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Influence Analysis of Stochastic Translation of Transmission Lines
over Ground

Haiyan Xie1, *, Jianguo Wang2, Yong Li1, and Chun Xuan1

Abstract—This paper proposes a method for the quick estimation of the average voltages at terminal
loads when the transmission line translate randomly and analyzes the sensitivities of the loads’ voltages
to the translation. Because nonuniform transmission lines can be approximated as n-cascaded uniform
lines, the study of uniform lines is the basis. Based on the transmission-line equations, the equations are
derived to estimate the average voltages, the voltage variations, and the sensitivity of the voltage to the
random translation when transmission lines have random translation in their cross sections. With these
equations, the average voltages at the loads, the probability distributions of the voltage variations, and
the sensitivity of the voltage to the random translation can be obtained quickly. A two-wire line over
the ground is studied by using the proposed method. The average voltages and the voltage variations’
probability distributions agree well with those via the Monte Carlo (MC) method and the proposed
method is more efficient. The results show that the sensitivities of the voltages at the loads to the
random height increase with the terminal sources but decrease with the height.

1. INTRODUCTION

Due to the randomness of wire positions, the crosstalk between wires and the coupling of external fields
to wires is stochastic. The effect induced by the randomness has attracted lots of attention and many
methods and models have been developed to analyze it.

At the beginning, many measurements were carried out to study the effects of the random wire
positions and the mean and the variance were calculated from the measured data [1, 2]. The experimental
method is straightforward, but takes much time and costs a lot. Afterward, the random lines or cables
were always modeled first by using the Monte Carlo (MC) method, where the nonuniform transmission
lines were generally modeled as n-cascaded segments of a uniform multiconductor transmission line, then
the transmission line theory was adopted to compute the terminal voltages of each sample, and statistical
values were obtained from the numerical results [3–7]. This method needs large repeated computations
and the results are only suitable for the case studied. Many researches proposed the worst-case methods
for transmission lines in some specific cases, such as weak coupling and strong coupling [8–11]. The
worst-case methods can provide quick estimations for designs; however, the results may differ greatly
from the actual values. For three-conductor transmission lines under specific conditions, analytical
expressions for the crosstalk could be derived and the effects of the random parameters on the crosstalk
could be obtained directly from the expressions [12–14]. This method is efficient but has lots of limits.

The above study mainly focuses on the computation of the statistical quantities for a random line
which obeys a given distribution. However, the randomness of a transmission line may appear diversely.
For example, the height of the line over the ground may obey Gauss distribution or other distributions.
The results of one specific case are hard to be applied for others. In addition, only the statistical
quantities, such as the mean, the variance, and the probability distribution et al., are the main concern

Received 2 November 2013, Accepted 4 December 2013, Scheduled 16 December 2013
* Corresponding author: Haiyan Xie (xiehy05@foxmail.com).
1 Northwest Institute of Nuclear Technology, P. O. Box 69-12, Xi’an, Shaanxi 710024, China. 2 Northwest Institute of Nuclear
Technology, P. O. Box 69-1, Xi’an, Shaanxi 710024, China.



54 Xie et al.

in these researches. The sensitivity of the crosstalk or coupling to the random position is an important
issue but has not been studied.

The random transmission lines may be nonuniform ones. Because nonuniform transmission lines
can be approximated as cascaded series of many short sections of uniform lines [15, 16], random uniform
transmission lines are the basis. The random movement of a random line in its cross section can be
divided into random translation and random rotation. This paper mainly studies the influence induced
by the stochastic translation of uniform lines, proposes a method for the quick estimation of the average
voltages at terminal loads, and analyzes the sensitivities of the loads’ voltages to the translation.

2. THEORETICAL ANALYSIS

2.1. Estimation of the Average Voltages

The telegraph equation for a uniform transmission line can be written as

d

dz
V (x, y, z) + jωL (x, y) I (x, y, z) = 0

d

dz
I (x, y, z) + jωC (x, y) I (x, y, z) = 0

(1)

where V and I are the voltage and current vectors of the line, and L and C are the per-unit-length
inductance and capacitance matrices. Since the translation of a transmission line without the ground
in its cross sections does not change the terminal voltages, only the line with the ground is considered.
Due to the random translation in the cross section, the matrices L and C are random, and this results
in the stochastic voltage and current vectors, which are the functions of the random wire positions.

When the translation is a small quantity, then the voltage can be expressed through Taylor
expansion as

V (x, y) ≈ V (x̄, ȳ) + (x− x̄)
∂

∂x
V (x̄, ȳ) + (y − ȳ)

∂

∂y
V (x̄, ȳ) (2)

As a result, the mean of the voltage can be approximated by

V̄ (x, y) ≈ V (x̄, ȳ) , (3)

where x̄ and ȳ are the average coordinates. Similarly, the average current can be approximated by

Ī (x, y) ≈ I (x̄, ȳ) , (4)

Then the average voltage can be computed approximately by using the Baum-Liu-Tesche (BLT)
equation [17, 18], which is network equation and can be used to obtain the terminal voltage and current
of transmission line, and is given by

[
V̄ZS

V̄ZL

]
=

[
1+ρ1 0

0 1+ρ2

][−ρ1 eγl

eγl −ρ2

]−1[ (
VS − eγlVL

)
/2(−eγlVS + VL

)
/2

]∣∣∣∣∣
x=x̄,y=ȳ

. (5)

Here ρi(i = 1, 2) and γ are the reflection coefficients at the ends and propagation constant when the
transmission line is situated at the average position, respectively. l is the length of the line, and 1 is a
unit matrix. This equation can be used to estimate the average voltages in the case of small position
variations.

2.2. Analysis of Voltage Variations

The voltage variation ∆V (x, y) .= V (x, y)− V̄ (x, y) can be approximated as

∆V (x, y) ≈ (x− x̄)
∂

∂x
V (x̄, ȳ) + (y − ȳ)

∂

∂y
V (x̄, ȳ) . (6)

And it is related to the position variations and the derivative of the voltage at the average position.
However, the direct solution of the derivative is nontrivial. We give the derivation in another way. In



Progress In Electromagnetics Research Letters, Vol. 44, 2014 55

the case of transmission line over an infinite ground, the movement of the transmission line along the y
axis does not change the voltage, so only ∂V (x, y)/∂x is derived.

The telegraph equation at the average position can be written as

d

dz
V (x̄, ȳ, z) + jωL (x̄, ȳ) I (x̄, ȳ, z) = 0

d

dz
I (x̄, ȳ, z) + jωC (x̄, ȳ) I (x̄, ȳ, z) = 0

(7)

Subtracting (7) from (1) and neglecting the second-order small quantity yield

d

dz
∆V (z) + jωL (x̄, ȳ)∆I (z) = −jω∆LĪ (z)

d

dz
∆I (z) + jωC (x̄, ȳ)∆V (z) = −jω∆CV̄ (z)

, (8)

where
∆I (z) = I (z)− Ī (z) ≈ I− I (x̄, ȳ)

∆L = L− L (x̄, ȳ) , ∆C = C−C (x̄, ȳ)
(9)

When the medium is homogenous and uniform,

∆C =
1
c2

(
L−1 − L−1 (x̄, ȳ)

) ≈ − 1
c2

L−1 (x̄, ȳ) ∆LL−1 (x̄, ȳ)

ZC (x̄, ȳ)∆C ≈ −∆LZ−1
C (x̄, ȳ)

, (10)

where c is the velocity of the light in the medium. Then the voltage variations ∆VZS and ∆VZL can
be solved by using the BLT equation as

[
∆VZS

∆VZL

]
=

[
1+Γ1 0

0 1 + Γ2

][−Γ1 eγl

eγl −Γ2

]−1
∣∣∣∣∣
x=x̄,y=ȳ

·
[
∆L 0
0 ∆L

][
M1

M2

]
, (11)

where M1 and M2 are the values at the average positions and are given by

M1 =
jω

2

∫ l

0
eγz

[
Z−1

C V (z)− I (z)
]
dz

∣∣∣∣
x=x̄,y=ȳ

M2 =
jω

2

∫ l

0
eγ(l−z)

[
Z−1

C V (z) + I (z)
]
dz

∣∣∣∣
x=x̄,y=ȳ

. (12)

Equation (11) can not only be used to estimate the values of ∆VZS and ∆VZL, but also give the
probability distribution of the ∆V (= [∆VZS ∆VZL])T once the probability distribution of ∆L is
given. In addition, the upper limit of ∆V can be estimated quickly if a norm is used.

From (1), the forward and backward waves at the position z can be expressed as

Z−1
C V (z)− I (z) =

[
Z−1

C V (0)− I (0)
]
eγz

Z−1
C V (z) + I (z) =

[
Z−1

C V (l) + I (l)
]
eγ̄(l−z)

(13)

Substituting (13) into (12) and using the boundary conditions, (12) can be written as

M1 =
jω

4
γ−1

(
e2γl−1

) [
Z−1

C VZS+Z−1
C VS + Z−1

S VZS

]∣∣∣∣
x=x̄,y=ȳ

M2 =
jω

4
γ−1

(
e2γl−1

) [
Z−1

C VZL+Z−1
C VL + Z−1

L VZL

]∣∣∣∣
x=x̄,y=ȳ

, (14)

It can be inferred from (11) and (14) that the variations ∆VZS and ∆VZL not only depend on the
inductance variation ∆L but also the parameters of the line, such as the characteristic impedance,
terminal loads, and terminal voltage sources. For a multiconductor transmission line with a given
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distribution, the probability distribution of the ∆V mainly depends on the probability distribution of
∆L.

For a multiwire transmission line over a perfectly conducting and infinite ground, as shown in
Figure 1, L and C can be expressed as

L = µF

C = εF−1, (15)

where µ and ε are the permeability and permittivity of the medium, respectively. Denoting δxi = xi−x̄i

and δyi = yi − ȳi, the matrix F can be written as [17]

F =
1
2π




f11 f12 . . . f1n

f21 f22 . . . f2n
...

...
. . .

...
f1n f2n . . . fnn


 (16)

fii = ln
(

2 (x̄i + δxi)
ai

)
(17)

fij = ln
(

d′ij
dij

)
=

1
2

ln
(x̄i + x̄j + 2δx)2 + (ȳi − ȳj)

2

d2
ij

(i 6= j) . (18)

Here ai is the radius of the ith wire. The parameter dij is the distance between ith wire and the
jth wire, while d′ij is the distance between the ith wire and the image of the jth wire, as shown in
Figure 1. (17) and (18) also indicate that only the translation along the x axis affect the parameters of
the transmission line.

When δx is small compared with xi, then fii and fij can be approximated by

fii ≈ ln
(

2x̄i

ai

)
+

δx

x̄i
(19)

fij ≈ 1
2

ln

(
1 +

4x̄ix̄j

d2
ij

)
+

2δx (x̄i + x̄j)
d2

ij + 4x̄ix̄j
. (20)

From (9), (15), (19) and (20), ∆L can be written as

∆L = A|xi=x̄i,yi=ȳi
δx, (21)

where

A =
µ

2π




1
x1

. . . 2(x1+xn)
d2
1n+4x1xn

...
. . .

...
2(x1+xn)

d2
1n+4x1xn

. . . 1
xn


 . (22)

Figure 1. A multiconductor transmission line over the ground.
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Then voltage variations ∆VZS and ∆VZL can be written as
[
∆VZS

∆VZL

]
=

[
1+Γ1 0

0 1 + Γ2

][−Γ1 eγl

eγl −Γ2

]−1[A 0
0 A

][
M1

M2

]∣∣∣∣∣
xi=x̄i,yi=ȳi

δx (23)

From (23), the values and the probability distributions of the voltage variations depend on the
translation component δx, which is perpendicular to the ground, when it is small.

2.3. Sensitivity of Voltage Variation to Random Height

Because only the perpendicular translation component δx, corresponding to the variation of the height,
has an influence on the voltages, the sensitivities of the voltages to the random height should be studied.
The sensitivity Sh can be defined as

Sh
.= lim

δx→0

∆V

δx
. (24)

Then [
ShZS

ShZL

]
=

[
1 + Γ̄1 0

0 1 + Γ̄2

] [−Γ̄1 eγ̄l

eγ̄l −Γ̄2

]−1 [
Ā 0
0 Ā

] [
M̄1

M̄2

]
(25)

It can be concluded from (11), (14), and (25) that the sensitivity vector increases with the terminal
sources VS and VL, but decreases with the height of the transmission line over the ground. With the
definition of the sensitivity, the relative sensitivity can be defined as Shr = Sh/V . Compared with the
sensitivity Sh, the relative sensitivity Shr is influenced less by the terminal voltage sources and is a more
suitable variable representing the influence of the random height.

When the translation component δx is a small quantity, then voltage variations at the loads can
be deduced from (24) as

∆V ≈ Sh · δx (26)

3. EXAMPLE

Figure 2 shows a two-wire line over the ground, where the separation d between the wires is 2 mm and
the radius a is 0.5 mm. The height of the line is denoted by x and obeys Gaussian distribution with a
mean of 15 mm and a variance σx of 1 mm. The terminal loads ZS1, ZS2, ZL1, and ZL2 are all 50Ω and
the voltage source VS1 is 1 V with a frequency of 100 MHz. The proposed method is adopted to analyze
this model and the results are compared with those obtained by the MC method where the number of
samples is 5000 and the BLT equation is used to obtain the voltages for each sample.

The approximate means obtained by the proposed method are given in Table 1 and agree well with
those from the MC method. When the height x of the line is 12mm, 3 mm smaller than the average
height, the estimated ∆V by using (11) are given in Table 2, which are compared with those obtained
by using the BLT equation twice.

The probability distribution of ∆V will be analyzed by using the proposed method. Due to the
small height variation compared with the average height, the voltage variations can be approximated
by ∆V ≈ Sh · δx. Consequently, the real part Re(∆Vi) and the imaginary part Im(∆Vi) of the voltage

(a) (b)

Figure 2. The model to be analyzed. (a) Cross section. (b) Configuration.
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Table 1. Means obtained by the proposed method and the MC method.

Proposed method Monte Carlo
VZS1 (mV) −169.5− 80.7i −169.5− 80.7i

VZS2 (mV) 145.4 + 14.1i 145.4 + 14.1i

VZL1 (mV) −113.2− 270.8i −113.2− 270.8i

VZL2 (mV) 94.1 + 133.9i 94.0 + 133.9i

Table 2. ∆V obtained by the proposed method and the BLT equation.

∆V ZS1

(mV)
∆V ZS2

(mV)
∆V ZL1

(mV)
∆V ZL2

(mV)
Proposed
method

−1.7− 1.8i −1.4− 2.0i −1.3− 4.2i −1.1− 4.1i

BLT
equation

−1.8− 1.9i −1.5− 2.1i −1.4− 4.5i −1.2− 4.4i

Table 3. Sensitivities obtained by the proposed method and the difference method.

SVZS1

(V/m)

SVZS2

(V/m)

SVZL1

(V/m)

SVZL2

(V/m)

Proposed

method
0.49 + 0.55i 0.42 + 0.58i 0.37 + 1.26i 0.34 + 1.24i

Difference

Method
0.49 + 0.55i 0.41 + 0.58i 0.37 + 1.25i 0.34 + 1.23i

variation at the ith load conform to the Gaussian distributions with the mean of 0 and variances of
|Re(Shi)|σx and |Im(Shi)|σx, respectively. The sensitivities of the load voltages obtained by (24) when
the height is 15mm are given in Table 3 and the results agree well with those obtained by the difference
method, where the voltage variation ∆V when δx = 0.01mm is calculated first and then the sensitivity
is estimated by dividing ∆V by δx. Figures 3 and 4 show the probability distributions of the real and
imaginary parts of ∆VZS1 and ∆VZL2 obtained by the proposed method, respectively, and they agree
well with those obtained via the MC method.

Figures 5 and 6 show the sensitivities and the relative sensitivities of the load voltages to the height

(a) (b)

Figure 3. The probability distribution of ∆VZS1. (a) The real part. (b) The imaginary part.



Progress In Electromagnetics Research Letters, Vol. 44, 2014 59

(a) (b)

Figure 4. The probability distribution of ∆VZL2. (a) The real part. (b) The imaginary part.

(a) (b)

Figure 5. The sensitivities of the load voltages change with the terminal voltage VS1 and the height
of the transmission line. (a) Changing with the terminal voltage. (b) Changing with the height.

(a) (b)

Figure 6. The relative sensitivities of the load voltages change with the terminal voltage VS1 and the
height of the transmission line. (a) Changing with the terminal voltage. (b) Changing with the height.

changing with the terminal voltage source VS1 and the height x obtained by the proposed method,
respectively. The results show that the sensitivities increase with the voltage source VS1 but decrease
with the height x. However, the relative sensitivities are independent of the voltage source VS1. This
is because that this configuration is linear and the voltages and the voltage variations increase with
the voltage source VS1 together. Consequently, the relative sensitivity is a more suitable quantity to
describe the influence of the random height than the sensitivity.
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4. CONCLUSIONS

The influence induced by the random translation on the voltages of the uniform transmission line over
the ground has been studied. The quick estimations of the average voltages at the loads and the
probability distributions of the voltage variations have been proposed first and then the sensitivities of
the load voltages to the random height have been studied. An example of a two-wire line over the ground
is researched by using the proposed method. The average voltages and probability distributions of the
voltage variations estimated by the proposed method agree well with those obtained by MC method. The
proposed method is much more efficient than the MC method which needs a large number of repeated
computations. The results show that: 1) only the translation component which is perpendicular to the
ground affect the voltages at the loads; 2) when the translation component perpendicular to the ground
is small quantity, the means of the voltages equal approximately to the voltages when the line is located
at its average position; 3) the voltage variations not only depend on the inductance variation induced
by the translation, but also relate to the characteristic impedance, terminal loads, and terminal sources
of the line; 4) the sensitivities of the load voltages to the random height increase with the terminal
sources but decrease with the height.
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