
Progress In Electromagnetics Research, Vol. 144, 115–122, 2014

Octave Division Motion Compensation Algorithm for Near-Range
Wide-Beam SAR Applications

Huaming Wu* and Thomas Zwick

Abstract—The space-variant motion errors are specific to different targets and proportional to the
beamwidth of a synthetic aperture radar (SAR) system, which makes them very difficult to be
compensated for a SAR system with wide beamwidth. In this paper, a motion compensation (MoCo)
algorithm that exploits the features of the geometry of near-range SAR applications is proposed. By
dividing the whole range swath into several octave sub-swaths, the effects of space-variant motion errors
can be greatly reduced, especially for targets at nearer range, with low computational load.

1. INTRODUCTION

Synthetic aperture radar (SAR) systems have been used for remote sensing applications for the last
several decades [1]. The effects of motion errors and the corresponding solutions have also been studied
extensively almost since SAR’s debut in 1950s [2]. In the last decade, the development of low-cost
radar systems has led to the hope that SAR systems might be used for civil near-range applications,
e.g., parking lot detection [3]. However, motion compensation (MoCo) continues to be a challenging
problem in this field.

Motions errors result from differences between the real and the nominal trajectory of a radar sensor,
and they result in distortions in the final SAR image. For the ease of explanation, a constant deviation
from the nominal trajectory in y axis in the 2D xy-plane and different components of the motion errors
of a certain target t are illustrated in Figure 1. On the left side of Figure 1, the distance between the
target and the radar’s nominal position, rt, is denoted by green color, while the real distance between
the target and the radar’s real position, r̃t, is denoted by red color. The difference between r̃t and rt is
the target’s motion error, ∆rt, which is denoted by lilac color. As depicted on the right side of Figure 1,
∆rt can be decomposed into two components, i.e., ∆rt = ∆rin + ∆rvar. The space-invariant motion
error, ∆rin, is the difference between the real trajectory and the nominal trajectory, which is denoted
by the blue line. The space-variant motion error, ∆rvar, is the residual part of ∆rt, which is denoted
by the lilac dash line. It can be seen that ∆rt, which is denoted by the lilac solid line, is not linear even
when the real trajectory is linear.

For SAR systems of narrow antenna beamwidth, Ψ, e.g., Ψ < 10◦ in remote sensing SAR operating
at C or X frequency band, ∆rvar can be ignored [4]. The so-called first-order MoCo can be performed
by multiplying the raw SAR data with a compensation phase term built with the knowledge of ∆rin.
However, since ∆rvar increases with Ψ at the edge of the synthetic aperture, it becomes non-negligible
when Ψ is larger than a certain value. For instance, Ψ can be larger than 30◦ in a SAR system working
at VHF/UHF band [5]. Moreover, Ψ can easily be larger than 60◦ for a near-range SAR system which
intends to take advantage of the already existing automotive radar [6].

For remote sensing SAR applications working in stripmap mode, normal SAR algorithms have
been modified to address the problems caused by the high dynamics of an airplane. To compensate
azimuth-variant motion errors in the case of wide Ψ, at least 4 types of MoCo algorithms have been
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Figure 1. The relationship between ∆rt, ∆rin and ∆rvar.

proposed [7–10]. However, the MoCo algorithms proposed in [7–9] all make a compromise among
computational load, angle accommodation and trajectory deviation accommodation. Alternatively, the
MoCo algorithm proposed in [10] trades the computational load for processing quality. For each pixel
(target) the information of its precise topography is needed. In addition, a pair of extra azimuth Fourier
and inverse Fourier transforms of the whole processing block where the pixel is within is performed.
Therefore, such pixel-wise algorithm is still impracticable for real-time civil applications given the
performance of a realistic hardware environment and the lack of topography information.

For near-range SAR systems of wide Ψ, performing alone the first-order MoCo may introduce a
worse extra space-variant motion error component into the signals of targets at nearer range. This effect
is introduced in Section 2, where the properties of the so-called artificial motion errors are analyzed
geometrically and mathematically. Accordingly, in Section 3, a new MoCo algorithm called octave
division algorithm (ODA) for stripmap mode SAR is proposed. Subsequently, the algorithm is verified
by a SAR simulator programmed in MATLAB in Section 4.

2. ARTIFICIAL MOTION ERROR

Generally, the nominal trajectory for SAR processing of a whole scene is defined as the optimal straight-
line path that results in the minimal root-mean-square (RMS) of the difference between the optimal
straight-line path and the real trajectory. However, for each target within the scene, in terms of
resulting in minimal RMS of ∆rin, the optimal straight-line path within its own synthetic aperture
could be variant. For example, quadratic or higher-order motion components are defined as ∆rin with
regard to a long optimal straight-line path within the synthetic aperture of a further target. However,
parts of these ∆rin within the shorter synthetic apertures of a nearer target can be just linear, as long
as the target is close enough to the real trajectory. They would not exist if the optimal straight-line
path was defined with respect to the nearer target. In this paper, such linear motion errors are defined
as artificial motion errors for targets at nearer range.

Since artificial motion errors arise from the differences between optimal straight-line paths with
regard to targets at different ranges, they are more severe in near-range applications than in remote
sensing applications. Specifically, two types of deteriorations resulting from artificial motion errors are
discussed as follows.

The first type of resulting deterioration is the loss of relative position information. As shown in
Figure 2, the same target’s position in the final SAR image with and without a complete MoCo has
been illustrated in the left and right side respectively. As illustrated in the left figure, the xy-coordinate
system is dictated by the optimal straight-line path with respect to further targets, i.e., the x axis.
In this case, the real trajectory within the synthetic aperture of target t (the gray part of the real
trajectory), though is a straight line, is considered containing linear motion errors. If the length of
the SAR processing block, L, reduces to that of the synthetic aperture length of target t, Lt, the real
trajectory will overlap with the optimal straight-line path with respect to target t, i.e., the x′ axis, in
the x′y′-coordinate system. In this case, the motion errors reduce to zero. Without MoCo, the range of
the closest approach of target t, r′t,0, can be correctly obtained in the x′y′-coordinate system. On the
other hand, with MoCo for ∆rin in the xy-coordinate system, an incorrect range of the closest approach,
rt,0, is obtained.

The second type of deterioration caused by artificial motion errors is equivalent to that caused by
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Figure 2. The loss of relative position information caused by artificial motion errors.

quadratic or higher-order motion errors, when only the first-order MoCo is applied. Mathematically,
the first-order MoCo can be expressed as

s̃IF,in (xam, kr) = s̃IF (xam, kr) · exp (jkr∆rin) = sIF (xam, kr) · exp (−jkr∆rvar) . (1)

In (1), s̃IF(xam, kr) is the raw SAR IF signal in the azimuth-time domain, xam, and range-frequency
domain, kr, with motion errors, ∆rt; sIF(xam, kr) is the ideal SAR signal without motion error;
s̃IF,in(xam, kr) is the SAR signal after performing the first-order MoCo, which now contains the extra
space-variant motion errors, ∆rvar. If an antenna with wide Ψ is used and no further MoCo is
applied, ∆rvar in s̃IF,in(xam, kr) can be substantial at the edge of synthetic aperture, both in near-
range applications and remote sensing applications.

As mentioned in the first paragraph of this section, in near-range applications, the linear component
of ∆rin, i.e., artificial motion errors, for a certain nearer target would not be existing if the an optimal
straight-line path was defined with respect to this specific target. Therefore, by ignoring artificial motion
errors, the first-order MoCo is essentially performed with respect to the specific optimal straight-line
path for the nearer target. Correspondingly, the artificial-motion-errors-resultant ∆rvar reduce to zero.
As a result, the deterioration caused by the residual ∆rvar in (1) can be greatly reduced.

3. OCTAVE DIVISION ALGORITHM

A MoCo algorithm is proposed to divide the whole range swath into several sub-swaths to reduce
the differences between optimal straight-line paths with respect to different targets within the same
processing block. Consequently, artificial motion errors within each sub-swaths can be reduced.
According to the mechanism of dividing the range swath, the algorithm is called octave division
algorithm (ODA). Assuming the motion data of the radar sensors are correctly obtained, the block
diagram of ODA is illustrated in Figure 3.

For a FMCW radar scheme, after dechirp-on-receive processing, the raw SAR IF signal deteriorated
by motion errors, s̃IF, are in the azimuth-time range-frequency domain. First of all, s̃IF is sampled by an
ADC in the range frequency domain. The sampling frequency, fs, should meet the Nyquist criterion, i.e.,
fs > 2fs̃IF, max. Since fs̃IF, max is the maximum frequency of s̃IF, it can be calculated by differentiating
the IF signal’s phase with respect to t as

fs̃IF, max = max
{

d

dt

[
2
c

(
fmin + γt̂

)
r̃t

]}
=

2
c
·max

[
γ · r̃t · dt̂

dt
+

(
fmin + γt̂

) · dr̃t

dt

]

=
2
c
·
[
γ · ySC + fmax · v · sin

(
Ψ
2

)]
. (2)

In (2), fmin is the minimum frequency of the transmitted chirp, γ the chirp rate, v the radar’s velocity,
and ySC the maximum range of the scene. The first term in the square brackets denotes the position
information and the second term denotes the velocity information. It is clear that the sampling
frequency, fs, in the range-frequency domain is proportional to ySC.



118 Wu and Zwick

           

               

Raw IF Data    

         

     
 

         

   

           
            

     
 

         

   

           
            

           

          

Range IFFT

Octave Division

Shift
&

Range FFT

Shift
&

Range FFT

First-order
Compensation

First-order
Compensation

RMA RMA

Shift Shift

SAR Image

Motion data

Figure 3. Block diagram of ODA.

         

Azimuth (m)

R
an

ge
 (

m
)

Figure 4. Octave division in data space s̃IF,rtat(xam, t̂), where Lss and xSC,ss of sub-swath of y ∈ [2, 4]m
are denoted.

After sampling, the digital s̃IF signal is transferred from azimuth-time range-frequency domain,
s̃IF(xam, kr), to azimuth-time range-time domain, s̃IF,rtat(xam, t̂), via performing a range IFFT.

Then, as illustrated in Figure 4, the data space of s̃IF,rtat(xam, t̂) is divided into several overlapped
segments both in azimuth and range directions. The signal of each segment is represented by s̃IF,rtat,o

with subscript “o” denoting the corresponding index.
The next step is to transfer each segment back to the azimuth-time range-frequency domain. By

shifting each s̃IF,rtat,o to range zero, the maximum range of each segment is reduced to its length
in range direction. According to (2), the maximum frequency of the range frequency of each segment,
fs̃IF,rtat,o, max , is reduced too. Therefore, performing a range FFT on each segment with a shorten number
of samples corresponding to the segment’s length will not cause aliasing in the range-frequency domain.
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To perform a first-order MoCo, each s̃IF,o is multiplied with a corresponding MoCo phase term,
exp(jkr ·∆rin,o). Here, the optimal straight-line path for each segment is obtained by performing linear
fitting on the corresponding motion data. As will be explained later, the mechanism of octave division
guarantees that most of the artificial motion errors will be excluded from ∆rin,o.

Subsequently, each segment data are processed using range migration algorithm (RMA) [1]. In the
end, the result of each segment is shifted both in range and azimuth directions and then stitched back
to form the final SAR image.

The mechanism of octave division is explained in the following paragraphs.
First of all, a parameter, MSR, has been defined to classify motion components. MSR is the motion

frequency to synthetic aperture frequency ratio, which is similar to the one defined in [1] and can be
expressed as

MSR =
fm

fsyn
=

Lt
v

fm

=





[0, 0.25] Linear
[0.25, 0.75] Quadratic
[0.75, ∞] Sinusoidal

. (3)

In (3), fm is the frequency of the motion components within the target’s synthetic aperture; fsyn is the
synthetic aperture frequency, which is the reciprocal of synthetic aperture time, Lt

v ; Lt is the target’s
synthetic aperture length, which can be calculated by

Lt = 2 · rt,0 · tan
(

Ψ
2

)
. (4)

Note that the term v/fm is the period of the motion error in unit of m, and therefore MSR is also the
ratio between the target’s synthetic aperture length and the motion component’s period.

For any motion components, when their MSR with respect to the nearest targets are smaller than
0.25, they are considered to be linear. In this case, the optimal straight-line path should almost overlap
with such motion components. However, as (3) and (4) indicate, MSR is proportional to target’s range.
For the same motion errors, their MSR with respect to the furthest targets could become larger than
0.25. Consequently, the resultant optimal straight-line path will not overlap with the one obtained with
respect to the nearest targets. As a result, artificial motion errors are introduced for the nearer range
targets.

As the discussion above attests, artificial motion errors cannot be completely avoided. However,
they can be suppressed to a certain degree by restricting the ratio between the furthest range and the
nearest range of a SAR processing segment, which can be expressed as

FNR =
rt,0,Furthest

rt,0,Nearest
. (5)

By substituting (3) and (4) into (5), FNR can be expressed as the ratio of the MSR with respect to the
furthest target to that with respect to the nearest target as

FNR =

2 · rt,0,Furthest · tan
(

Ψ
2

)

v

fm

2 · rt,0,Nearest · tan
(

Ψ
2

)

v

fm

=
MSRFurthest

MSRNearest
. (6)

Here we assume the effects of the residual artificial motion errors can be ignored for the nearer
range targets, if for any motion component when MSRNearest is 0.25 (as the upper limit of the linear
region), MSRFurthest is smaller than 0.5 (as the middle value of the quadratic region). In such case, any
linear motion component within the synthetic aperture of the nearest target will approximately not be
part of the motion errors that need to be compensated for the furthest target. Therefore the upper
limit of FNR can be determined as

FNR =
MSRFurthest

MSRNearest
<

0.5
0.25

= 2. (7)
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Subsequently, by analogy with the octave frequency definition in the sound processing field, the
whole range swath can be divided into several octave sub-swaths, i.e., the whole range swath is divided
at y = 1, 2, 4, 8 and 16 m as illustrated in Figure 4.

As a trade-off between processing efficiency and accommodation of artificial motion errors, for each
range sub-swath the imaged scene along azimuth direction is divided into equal segments with the length
of xSC,ss = 2 · rt,0,Furthest,ss · tan(Ψ

2 ), where subscript “ss” denotes sub-swath. As illustrated in Figure 4,
the corresponding data segment length can be calculated as Lss = 2xSC,ss, and the overlapping length
of segment along azimuth direction is xSC,ss.

Compared with the spotlike algorithm proposed in [7], the extra computation load of ODA comes
from the extra range IFFT and range FFT. According to the SAR algorithm computation load analysis
presented in [11], the computation load of the ODA is about 46% higher than that of the spotlike
algorithm. Furthermore, the other two algorithms proposed in [8, 9] perform extra azimuth Fourier
transforms, which generally have higher computation load than range Fourier transforms in near-range
SAR applications. Therefore, ODA has less computation load than the other three MoCo algorithms [8–
10].

It should be noted that the artificial motion errors are exclusive to near-range SAR applications.
The range swath of SAR system in near-range applications is

2D2

λmin
< rt,0 < rmax. (8)

Here, 2D2

λmin
is the far-field boundary of the antenna as defined in [12], where D (D > λmax) is the

maximum overall dimension of antenna and λmin the minimum wavelength of the transmitted chirp;
rmax is the maximum working range of the SAR system. For example, by applying D = 4.2 cm,
λmin = 1.28 cm and rmax = 18m, the number of octave sub-swaths can be calculated as

Nsub-swath = log2 (FNR) = log2




rmax

2D2

λmin


 ≈ 6. (9)

As a contrast, in remote sensing SAR application, FNR is usually smaller than 2. For instance,
the airborne P-3 SAR used for detection of concealed targets under foliage images the scene with range
swath of [5387.5, 6354.9]m [13]. The corresponding FNR is about 1.2, which means that motion errors
have almost the same MSR for all the targets within the whole range swath. Therefore it is unsuitable
to apply ODA in remote sensing applications.

4. VERIFICATION

To demonstrate the effects of artificial motion errors and verify the proposed ODA, a scene including
a point target at nearer range (yt = 0.5 m) and a point target at further range (yt = 3.5 m) has been
simulated. As shown in Figure 5(a), the real trajectory depicted in the xy-coordinate system consists of
two components: a sinusoidal component and a linear component. As discussed in Section 2, the linear
component is part of motion errors that are determined with regard to targets at furthest range. Four
MoCo strategies have been applied, and the corresponding SAR images of the two point targets are
shown in Figure 5(b). The broadening factor of azimuth resolution, FB, is defined as the ratio of the
real azimuth resolution (with motion errors) to the ideal azimuth resolution (without motion errors).

In accordance with the analysis in Section 2 that the target at nearer range suffers most from the
artificial motion error, a more concentrated image of the target at nearer range can be obtained without
MoCo than with the first-order MoCo. Moreover, both targets images in the case of the first-order
MoCo are deteriorated by the artificial motion errors that are determined with regard to targets at
furthest range.

Since the spotlike MoCo is tuned to concentrate the further target with yt = 3.5m, the further
target at the center of the processed block has perfect concentration. However, the nearer target away
from the center area suffers more residual motion errors than in the case of the first-order MoCo. As a
contrast, the ODA removes completely the artificial motion errors, thereby having the best performance
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Figure 5. Comparison of different MoCo strategies (system parameters: center frequency fc = 24 GHz,
transmission bandwidth B = 1GHz, Ψ = 40◦): (a) the trajectory in the long-term nominal coordinate
system; (b) normalized SAR images: left column shows the target at nearer range (yt = 0.5 m), right
column shows the target at further range (yt = 3.5m); the MoCo strategies are shown from up to
down in the following order: without MoCo, with first-order MoCo, with spotlike MoCo and with ODA
MoCo; the broadening factors of azimuth resolution, FB, are labeled.

for the nearer target. The residual broadening effects after MoCo are caused by residual azimuth-variant
motion errors. Although they can be compensated by the algorithms proposed in [8–10], a much higher
computation load would result.

5. CONCLUSION

For near-range applications, due to the high ratio of the furthest range to the nearest range, FNR,
a SAR system with wide Ψ will suffer from a special type of motion error. The so-called artificial
motion errors arise from the differences between the optimal straight-line paths for targets at different
ranges. They are introduced especially for the nearer range targets after a common first-order MoCo is
performed, and are proportional to the FNR of a SAR processing block.

Although artificial motion errors are unavoidable, the proposed ODA is designed to suppress them
to a certain degree. The ODA divides the whole SAR scene into sub-swaths, thereby reducing the
FNR of each sub-swath. At the cost of about 46% extra computation load, the ODA can improve the
azimuth resolution by 100% for near range targets compared to the spotlike MoCo algorithm. On the
other hand, the ODA has better performance for near-range applications in terms of computational
load than the other MoCo algorithms designed for remote sensing applications.
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