Z̄S = 0.
Test calculations were carried out to compare our results with results given in [11]. Comparison of the
energy parameters of the two devices with different geometry of the waveguide radiator flange were
done in the range 10 ≤ kR ≤ 50. Comparisons were made for the radiation coefficient (10) and the
absolute value of reflection coefficient (9) in the operating wavelength of standard rectangular waveguide
{a×b} = 23×10 mm2 for the varying value of complex impedance Z̄S of a magneto-dielectric film TDK
IR-E110 on a metal layer

Z̄S = i

√
µ1

ε1
tg (

√
ε1µ1khd) , (11)

with material parameters are ε1 = 8.84 − i0.084, µ1 = 2.42 − 24.75/λ − i0.994 [13]. The maximum
difference between the calculated values of the energy parameters for both cases did not exceed 2.5%.
The loss power in the impedance surface of the waveguide end-wall increases with the increase of Z̄S

both for a flat screen [11] and for the spherical antenna with various values of sphere radiuses. Thus,
the overall slot radiation coefficient, |SΣ|2, is decreased. We have also concluded that variation of the
real part of the surface impedance Re(Z̄S) does not change the antenna resonant frequency at which
a maximum level of radiated power is observed. Therefore, to determine the possibility of frequency
antenna tuning we will considered only pure imaginary impedance (Re(Z̄S) = 0).

It was shown [6] that maximal radiation level at any given frequency in the range of waveguide
single mode (excluding the area adjacent to the critical frequency) can be achieved by variation of the
slot length. For a small sphere radii, for example if πR/(2Le) = 3, the resonant slot length is close to
a half-wave, 2Le ≈ 0.5λ. If the sphere radius is increased, the effect of the sphere shortening becomes
apparent. Maximal reduction of the resonant slot length, 2Le ≈ 0.48λ, is observed for an infinite
screen. Therefore, for practical applications, there arises an important question: what is the extent of
frequency antenna tuning attainable by changing the impedance of the film element? Fig. 2 shows, the
wavelength dependence of energy characteristics for the four variants of the spherical antenna which
radii are R = 10Le/π and R = 20Le/π and two fixed slot lengths are 2Le = 14mm and 2Le = 16 mm.
In all cases, the calculations were made in the single-mode range of the waveguide section with cross
section {a× b} = 23× 10mm2. It was assumed that the value of the surface impedance do not change
its sign and always is the inductive-type impedance for the lossless magneto-dielectric layer.

Figure 2 shows that the maximum of radiated power is shifted to the long-wavelength limit if the
value of impedance Z̄S is increasing. The variation interval of Z̄S ∈ [0; i0.2] ensures resonant wavelength
tuning within (30–35)% as compared with the case when Z̄S = 0. Although the tuning range covers
almost half the range of single-mode regime of the waveguide section, the antenna reflection coefficient
is not increased and the level of the maximum radiation coefficient is not reduced. Thus, we can affirm
the antenna and waveguide transmission line are matched in the entire tuning range. If the sphere
radius is increased, a minor decrease of the tuning range is observed. For any value of the impedance
Z̄S , the bandwidth of the antenna radiation at the half-power level is maximal for large sphere radii
and significantly reduces when the sphere is decreased. Fig. 3 illustrates an example of this trend for
the fixed impedance value Z̄S = i0.05.
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Figure 2. Wavelength dependence of energy characteristics for the spherical slot antenna for variable
imaginary impedance: 1− Z̄S = 0, 2− Z̄S = i0.01, 3− Z̄S = i0.05, 4− Z̄S = i0.2.
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Figure 3. The wavelength dependence of the energy characteristics of the spherical slot antenna for
various sphere radii, 2Le = 14 mm, Z̄s = i0.05: 1 − πR/2Le = 3, 2 − πR/2Le = 5, 3 − πR/2Le = 10,
4− πR/2Le = 20.

4. CONCLUSION

The electrodynamic problem of electromagnetic wave radiation into the space over the perfectly
conducting sphere through the narrow slot aperture cut in the semi-infinite impedance end-wall of
the rectangular waveguide excited by the H10 wave was solved in strict formulation by the generalized
method of induced MMF. This method is a variety of the well-known method of moments, but it can be
classify as a separate method due to specific selection of basis functions. A single basis function is defined
as the analytical solution of the integral equation, obtained by the asymptotic method of averaging for
the problem of wave diffraction by a transverse slot cut in the end-wall of a semi-infinite rectangular
waveguide radiating into the half-space over the perfectly conducting screen. The advantage of the
method is in using of two different local coordinate systems for the coupled electrodynamic volumes.
Thus, the fields in the space outside the spherical scatterer and inside the waveguide section can be
found using the corresponding Green’s functions.

Conceptually, the impedance of the waveguide end-wall may be controlled by film coating,
distributed over it. The parameters of the magneto-dielectric coating and, hence, the value of the
surface impedance can be changed by hypothetical external action. The article is aimed mainly at the
investigation of possibility for a spherical antenna energy characteristics control by changing the values
of the impedance of the end-wall cover. Analysis of test calculations obtained using the mathematical
model and comparison test results for special cases with that known previously confirmed the model
validity. Thus, we may state that the energy characteristics of the spherical antenna can be controlled
in a fairly wide range by varying the impedance of the end-wall covering of the waveguide section. It
was found the wavelength tuning of the resonant antenna radiation is possible within (30–35)%. This
result proves the efficiency of the method for energy characteristics control of the spherical antenna.
The proposed mathematical model can be directly used in the antenna development and design.

APPENDIX A. MAGNETIC DYADIC GREEN’S FUNCTIONS FOR VARIOUS
ELECTRODYNAMIC VOLUMES

1. For a semi-infinite rectangular waveguide with perfectly conducting walls

Ĝm(~r, ~r ′) =
2π

ab

∑
m,n

εmεn

kz

{
(~ex ⊗ ~ex′)Φm

x

(
x, y; x′, y′

) [
e−kz |z−z′| + e−kz(z+z′)

]

+
(
~ey ⊗ ~ey′

)
Φm

y

(
x, y;x′, y′

) [
e−kz |z−z′| + e−kz(z+z′)

]

+ (~ez ⊗ ~ez′)Φm
z

(
x, y; x′, y′

) [
e−kz |z−z′| − e−kz(z+z′)

]}
. (A1)
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2. For a semi-infinite rectangular waveguide with impedance end in the case where impressed
sources are located on the end-wall surface

Ĝm
(
~r, ~r ′

)
=

2π

ab

∑
m,n

εmεn

kz

{
(~ex ⊗ ~ex′)Φm

x

(
x, y; x′, y′

)
fII

(
kz, Z̄S

)
2e−kzz

+
(
~ey ⊗ ~ey′

)
Φm

y

(
x, y; x′, y′

)
fII

(
kz, Z̄S

)
2e−kzz

}
, (A2)

where

fII

(
kz, Z̄S

)
=

kkz

(
1 + Z̄2

S

)
(
ik + kzZ̄S

) (
kZ̄S − ik

) .

The following notations are adopted in expressions (A1), (A2):

Φm
x

(
x, y;x′, y′

)
= sin kxx sin kxx′ cos kyy cos kyy

′,

Φm
y

(
x, y;x′, y′

)
= cos kxx cos kxx′ sin kyy sin kyy

′,

Φm
z

(
x, y;x′, y′

)
= cos kxx cos kxx′ cos kyy cos kyy

′,

εm,n =
{

1, m, n = 0
2, m, n 6= 0

, kx =
mπ

a
, ky =

nπ

b
, kz =

√
k2

x + k2
y − k2,

m and n are integers; Z̄S is the normalized surface impedance; ~ex, ~ey, and ~ez are the unit vectors of the
Cartesian coordinate system fixed to the waveguide; “⊗” stands for dyadic product.

3. For the space outside a perfectly conducting sphere of radius R [3, 9]

Ĝm
(
~r, ~r ′

)
=

(
~eθ ⊗ ~eϕ′

) ∞∑

n=0

n∑

m=0

mun (r, r′) sinm (ϕ− ϕ′)
n (n + 1)Cnm

×
[
dPm

n (cos θ)
dθ

× Pm
n (cos θ′)
sin θ′

+
Pm

n (cos θ)
sin θ

× dPm
n (cos θ′)

dθ′

]

−(~eϕ ⊗ ~e ϕ′)
∞∑

n=0

n∑

m=0

(2− δom) un (r, r′) cos m (ϕ− ϕ′)
2n (n + 1)Cnm sin θ sin θ′

×
[
m2Pm

n (cos θ) Pm
n

(
cos θ′

)
+ sin θ sin θ′

dPm
n (cos θ)

dθ
× dPm

n (cos θ)
dθ

]
, (A3)

where (~er, ~eθ, ~eϕ) are the unit vectors of the spherical coordinate system, Cnm = 2π(n+m)!
(2n+1)(n−m)! , un(r, r′) ={

kh
(2)
n (kr′)[h(2)

n (kr)Q̄n(yn(kR))− yn(kr)], R ≤ r < r′;
kh

(2)
n (kr)[h(2)

n (kr′)Q̄n(yn(kR))− yn(kr′)], r > r′,
Q̄n(y(kR)) = kRyn−1(kR)−nyn(kR)

kRh
(2)
n−1(kR)−nh

(2)
n (kR)

; Pm
n (cos θ)

is the associated Legendre function; h
(2)
n (kr) = jn(kr) − iyn(kr) =

√
π

2krH
(2)
n+1/2(kr) is the spher-

ical Bessel function of the second kind; jn(kr) =
√

π
2krJn+1/2(kr) is the spherical Bessel function;

yn(kr) =
√

π
2krNn+1/2(kr) is the spherical Neumann function; Jn+1/2(kr), Nn+1/2(kr) and Hn+1/2(kr)

are the Bessel, Neumann and Hankel function of half-integer indexes.
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