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An Efficient Fixed Rate Transmission Scheme over
Delay-Constrained Wireless Fading Channels
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Abstract—In this paper, we study the scheduler design over delay-constrained wireless communication
links. Following a cross-layer design approach, the wireless system is modeled as a joint link-PHY layer
architecture with a finite-length buffer and continuous-state fading links. A heuristic and efficient fixed
rate transmission scheduler (FRT) scheme is proposed. We formulate and analyze the performance of the
FRT scheme in terms of power efficiency and packet drop rate. Compared with variable rate schemes,
the FRT scheme can considerably simplify the hardware implementation of the transmitter. In addition,
the optimization of the FRT scheme can be conducted with significantly reduced computational cost by
utilizing the sparse feature of the transition probability matrix. Moreover, the simulation results show
that, the optimized average transmit power of the FRT scheme is only 0.5 dB higher than the known
optimal variable rate scheme at the packet drop rate of 10−3, indicating that the FRT scheme is quite
power efficient as well. Therefore, we conclude that the FRT scheme is more feasible than variable rate
schemes in practical delay-constrained wireless systems with regard to both hardware cost and power
efficiency.

1. INTRODUCTION

Real-time applications, such as voice over IP and streaming multimedia, will become a dominant part of
services provided in the mobile wireless networks. To promote such applications, high level of quality of
services should be guaranteed. This poses great challenges in designing the schedulers since the status
of wireless links varies from time to time. On the one hand, the schedulers are tasked to ensure most
of data packets arrive before the delay bound is violated. On the other hand, the power budget of each
link should also be scrutinized due to the limited battery capacity of mobile devices [1].

In consideration of both the delay and power constraints, a cross-layer system model, termed as
link-PHY model has been proposed and employed in wireless systems [2–4]. This model takes into
account the mismatch between the arrival rate of the data from the upper layer and the departure
rate of the data to the physical layer. A buffer is placed at the link layer to coordinate the arrived
data packets, and a scheduler is in charge of controlling the data departure according to the buffered
data length and the channel state information (CSI) [3]. In the literature, numerous previous works
studied the scheduler design problems in link-PHY models with various channel fading assumptions [2–
4], performance measures [5, 6] and multiple antennas [8–10]. However, most of these works assume the
buffer is with infinite length which is invalid in practice.

In this paper, we investigate the scheduler design for the link-PHY model with a finite-length buffer
and continuous fading channels. The theoretically optimal scheduler for this model was studied in [7],
where the proposed joint queue length aware scheduler scheme (JQLA) was a variable rate transmission
scheme. Nonetheless, the high computational complexity of JQLA scheme poses a challenge to its
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implementation in practical systems. In this work, we propose to adopt the fixed rate scheduler scheme
(FRT) to achieve a more efficient complexity-performance tradeoff, thus enabling the techniques more
feasible in practical systems. The idea of promoting the FRT scheme is motivated by its reduced
hardware requirements in a twofold manner. Firstly, with fixed coding rate the implementations of
both the channel coding/modulation (CCM) and channel decoding/demodulation (CDD) modules can
be significantly simplified. Secondly, since only one rate is selectable, the channel strength is naturally
quantized to be 0 or 1. Therefore, the amount of CSI fed back to transmitter can be reduced. We
formulate and optimize the performance of FRT scheme as well as comparing it with the JQLA scheme
to study its performance efficiency.

This paper is organized as follows. In Section 2, the link-PHY system model is presented. We
formulate and optimize the performance of the FRT scheme in Section 3. Simulation results and
discussion are given in Section 4. Finally, we conclude the paper in Section 5.

2. SYSTEM MODEL

We consider a point-to-point communication scenario. The overall system diagram is illustrated in
Figure 1, where solid arrows and dashed arrows represent data flows and parameter control flows
respectively. The wireless channel is assumed to be with flat slow fading. The discrete-time model
of the received signal in the n-th channel block, y(n), is given by

y(n) =
√

g(n)x(n) + w(n), (1)

where x(n) denotes the transmitted signal, g(n) the channel strength and w(n) the additive white noise.
The channel strength g follows a continuous-state distribution with respect to n. The probability density
function and cumulative density function of the channel strength are denoted by fCH (g) and FCH (g)
respectively. w(n) is normally distributed with zero mean and unit variance.

The transmitter consists of three parts: the link layer, physical layer and the resource
scheduler [3, 7, 10]. At the link layer, we assume the data source is stable and data packets arrive
at a constant rate of λ packets per channel. A link buffer modeled as a discrete-time finite-length
queue with size M packets, is in place to store the arrived packets and coordinate them to the physical
layer at the rate of S(n) packets per channel. S(n) is determined by the resource scheduler (see the
dashed arrow attached with S(n)). On the other hand, the link buffer feds the occupied queue length
q(n) to the scheduler. If the buffer is fully occupied, the excess head-of-line packets are dropped. To
avoid transmitting outdated packets, we can set the buffer length M = λ(Dmax −Dc) where Dc is the
channel encoding/decoding delay and Dmax the delay bound. Thereby, the packet drop rate and the
delay bound violation probability are equivalent [7].
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Figure 1. The link-PHY system model [3].
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The update of the queue length q(n) is shown in Figure 2 [7]. In the n-th channel block, after the
arrival of new packets, the number of dropped packets is

d(n) = max(0, q(n) + λ−M). (2)

After the departure of S(n) packets, the queue length is updated as

q(n + 1) = max(0, min(M, q(n) + λ)− S(n)). (3)

The sequence of q(n) forms a homogeneous, irreducible, and aperiodic Markov chain, and S(n)
determines the steady state distribution of q(n) which in turn determines the packets drop rate and
average transmit power.

At the physical layer, the information bits sequence is encoded by the CCM module. We assume
ideal channel coding in CCM module and denote the transmit information rate by r(n). To guarantee
S(n) packets sent out during the channel block, r(n) should satisfy

⌊
WT

L
r(n)

⌋
≥ S(n), (4)

where T is the duration of transmission in sec, W the allocated channel bandwidth in Hz, and L
the number of information bits in one packet. According to Shannon’s capacity formula, the required
transmit power P (n) is given by

P (n) =
2r(n) − 1

g(n)
, (5)

to ensure full recovery of the transmitted information at the CDD module. In each channel block, the
estimated present CSI is fed back to the transmitter. With the received q(n) and CSI, the scheduler
continuously updates S(n), r(n) and P (n).

3. FIXED RATE TRANSMISSION SCHEME

For the system presented above, we study the FRT scheduler scheme where the resource scheduler takes
the value of r(n) from {r, 0} for each channel block, i.e., CCM either encodes and transmits data at
fixed rate r or keeps silent. The choice between transmit and not transmit is based on the present
CSI and buffer status. Compared to variable rate schemes, the FRT scheme can be translated into a
simpler and more implementable CCM and CDD hardware at the cost of some performance loss. In
the following sections, we will show this performance loss of the FRT scheme is trivial in cases.

In the context of the FRT scheduler scheme, the packet rate S(n) takes the value from S =
{bWTr/Lc, 0} according to (4). Note that the code rate r = SL/WT makes no quantization errors to
S, thus achieving the best power efficiency. Therefore, we assume this matching relationship holds in
the following. The design of the resource scheduler focuses on selecting S and defining the transmit
opportunities. Since the channel distribution is known at the transmitter and the buffer length q(n)
takes discrete values, the transmit opportunities can be defined as the active probability conditional on
the buffer queue length. Denote the active probability by ρ

(q(n))
0 , i.e., ρ

(q(n))
0 = Pr{S(n) = S|q(n)}.

For the link buffer, the sequence of q(n) forms a homogeneous, irreducible, and aperiodic Markov
chain and the defined transmit opportunities {ρ(q(n))

0 } influence the transitions of the states of q(n). In
order to obtain the steady state distribution of q(n), its (M +1)×(M +1) one step transition probability
matrix P should be considered first. The i-th row and j-th column of P, 0 ≤ i, j ≤ M , is defined as

pi,j = Pr{q(n + 1) = j|q(n) = i}. (6)

Hence, ρ
(q(n))
0 forms the P in the following pattern:

P =




ρ
(0)
0 . . . 1− ρ

(0)
0 0 . . . . . . 0

ρ
(1)
0 . . . 0 1− ρ

(1)
0 0 . . . 0

...
...

...
...

...
...

...
0 . . . . . . . . . ρ

(M)
0 . . . 1− ρ

(M)
0




. (7)
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On each row of P, only two non-zero entries ρ
(q(n))
0 and 1− ρ

(q(n))
0 are located on the columns of j

(q(n))
−

and j
(q(n))
+ respectively, which are given by

j
(q(n))
− = max(0, min(M, q(n) + λ)− S),

j
(q(n))
+ = min(M, q(n) + λ).

(8)

The steady state queue length distribution Π = [π0, π1, . . . , πM ] can be obtained by
{
ΠP = Π,∑M

i=0 πi = 1.
(9)

Note that Π is a left eigenvector of P. In the steady state, i.e., n →∞, the packet drop rate is written
as

Pdrop =
1
λ

∑M

i=M−λ
πi × (λ + i−M). (10)

Recall that S and {ρ(q(n))
0 } represent a binary transmission rule at physical layer. Implied by this rule,

the optimal scheduler operates as follows: if channel strength g ≥ F−1
CH (1−ρ

(q(n))
0 ) then transmit at rate

r; otherwise keep silent in this channel block. Thus, after some algebra from (5), the average transmit
power is established to be

P̄ =
∑

i∈U
πi

min(M, i + λ)
S

∫ ∞

F−1
CH (1−ρ

(i)
0 )

2r−1
g

fCH (g)dg +
∑

i/∈U
πi

∫ ∞

F−1
CH (1−ρ

(i)
0 )

2r−1
g

fCH (g)dg, (11)

where U = {i|min(M, i + λ) < S}. For the queue length i ∈ U , only min(M, i + λ)/S of the transmit
channel block is occupied and the discount factor min(M, i + λ)/S is included to account the non-
occupied portion of the channel.

The goal of the resource scheduler design is to minimize the packet drop rate, i.e., delay bound
violation rate, while meet the average transmit power constraint. Hence, the optimized performance of
the FRT scheme can be formulated as the following constrained minimization:

min
P,Π

Pdrop = 1
λ

∑M
i=M−λ πi(λ + i−M)

s.t. P̄ ≤ P0

ΠP = Π∑M
i=0 πi = 1.

(12)

Note that in the formulation, we assume the active packet rate S is given aforehand.
The key difficulty in solving (12) lies in the non-linear power constraint, where two related groups

of entry variables from P and Π interact with each other. A typical way of treating such a situation
is to numerically solve one group of variables from the other group and then optimize the problem
iteratively. Previous proposed algorithms generally optimize the problem in a way of solving P from Π
because less variables are involved in Π, and for any given Π, solving P that minimizes the power while
satisfying (9) is a convex optimization problem [7]. The algorithms are with high complexity since they
optimize two problems in a roll for each iteration.

For the FRT scheme, because P is sparse and solely determined by the (M + 1)-size probability
vector, denoted by ~ρ0 = [ρ(0)

0 , ρ
(1)
0 , . . . , ρ

(M)
0 ] as shown in (7), the problem scale of solving P is similar

as that of solving Π. Hence, we propose to take the alternative way of solving Π from solving P and
transform Π, P̄ and Pdrop into functions of ~ρ0. After this, (12) is reformulated as follows

min
~ρ0

Pdrop = 1
λ

∑M
i=M−λ (λ + i−M)× πi(~ρ0)

s.t. P̄ (~ρ0) ≤ P0

ΠP = Π
0 ≤ ~ρ0 ≤ 1.

(13)

Compared to (12), formulation (13) avoids the aforementioned nested loop in each optimization iteration
since it is straightforward to solve Π from P by (9). In addition, solving Π from ~ρ0 is equivalently
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solving a group of sparse linear equations where fast estimation algorithm can be employed to improve
the optimization speed. For (13), we employ the merit-function sequential quadratic programming
(MSQP) method, which guarantees convergence to a local optimum. Details of the MSQP optimization
algorithm is referred to [11, Page 583].

4. SIMULATION RESULTS AND DISCUSSION

In this section, we present the optimized performance of FRT as well as comparing it with that of the
JQLA scheme. The simulation results are obtained by solving (13) and then utilizing the optimized
scheduling scheme to get the packet drop rate and average transmit power with 1,000,000 channel
realizations. The illustrated channel fading process is Rayleigh, i.e., fCH (g) = e−g and FCH (g) = 1−e−g.

Figure 3 compares the performances of JQLA and FRT under various S. From Figure 3, we can
make two interesting observations. Firstly, the performance of FRT with a proper S is extremely close
to that of JQLA, indicating that FRT can achieve a fairly efficient tradeoff between complexity and
performance. For example, at packet drop rate of 10−3, the gap between FRT with S = 30 and JQLA
is only 0.5 dB. Note that this is where JQLA realizes nearly 10 dB power gain over time domain water-
filling algorithm (WF) as reported in [7, 10]. Secondly, the packet rate S should be larger than λ to
realize the near JQLA performance. The convergence speed from the performance with S = λ to that
with optimized S is rapid (see the curves with S = 10, S = 11 and S = 20 in Figure 3).

We further compare FRT and JQLA under different λ in Figure 4. The FRT curves are with the
optimal S which is obtained by discrete full search. In practice, the optimization of S for FRT can
be done in a rough way since the convergence speed is rapid and the marginal merit by inducing more
iterations is trivial. It is shown in Figure 4 that as the delay constraint gets more stringent, i.e., larger
λ, the performance gap becomes larger and rate flexibility is worth more, and vice versa. Similarly,
from Figure 5 we can observe that the gap between FRT and JQLA shrinks (widens) as larger (smaller)
portion of the channel is allocated to the link, i.e., larger (smaller) WT/L. Hence, in the case of either
less stringent delay requirements or sufficient channel resource, the FRT scheme is more advantageous.

Moreover, on the same software/hardware platform, we observe that the complexity of the
optimization algorithm in terms of runtime, is on average reduced by the order of M for FRT comparing
to that of JQLA. The reduced complexity enables the optimization algorithm more feasible in the case
of large M , i.e., large buffer size.
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5. CONCLUSION

In this paper, we have studied the FRT scheduler scheme in the link-PHY system model. Compared
with the variable rate scheme, the FRT scheme can be translated into reduced complexities of both the
optimization algorithm and transmitter hardware. We have formulated and solved the performance
optimization problem for the FRT scheme. From the simulation results, it is observed that the
performance gap between the FRT scheme and the known optimal variable rate JQLA scheme is not
significant. This implies that the FRT scheme can achieve most of the queue-length-aware performance
gain that observed in JQLA scheme. In addition, it is shown that as the delay constraint becomes
less stringent or the link is allocated more bandwidth, the performance of the FRT scheme further
approaches to that of the JQLA scheme, indicating that the FRT scheme is preferable to the JQLA
scheme under these conditions due to its low complexity. The results of the FRT scheduler scheme in
this paper provide insights into the practical design of delay-constrained wireless systems.
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