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Dyadic Point Spread Functions for 3D Inverse Source Imaging
Based on Analytical Integral Solutions

Georg Schnattinger* and Thomas F. Eibert

Abstract—Imaging is a valuable tool for solving inverse source problems. The achievable image quality
is determined by the imaging system. Its performance can be evaluated by using the concept of point
spread functions (PSFs). It is common to compute the PSFs using a numerical algorithm. However, in
some cases the PSFs can be derived analytically. In this work, new analytical PSFs are presented. The
results apply to scalar and dyadic scenarios in 3D originating from acoustics and electromagnetics. Data
sets with narrow angular acquisition or complete spherical coverage are considered, where broadband
and narrowband frequency domain data is supported. Several visualizations accompany the resulting
formulas. Finally, the analytical PSFs are verified using a numerical implementation of the imaging
process.

1. INTRODUCTION

Imaging is a well-known methodology which proved to be useful in many fields ranging from medical to
military applications. Since imaging problems can be computationally intensive, several fast algorithms
have been developed: Fourier-based techniques [1], hierarchical algorithms [2–4] and the backprojection
method [5] to name a few. The resulting images are influenced by many parameters such as frequency,
bandwidth and angular scan range. These influences can be characterized by employing the concept of
point spread functions (PSF). In [6], for example, the author presents scalar 2D PSFs for various data
acquisition parameters. In [7], scalar 3D PSFs are computed for several circular aperture configurations.
PSFs for specific scenarios in passive radar and medical imaging are presented in [8, 9]. In [10, 11],
analytical solutions are derived for a projection electron system and a Doppler radar. To characterize
the imaging procedure for solving a full vectorial inverse problem using the concept of PSFs, it is
necessary to define the PSFs in a dyadic fashion, cf. [12, 13]. In this work, scalar and dyadic PSFs
will be derived analytically for elementary acquisition geometries in the k-space domain. To the best
knowledge of the authors, the results presented in this work have not been published before with minor
exceptions [12–15], which are clearly indicated in the text.

Section 2 introduces two different imaging scenarios to identify the mathematical expressions for
the derivation of the PSF. The first expression leads to a scalar PSF whereas the second expression
results in a dyadic PSF. Analytical results for both cases are derived in Section 3. To validate the
analytical results, numerical computations have been carried out in Section 4. Finally, some conclusions
are drawn in Section 5.

2. INVERSE SOURCE SCENARIOS

In this section, both a scalar and a dyadic PSF will be defined in two steps. First, two linear inverse
source problems will be introduced and then, imaging concepts are employed to solve them. In this
way, the resulting images correspond to a convolution between PSF and source distribution.
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2.1. Acoustic or Scalar Imaging

A scalar inverse source problem is for example encountered in optoacoustics [16], where acoustic waves
are caused by the absorption of optical energy. Acoustic pressure waves are solutions of the scalar wave
equation [16]

(
∆− 1

c2

∂2

∂t2

)
ρ(r, t) =

∂

∂t
h(r, t), (1)

where ρ is the pressure depending on the position r and the time t, c is the propagation velocity in
the background medium and h is the amount of energy absorbed per unit volume and per unit time.
Since the optical propagation velocity by far exceeds the acoustic propgation velocity, it is valid to set
h(r) = q(r)δ(t). Transforming (1) to the frequency domain utilizing this substitution yields

(
∆ + k2

)
ρ(r, ω) = jωq(r), (2)

where k = ω/c is the wavenumber and ω is the angular frequency. By employing the concept of Green’s
functions [17, S. 851], the solution to this time-harmonic differential equation can be written as

ρ(r, ω) = −jω

4π

∫∫∫

V ′

q
(
r′

) e−jk||r−r′||22
||r− r′||22

d3r′. (3)

This function describes the linear relationship between the source and its radiated pressure waves. An
image of the source distribution shall be generated based on observations surrounding the source. The
conventional way of imaging is a 3D Fourier transform in the k-space domain reading as

q̂(r) =
∫∫∫

K

ρFF(k)e−jk·rd3k = F{MK(k)ρFF(k)}, (4)

where

ρFF(k) = − 4π

jck
lim

r′→∞
r′

e−jkr′ ρ
(
r′k̂, ck

)
=

∫∫∫

V ′

q
(
r′

)
ejk·r′d3r′. (5)

is referred to as the normalized far-field spectrum of the source.
Depending on the amount of data available, the generated image might look differently. This is

incorporated by the integration volume K, which corresponds to the locations of the observations in
the k-space domain. The masking function MK represents this information loss within the Fourier
transform denoted by the letter F .

Inserting (5) into (4) and changing the order of the volume integrals results in

q̂ (r) =
∫∫∫

V ′

∫∫∫

K

e−jk·(r−r′)d3kq
(
r′

)
d3r′ = P (r) ∗ q(r). (6)

Thus, the image corresponds to a convolution between the PSF

P (r) =
∫∫∫

K

e−jk·rd3k = F{MK(k)} (7)

and the source distribution q.

2.2. Full Vectorial Imaging

In the second scenario, this formulation is extended to a full vectorial inverse source problem. The
source is a vectorial frequency invariant electric current distribution and the observations are performed
using the radiated electric field [12, 13]. In this case, the radiation is described by the curl-curl equation
of the electric field which reads as [18, S. 465]

∇×∇×E(r, ω)− k2E(r, ω) = −jωµJ(r), (8)
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where E is the electric field, µ is the magnetic permeability and J is the electric current density. By
employing the same concepts as in the scalar case, it is possible to derive the normalized plane wave
spectrum

EFF(k) =
(
Ī− k̂k̂

)
·
∫∫∫

V ′

J
(
r′

)
ejk·r′d3r′. (9)

As can be seen from (5), it differs, because it features the additional factor Ī− k̂k̂ and it is based on a
vectorial integral. When computed by a vectorial Fourier transform, the image

Ĵ(r) = F{MK(k)EFF(k)} (10)
corresponds to the minimum energy solution according to [13] and therefore represents the radiating
currents of the source. Analogously to (6), the expression is reformulated as a convolution. Thus, the
image depends on the source distribution through

Ĵ(r) = P̄(r) ∗◦ J(r), (11)

where ∗◦ denotes a scalar product where the resulting multiplicative expressions are replaced by
convolutions. The associated dyadic PSF reads as

P̄(r) = F
{

MK(k)
(
Ī− k̂k̂

)}
= P (r)Ī−F

{
MK(k)k̂k̂

}
, (12)

where P (r) refers to the corresponding scalar PSF in (7).

3. POINT SPREAD FUNCTION

An important property of the Fourier transform is its rotational invariance [19, pp. 28]. Applying this
principle to the scalar PSF in (7) results in

P (Rr) = F{M(Rk)}, (13)

where R ∈ R3×3 is a rotation matrix. So, a rotation in the k-space domain implies a similar rotation
in the spatial domain. Thus, performing the Fourier transform for any rotated version of a specific
masking function M(k) is sufficient to calculate the PSF. In case of the dyadic PSF from (12), the
rotational invariance principle reads as

P̄(Rr) = F
{

M(Rk)
(
Ī−Rk̂Rk̂

)}
. (14)

Therefore, the dyadic reference coordinate system must also be rotated appropriately.

3.1. Narrow Angle Narrow Bandwidth Approximation

In many scenarios, measurement data is only acquired in a small angular sector and with small relative
bandwidth, i.e., consider radar measurements of an airborne target from a ground platform. This effect
of filling only a small portion of the k-space with data will be modeled by the masking function

M(k) =
{

1, k ∈ K

0, k /∈ K
, (15)

where the k-space domain K is defined as

k = k

(cosφ sin θ
sinφ sin θ

cos θ

)
∈ K ⇐⇒

2|φ− φ0| ≤ ∆φ

2|θ − θ0| ≤ ∆θ

2|k − k0| ≤ ∆k

. (16)

Since the k-space data is limited to a narrow angle narrow bandwidth volume, the variables ∆φ, ∆θ
and ∆k are assumed to be small. Due to the rotational invariance principle in (13), the aspect angles
φ0, θ0 and the center wavenumber k0 can be chosen arbitrarily. In [12], results are derived for θ0 = π/2
and φ0 = 0. This choice is adopted in the following and implies that the line of sight is aligned with
the x-axis.
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3.1.1. Scalar

The spherical integral resulting from (7) and (15) reads as
∫ ∆k

2

−∆k
2

∫ ∆φ
2

−∆φ
2

∫ ∆θ
2

−∆θ
2

e−jk·rk · k sin θdθdφdk. (17)

By approximating both the prefactor of the exponential and its exponent using a multivariate Taylor
series of absolute order one around φ0, θ0 and k0, the integral can be solved analytically and results in

P (r) = F{M(k)} =k2
0∆φ∆θ∆ke−jk0xg1(∆k, r, k0), (18)

where

g1(∆k, r, k0) = si
(

∆φk0y

2

)
si

(
∆θk0z

2

)[(
1− j2

k0x

)
si

(
∆kx

2

)
+

j2
k0x

cos
(

∆kx

2

)]
(19)

with

si(x) =
sinx

x
. (20)

As it turns out, the resolution is determined by the width of the si-function. Therefore, the resolution in
x-direction mostly depends on the bandwidth ∆k. In contrast to this, the resolution in y and z-direction
only depends on the center frequency through k0 and not on the bandwidth. In order to visualize the
PSF, a scenario has been created which consists of three isotropic point sources located at

r1

λmin
=

(2.4
2.7
0

)
,

r2

λmin
=

(−2.7
−2.7
2.4

)
,

r3

λmin
=

( 0
0

−2.4

)
. (21)

Figure 1 has been computed by convolving the point spread function in (18) with these point scatterers.
The 3D complex-valued images are visualized by projecting the maximum amplitudes onto the faces of
a cube. The resolution with respect to each of the Cartesian coordinates is determined by ∆φ = π

3 ,
∆θ = π

4 , k = 2π and ∆k = 2π.

Figure 1. Image of scatterers in (21) for the k-space acquisition geometry in (16) generated using (18)
for ∆φ = π

3 , ∆θ = π
4 , λmax = 2 m and λmin = 1 m while x, y and z are measured in wavelengths (λmin).

As already mentioned, the solution in (18) is based on a first order Taylor expansion of the prefactor
and the exponent of the integrand in (17). More accurate approximations of the integral can be derived
using higher order Taylor expansions. This leads to more complicated integrals and unfortunately
their solution is tedious. However, computer algebra systems can be of assistance. In this work,
MuPAD [20], which is distributed as a MATLAB [21] toolbox, was employed. A multivariate Taylor
expansion is performed by specifying the absolute order n and weighting coefficients wk, wφ, wθ. A
higher weight reduces the order of the expansion with respect to the selected variable. In Table 1, a
collection of parameter sets is presented for which MuPAD can solve the approximated integral in (17)
analytically. The parameter set in the second row matches the assumptions for (18). All solutions
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Table 1. Heuristic complexity estimation (evaluated with MuPAD) of analytical solution of integral
in (17) approximated by expansion of prefactor and exponent in integrand utilizing multivariate Taylor
series expansion with absolute order n and weighting cofficients wk, wf , wθ.

Prefactor Exponent Absolute Scalar
n [wk, wφ, wθ] n [wk, wφ, wθ] Heuristic Complexity

1 [2, 1, 1] 1 [1, 1, 1] 46
1 [1, 1, 1] 1 [1, 1, 1] 87
1 [1, 1, 1] 2 [2, 1, 1] 258
2 [1, 1, 1] 1 [1, 1, 1] 468
3 [1, 1, 1] 1 [1, 1, 1] 706
4 [1, 1, 1] 1 [1, 1, 1] 2232
2 [1, 1, 1] 2 [2, 1, 1] 2370
3 [1, 1, 1] 2 [2, 1, 1] 4623

below this row are of increasing complexity and therefore are not printed here. Instead, the table shows
a quantitative measure for the heuristic complexity which was computed with the MuPAD command
length. Additionally, the unhandy expressions can be used for simulations by employing automatic code
generation. In the cases where the Taylor expansion of the exponent reaches an absolute order of n = 2,
the solutions also rely on the error function

erf(x) =
2√
π

∫ x

0
e−t2dt (22)

and its extension to the complete complex plane. Thus, an efficient implementation of this function is
required by the generated program code.

3.1.2. Dyadic

By applying similar techniques as in the scalar case to the dyadic integral
∫ ∆k

2

−∆k
2

∫ ∆φ
2

−∆φ
2

∫ ∆θ
2

−∆θ
2

e−jk·r (
k · kĪ− kk

)
sin θdθdφdk (23)

resulting from (12) and (15), the solution can be written as

P̄(r) = k2
0∆φ∆θ∆ke−jk0x

( 0 g2(∆k, r, k0) g3(∆k, r, k0)
g2(∆k, r, k0) g1(∆k, r, k0) 0
g3(∆k, r, k0) 0 g1(∆k, r, k0)

)
, (24)

where g1(∆k, r, k0) is given in (19) and

g2(∆k, r, k0) =
j

k0y
si

(
∆kx

2

)
si

(
∆θk0z

2

)[
si

(
∆φk0y

2

)
− cos

(
∆φk0y

2

)]
, (25)

g3(∆k, r, k0) =
j

k0z
si

(
∆kx

2

)
si

(
∆φk0y

2

)[
si

(
∆θk0z

2

)
− cos

(
∆θk0z

2

)]
. (26)

As expected, Eq. (24) depends on the scalar PSF. In fact, the resulting image is quite similar to the
dyadic PSF, but there are some interactions between the different vectorial components. In order to
be able to compute an image from the sources in (21), the orientation of the currents must be defined.
This is done by assigning

j1 = I0ex, j2 = I0ey, j3 = I0ez, (27)

where I0 is a unit current density.
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Figure 2 was computed by convolving the dyadic PSF with these point sources using (11). Note that
the ex-oriented current cannot be recognized properly, because it is perpendicular to the measurement
aperture. Additionally, the dyadic formulation introduces polarization errors which limit the dynamic
range of the imaging process.

Similar to the scalar case, the accuracy of the narrow angle narrow bandwidth approximation
can be increased by employing higher order Taylor expansions. Feasible solutions of dyadic integral
approximations and their heuristic complexities are presented in Table 2 for the same parameter sets
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Figure 2. Image of currents positioned as in (21) and oriented as in (27) for the k-space acquisition
geometry in (16) generated using (24) for ∆φ = π

3 , ∆θ = π
4 , λmax = 2 m and λmin = 1 m while x, y and

z are measured in wavelengths (λmin).

Table 2. Heuristic complexity estimation (evaluated with MuPAD) of analytical solution of integral
in (23) approximated by expansion of prefactor and exponent in integrand utilizing multivariate Taylor
series expansion with absolute order n and weighting cofficients wk, wf , wθ.

Prefactor Exponent Heuristic Complexity
n [wk, wφ, wθ] n [wk, wφ, wθ] Abs. Dyadic Rel. to Scalar

1 [2, 1, 1] 1 [1, 1, 1] 375 8.10
1 [1, 1, 1] 1 [1, 1, 1] 457 5.25
1 [1, 1, 1] 2 [2, 1, 1] 2165 8.39
2 [1, 1, 1] 1 [1, 1, 1] 2234 4.77
3 [1, 1, 1] 1 [1, 1, 1] 14860 21.1
2 [1, 1, 1] 2 [2, 1, 1] 16548 6.98
4 [1, 1, 1] 1 [1, 1, 1] 56160 25.2
3 [1, 1, 1] 2 [2, 1, 1] 69688 20.9
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as in Table 1. In addition, the ratio between the heuristic complexities of the dyadic and the scalar
solutions is computed. A growth factor of about 9 is roughly expected, because the dyad has nine entries
and all of them are integrated. The parameter sets in the bottom rows of the table lead to solutions
which grow faster than their scalar versions. Two parameter sets represent special solutions. The first
row in the table corresponds to the solution in [12]. The second row exactly matches the assumptions
for (24). Furthermore, the approximation errors induced by the solutions in rows 2, 3 and 8 for a specific
test scenario are compared in Section 4.

3.2. Narrow Angle Finite Bandwidth Approximation

Since broadband imaging systems are getting more and more popular, it is desirable to have a PSF
which is valid for large relative bandwidths. This can be modeled by replacing the constraint on k
in (16) by

kmin ≤ k ≤ kmax. (28)
In this case, a first order Taylor expansion of the integrand in (17) and (23) is only carried out with
respect to the angles φ and θ but not for the wavenumber as in the last subsection.

3.2.1. Scalar

Solving (7) while using the narrow angle assumption leads to

P (r) =

[
k

yz
FE(•)(∆φy, ∆θz, k, r)

]kmax

kmin

(29)

where

FE(•)(a, b, k, r) = −E

(
j
k

2
(−2x + a + b)

)
−E

(
j
k

2
(−2x− a− b)

)

+E

(
j
k

2
(−2x + a− b)

)
+ E

(
j
k

2
(−2x− a + b)

)
(30)

with E denoting the exponential function

E(x) =
ex

x
. (31)

Applying this PSF to the point sources in (21) yields the plot in Fig. 3. When comparing this plot
to Fig. 1, where the narrow bandwidth approximation in (18) was applied for the same parameters,
the approximation error becomes obvious. Note that better results can be obtained with the
narrow bandwidth approximation by dividing the k-space data into narrow frequency bands and then
superimposing the images obtained with the narrow bandwidth PSF.

Figure 3. Image of scatterers in (21) for the k-space acquisition geometry in (16) altered by (28)
generated using (29) for ∆φ = π

3 , ∆θ = π
4 , λmax = 2 m and λmin = 1 m while x, y and z are measured

in wavelengths (λmin).
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3.2.2. Dyadic

Solving the dyadic integral in (12) while using the narrow angle assumption yields

P̄(r) =




0 P2(r) P3(r)
P2(r) P (r) 0
P3(r) 0 P (r)


 , (32)

where P (r) is the scalar PSF in (29) and

P2(r) =

[
∆φk

2yz
GE(•)(∆φy, ∆θz, k, r) +

j

y2z
FEi(•)(∆φy, ∆θz, k, r)

]kmax

kmin

, (33)

P3(r) =

[
∆θk

2yz
GE(•)(∆θz, ∆φy, k, r) +

j

yz2
FEi(•)(∆θz, ∆φy, k, r)

]kmax

kmin

. (34)

The expression FEi(•) refers to the definition in (30) with E being replaced by the exponential integral
function

Ei(x) =
∫ x

−∞

et

t
dt (35)

and the expression GE(•) corresponds to

GE(•)(a, b, k, r) = −E
(

j
k

2
(−2x + a + b)

)
+ E

(
j
k

2
(−2x− a− b)

)

+E
(

j
k

2
(−2x + a− b)

)
− E

(
j
k

2
(−2x− a + b)

)
(36)

in conjunction with the exponential function in (31). The dyadic PSF is not a closed-form expression,
because it depends on the exponential integral function in (35). Still, the expression can be evaluated
conveniently using mathematics software. In MATLAB, a function with a very similar definition is
called expint. Fig. 4 shows the resulting 3D images for the vectorial components using the scenario
in (21) oriented as in (27).

3.3. Full Scan Range Zero Bandwidth Approximation

In some applications, the imaging systems only acquire data for a single frequency or for a limited
number of frequencies. In this case, a proper image is only obtained when a wide angular scan range
is used. In this section, it is assumed that measurement data is available for the complete sphere and
therefore, the masking function is chosen as

M(k) = w(k) ∝ δ(k − k0) (37)

and normalized according to
∫∫∫

K

w(k)d3k = 1 =⇒ w(k) =
δ(k − k0)

k2
. (38)

3.3.1. Scalar

The PSF is derived by solving (7) while using (37). The familiar result which is also given in [13] reads
as

P (r) = F{w(k)} = 4πsi(k0r). (39)

Figure 5 shows an image generated with this PSF while the wavelength equals λ = 1 m. The image
depicts the three point sources in (21). The points are clearly visible in the image, but the dynamic
range of the image is poor.
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Figure 4. Image of currents positioned as in (21) and oriented as in (27) for the k-space acquisition
geometry in (16) generated using (32) for ∆φ = π

3 , ∆θ = π
4 , λmax = 2 m and λmin = 1 m while x, y and

z are measured in wavelengths (λmin).

Figure 5. Image of scatterers in (21) for a monofrequent spherical k-space acquisition geometry
generated using (39) for λ = 1m while x, y and z are measured in wavelengths (λ).

3.3.2. Dyadic

For the derivation of the PSF, the second term of the dyadic integral in (12) using (37) is solved first.
The expression can be split into two parts by

F
{

w(k)k̂k̂
}

= F{w(k)} ∗F
{

k̂k̂
}

. (40)

Prior to the evaluation of the Fourier expression F{k̂k̂}, its symmetry will be analyzed. First of all,
the vectors r and k are defined in spherical coordinates:

r = r

[cosΦ sin Θ
sinΦ sinΘ

cosΘ

]
, k = k

[cosφ sin θ
sinφ sin θ

cos θ

]
. (41)
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Then, the dyadic expression F{k̂k̂} is rewritten in a matrix representation utilizing spherical vector
components:

q(r) = F
{[

k̂k̂
]
Θ̂,Φ̂,r̂

}
= F








Θ̂ · k̂k̂ · Θ̂ Θ̂ · k̂k̂ · Φ̂ Θ̂ · k̂k̂ · r̂
Φ̂ · k̂k̂ · Θ̂ Φ̂ · k̂k̂ · Φ̂ Φ̂ · k̂k̂ · r̂
r̂ · k̂k̂ · Θ̂ r̂ · k̂k̂ · Φ̂ r̂ · k̂k̂ · r̂






 . (42)

Due to the rotational invariance of the Fourier transform, it is possible to perform the following
substitutions:

r = Rr′, k = Rk′, (43)

Θ̂ = RΘ̂′, θ̂ = Rθ̂′, (44)

Φ̂ = RΦ̂′, φ̂ = Rφ̂′, (45)

r̂ = Rr̂′, k̂ = Rk̂′. (46)

By simplifying the resulting expression, it can be shown that†

q(Rr′) = q(r′) =⇒ q(r) = q(rez). (47)

Thus, the evaluation of the Fourier transform F{k̂k̂} for all r in the whole spatial domain can be
reduced to an evaluation of the Fourier transform on the line segment rez combined with an evaluation
of the spherical unit vectors in the whole spatial domain:

F
{

k̂k̂
}

=




Θ̂
Φ̂
r̂




T

F
{[

k̂k̂
]
ex,ey,ez

}∣∣∣
rez




Θ̂
Φ̂
r̂


 . (48)

The dyad k̂k̂ in Cartesian components reads as

[
k̂k̂

]
ex,ey ,ez

=




cos2 φ sin2 θ cosφ sinφ sin2 θ cosφ sin θ cos θ
cosφ sinφ sin2 θ sin2 φ sin2 θ sinφ sin θ cos θ
cosφ sin θ cos θ sinφ sin θ cos θ cos2 θ


 . (49)

With these results, the analytical result of the Fourier transform in (40) can be derived as

F
{

w(k)
[
k̂k̂

]
ex,ey,ez

}∣∣∣
r=rez

=
4π

(k0r)3
[
(sin(k0r)− k0r cos(k0r))(exex + eyey) + ((k2

0r
2 − 2) sin(k0r) + 2k0r cos(k0r))ezez

]

=
4π

(2πk0r)3
[
(sin(k0r)− k0r cos(k0r))Ī +

((
k2

0r
2 − 3

)
sin(k0r) + 3k0r cos(k0r)

)
ezez

]
. (50)

Due to (48), the Cartesian components ex, ey and ez can be replaced by Θ̂, Φ̂ and r̂, respectively. Thus,
the function can be evaluated in the whole spatial domain. Inserting this expression into (12) together
with (39) yields

P̄(r) =
4π

(k0r)3
[ ((

k2
0r

2 − 1
)
sin(k0r) + k0r cos(k0r)

)
Ī +

((
3− k2

0r
2
)
sin(k0r)− 3k0r cos(k0r)

)
r̂r̂

]
. (51)

Figure 6 shows the PSF using the scenario from (21) and (27). Although some polarimetric distortions
are visible in the images, the orientation of the sources can be recognized. The PSF consists of two
dyadic parts. The part containing the unit dyad is not causing any polarimetric defects in contrast to
the part containing the dyad r̂r̂. From

lim
r→0

P̄(r) = 4π
2
3
Ī, (52)

it follows that there is no polarimetric error in the center of the PSF for r → 0. Since the amplitude of
the PSF decreases with 1/r, the polarimetric error is localized around the sources.
† Note that this is only valid, because the dyad entries are represented using spherical unit vectors.
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Figure 6. Image of currents positioned as in (21) and oriented as in (27) for a monofrequent spherical
k-space acquisition geometry generated using (51) for λ = 1 m while x, y and z are measured in
wavelengths (λ).

3.4. Full Scan Range Finite Bandwidth Approximation

The solution in the last subsection can be extended to finite bandwidth. When it comes to broadband
data, however, windowing is very common. For this purpose, the masking function is chosen as

M(k) = Wn(k) = k−n

{
1 kmin ≤ k ≤ kmax

0 otherwise
, (53)

which incorporates the basic frequency weighting factor k−n. This frequency weighting function has a
kind of lowpass characteristic and it allows the PSF to be evaluated analytically.

3.4.1. Scalar

Solving (7) with (53) yields

P (r) = F{Wn(k)} = 4πrn−3
[
h1(r)

]kmax

kmin

, (54)

where

h1(r) =





sin(kr)− kr cos(kr), n = 0
− cos(kr), n = 1
Si(kr), n = 2

(55)

and the sine integral function is defined as

Si(x) =
∫ x

0

sin t

t
dt. (56)
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Figure 7. Normalized point spread function
F{W0(k)} plotted dependent on the radial
distance r in wavelengths λmin for various
bandwidths BW = 1 − λmin
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. BW = 0%

corresponds to Eq. (39).
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Figure 8. Point spread function F{Wn(k)}
plotted dependent on the radial distance r
in wavelengths λmin for the frequency window
function exponents n = 0, 1, 2 while BW =
1− λmin

λmax
= 100%.

The formula for n = 0 can also be found in [13, 14] and [15, p. 324]. The result for n = 2 can be shown
to be identical to the PSF in (37) using

w(k) = lim
∆k→0

1
∆k

W2(k) with
kmax = k0 + ∆k,

kmin = k0.
(57)

The center value of the PSF depends on the bandwidth according to

lim
r→0

F{Wn(k)} = 4π
1

3− n

[
k3−n

]kmax

kmin

. (58)

Figure 7 shows how the bandwidth influences the shape of the PSF when the maximum frequency
remains constant. Increasing the bandwidth decreases the sidelobes, but it also broadens the main lobe
which is bad for the resolution. Fig. 8 illustrates the effect of windowing. As the parameter n increases,
the sidelobe level decreases at the cost of a diminishing resolution. In this plot, the complete frequency
band down to zero was used. An overview of these phenomena is given in Fig. 9. For comparison, a 3D
plot is depicted in Fig. 10.

3.4.2. Dyadic

By applying similar techniques as in the scalar case to the dyadic integral in (12), the second term
resolves to

F
{

Wn(k)k̂k̂
}

=
4π

r3
n−

n
2 k−n

[
h2(r)Ī + h3(r)r̂r̂

]kmax

kmin

, (59)

where

h2(r) =





Si(kr)− sin(kr), n = 0
(− sin(kr)), n = 1
k2r2Si(kr)− sin(kr) + kr cos(kr), n = 2,
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Figure 9. z-cuts of normalized point spread function F{Wn(k)} in (54) plotted in x, y-plane where
the unit is scaled by λmin for various frequency window function exponents n = 0, 1, 2 and bandwidths,
i.e., BW = 1− λmin

λmax
.

Figure 10. Image of scatterers in (21) for a broadband spherical k-space acquisition geometry generated
using (54) for λmax = 2m and λmin = 1 m while x, y and z are measured in wavelengths (λmin).

h3(r) =




−3Si(kr) + 4 sin(kr)− kr cos(kr), n = 0
3 sin(kr)− kr cos(kr), n = 1
−k2r2Si(kr) + 3 sin(kr)− 3kr cos(kr), n = 2.

The PSF is obtained by combining this with the scalar result in (55). This leads to

P̄(r) =
4π

r3
n−

n
2 k−n

[
(h1(r)− h2(r))Ī− h3(r)r̂r̂

]kmax

kmin

(60)

with

h1(r)− h2(r) =




−Si(kr) + 2 sin(kr)− kr cos(kr), n = 0
sin(kr)− kr cos kr, n = 1
k2r2Si(kr)− kr cos(kr) + sin(kr), n = 2.

(61)

The center value of the PSF follows from a limit calculation and reads as

lim
r→0

P̄(r) = 4π
1

3− n

2
3
Ī
[
k3−n

]kmax

kmin

. (62)
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Figure 11. Image of currents positioned as in (21) and oriented as in (27) for a broadband spherical
k-space acquisition geometry generated using (60) for n = 0, λmax = 2 m and λmin = 1 m while x, y and
z are measured in wavelengths (λmin).

Again the polarimetric distortions are vanishing in the center. Fig. 11 shows the PSF for n = 0 using
the well-known scenario from (21) and (27). In contrast to Fig. 6, the dynamic range has been increased
drastically.

4. NUMERICAL VERIFICATION

In this section, the analytical PSFs derived in the previous section are verified using a numerical
implementation of the imaging procedure in the k-space domain. The k-space is sampled using a
Gauss-Legendre sampling grid for the angular sampling and an equidistant sampling grid in the radial
direction. The sampling resolution depends on the electrical size of the imaging region. Details for the
appropriate implementation of the imaging algorithm can be found in [13].

Since scalar PSFs are related to dyadic PSFs, it is sufficient to verify the results obtained with
the latter ones. The dyadic PSF in Section 3.3 was already verified via (57). Therefore, it remains to
investigate the accuracy of the PSFs in Section 3.1 and Section 3.2 based on narrow angle approximations
and of the dyadic PSF in Section 3.4.

4.1. Narrow Angular Scan Range

To verify the PSFs in (24) and (32) based on a narrow angle approximation, the scenario described
in (21) is used. The k-space acquisition domain is described by

|θ − π/2| ≤ π/256, |φ− π/6| ≤ π/128,
λ

1m
∈ [1.0; 2.0]. (63)

The full vectorial currents in the image are evaluated on the line
x

λmin
= −3, . . . , 3,

y

λmin
= 2,

z

λmin
= 2. (64)
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Figure 12. Comparison of images generated
numerically and by PSFs in (24) and (32) using
the currents described in (21) and evaluated on
the line described by (64) with the parameters
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Figure 13. Comparison of images generated
numerically and by PSFs in Table 2 using the
currents described in (21) and evaluated on the
line described by (64) with the parameters in (65).

Since the dyadic PSFs in (24) and (32) employ an approximation which is only accurate for very small
aspect angles, it is inadequate to use the PSFs to compute a reference solution. Instead, a very accurate
numerical solution is used as a reference. The high accuracy is achieved by using a k-space oversampling
factor of 10. This solution is depicted in Fig. 12 by the solid line. The two other lines are error levels
indicating the complex vectorial difference to the solid reference solution. The dashed line corresponds
to the error level of the PSF in (24). As can be seen, the accuracy seems to be reasonably good. Since
numerical and analytical techniques have been combined here, this is referred to as mixed solution in the
plot. The third curve depicts the error level of the PSF in (32). The remaining error level is identified
as an implication of the narrow angle approximations of the PSFs.

In this paragraph, the performance of the PSFs in Table 2 shall be analyzed. The angular scan
range is increased and the bandwidth is reduced as given by

|θ − π/2| ≤ π/5, |φ− π/6| ≤ π/4,
λ

1m
∈ [1.0; 1.1]. (65)

Figure 13 depicts the error curves for the PSFs corresponding to the rows 2, 3 and 8 of Table 2.
Obviously, a more sophisticated approximation reduces the error. The parameter set from the third
row of the table produces already quite good results. This implies that the expansion order of the
exponent seems to be more important than the expansion order of the prefactor.

4.2. Full Scan Range

For the verification of the PSF in Section 3.4, it makes sense to use the analytical solution as a
reference, because no approximations could possibly corrupt the reference solution in this case. The
source configuration and observation line remains unchanged. The k-space acquisition domain is defined
in (63). The solid curve in Fig. 14 corresponds to the analytical reference solution in (60). The two other
curves are error curves which show the absolute value of the complex difference between the numerical
solutions and the reference. The individual lines were obtained by setting the oversampling factor to
2 and 4, respectively. By increasing the oversampling factor and thus the accuracy of the numerical
algorithm, the error decreases. So the analytical PSF is able to predict the images very accurately.
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Figure 14. Comparison of images generated numerically and by PSFs in (60) using the currents
described in (21) and evaluated on the line described by (64).

5. CONCLUSION

In the beginning of this work, two imaging scenarios were presented, where the imaging process has
been described by the convolution with a so-called point spread function (PSF). In these scenarios,
computing the PSF means to calculate a 3D Fourier integral. This can be done analytically in some
cases. In this work, a collection of new formulas was derived with the assistance of a computer algebra
system. A numerical imaging algorithm was employed to verify the formulas. The results in this work
are expected to be useful for the simulation of broadband vectorial imaging systems and for the fast
generation of images by ray based algorithms.
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