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Abstract—This paper presents a unified analysis of the three-
parameter aperture distributions for both sum and difference antenna
patterns, suitable for communications or telemetry applications with
either a stationary or tracking antenna, and with the parameters
automatically determined by Particle-Swarm Optimization (PSO).
These distributions can be created, for example, by reflector, phased
array, or other antenna systems. The optimizations involve multiple
objectives, for which Pareto efficiency concepts apply, and are
accelerated by compact, analytical closed-form equations for key
metrics of the distributions, including the far-field radiation pattern
and detection slope of the difference pattern. The limiting cases of the
three-parameter distributions are discussed and shown to generalize
other distributions in the literature. A derivation of the generalized
vector far fields provides the background for the distribution study
and helps clarify the definition of cross-polarization in the far-
field. Examples are given to show that the three-parameter (3P)
distributions meet a range of system-level constraints for various
applications, including a sidelobe mask for satellite ground stations
and maximizing pointing error detection sensitivity while minimizing
clutter from sidelobes for tracking applications. The equations for the
relative angle sensitivity for the difference pattern are derived. A study
of the sensitivity of the 3P parameter values is presented.
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1. INTRODUCTION

Unlike its other chapters, chapter seven of the book Antenna Theory,
by Collin and Zucker [1], deals uniquely with antenna pattern synthesis
— the determination of an antenna aperture distribution to produce
a given radiation characteristic — and points out that there are many
methods of antenna synthesis, each of which is developed in response
to a given class of problems. This paper provides a unified method
for antenna pattern synthesis for the broad classes of antennas having
a single main beam, with some constraint on the sidelobe levels, and
including tracking antennas. This 3P unification provides closed-form
equations for key metrics associated with each aperture distribution,
including the radiation patterns for both sum and difference patterns,
allowing quick calculation analytically rather than by brute force
integration.

An antenna’s radiation characteristics are largely determined by
its aperture fields, which are respectively determined by the antenna’s
design and construction. When a realistic, comprehensive model of
aperture field distribution is available with a relatively small number
of parameters, the overall antenna design process can be effectively
divided into two sequential steps: first identifying an aperture
distribution model that meets the given system-level design constraints
(considering antenna system metrics such as beamwidth, sidelobe level,
and pointing error detection sensitivity) and subsequently designing
the antenna to provide the chosen aperture distribution. Ideally such
a model would provide analytical relationships between the aperture
parameters and the system metrics, and this paper provides those
relationships as equations for the 3P distribution, generalized for
sum and difference patterns. The three parameters are α, β, and c.
With just a few parameters for the aperture distribution the top-level
antenna system design can be completed quickly.

The 3P distribution, as originally published [2], applies only to
sum patterns. Here we extend it to include difference patterns as well
and analyze both the sum and difference distributions in a unified
manner. The 3P distributions provide considerable flexibility, as the
remainder of this paper shows: the 3P sum distribution generalizes
several other distributions in the literature, including Hansen’s 1P
distribution [3], the parabolic 2P, and the Bickmore-Spellmire 2P: all as
discussed in [2]. These other distributions are represented by limiting
cases of the 3P general distribution, as discussed below. What is meant
by a sum pattern is the radiation pattern from the fields in the entire
aperture, all in phase (adding constructively). On the other hand,
the difference pattern negates the sign of the fields on one side of the
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aperture so as to cancel out the fields on the other side and produce a
difference pattern null in the central direction that coincides with the
sum pattern’s main beam. Antenna tracking systems track the null
in the difference pattern to keep the main (sum) beam peaked on the
signal.

An antenna’s radiation pattern is determined from the aperture
fields by the field equivalence principle according to Maxwell’s
equations. A radiation pattern varies in shape as a function of
distance from the aperture: reactive near field zone closest to the
antenna, radiating near field (Fresnel zone) and radiating far-field
(Fraunhofer) zone. Beyond a certain distance from the aperture, which
depends on the antenna size, the radiation pattern remains effectively
constant in shape. In this paper the true (infinitely distant) far-
fields are considered. The radiation characteristics of taper efficiency,
beamwidth, sidelobe level, and the asymptotic trend of the far-out
sidelobe levels are addressed for the 3P distributions.

The 3P model assumes a planar aperture, and there are several
methods by which to synthesize planar apertures, e.g., [1] Chapter 7,
[3], or [4] Chapter 6, that must relate the aperture parameters to
a given set of design constraints. A manual design of an aperture
distribution can require considerable time, and as Hansen mentions [3]
can result in a suboptimal result. An optimizer that automatically
searches the available range of distribution model parameter values
can significantly reduce the time and effort required to meet particular
design constraints — even finding unexpected solutions that might be
missed if designed manually.

Metaheuristic optimization is discussed, identifying the common
methods currently in use, followed by a discussion of the fundamentals
of the PSO algorithm [5–10], and several examples are given for 3P
distributions designed by PSO to meet common design constraints,
which can involve multiple competing factors. Multiple-objective
optimization is addressed from the perspective of Pareto efficiency [9].
The PSO algorithm serves the purposes of 3P distribution design quite
well, as the examples reveal.

A number of mathematical appendices are included, in which
the closed form equations discussed in the body of the text are each
derived, in order to make the paper more complete. The following
special functions are used:

Jv (z) = Bessel function of the first kind, of order v.

Iv (z) = modified Bessel function of the first kind, of order v.
Hv (z) = Struve function, of order v.
pFq (g1, . . . , gp; h1, . . . , hq; z) = generalized hypergeometric series.



712 Densmore and Rahmat-Samii

2. CONSTRUCTING FAR-FIELDS FROM APERTURE
DISTRIBUTION

In this section the aperture geometry is summarized, a set of equations
that represent the vector far-fields in a general form are derived
(applicable to both sum and difference, and providing insight regarding
the issue of the definition of cross-polarization), basic concepts
pertaining to antenna radiation patterns are presented, including
directivity, and the particulars regarding both sum and difference
distributions are discussed, relating the model equations presented here
to real-life applications.

2.1. Aperture Geometry

Consider an elliptical aperture, representing an exit aperture of a
reflector or an array antenna, with major and minor axes, a and b,
centered about the origin in the xy-plane bounded by

(x

a

)2
+

(y

b

)2
= 1 (1)

Any point inside the planar aperture is represented by a relative radial
term, t, an angle, ψ, and vector ~ρ ′.

~ρ ′ = x̂x′ + ŷy′, wherex′ = at cosψ, y′ = bt sinψ, t ∈ [0, 1], ψ∈ [0, 2π]
(2)

2.2. Generalized Vector Far-Fields

This section reviews the construction of the vector far-field equations
for an elliptical aperture distribution. The time-convention is exp[jωt],
where j =

√−1. The real-valued aperture distribution function
Q(t, ψ) represents the magnitude and sign of unidirectional (e.g.,
x- or y-directed) aperture fields, ~Eap and ~Hap, assuming transverse
electromagnetic mode (TEM) [11], with constant aperture phase
other than a possible sign reversal defined by the distribution. The
assumption of TEM mode in the aperture imposes

η ~Hap = n̂× ~Eap, (3)

where η is the free-space impedance and n̂ the outward aperture surface
normal vector — the z-axis in this paper. The aperture distribution
defines the aperture fields as a function of the aperture coordinates
according to (4), where p̂ is the polarization orientation of the electric
field in the aperture.

~Eap (t, ψ) /
√

2η = p̂Q (t, ψ) , (4)
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The Schelkunoff field equivalence theorem [12] relates the aperture
field, given by the distribution, to equivalent electric and magnetic
currents tangential to the aperture and related to vector potentials.
The vector potentials then determine the radiating far-fields associated
with the given aperture distribution. The equivalent currents relate to
the aperture fields by the following equations.

~Jeq = n̂× ~Hap and ~Meq = −n̂× ~Eap (5)

Following (6-95), (6-101), and (6-102) from [11], the radiated electric
far-field, ~Eff , is proportional to the magnetic and electric vector
potentials as given by the equations below, where the magnetic vector
potential in the far-field is Aff , the electric vector potential Fff , µ
free-space permeability, ε free-space permittivity, k = 2π/λ, λ is
the wavelength, and ds′ the elemental aperture surface area. The
vector from the origin in the center of the aperture to a given far-field
observation point is ~r (r, θ, φ), with corresponding unit vector r̂.

~Eff = ~EAff + ~EFff ≈
[
θ̂θ̂ ·+φ̂φ̂·

]
jω

(
− ~Aff + η r̂ × ~Fff

)
, (6)

where

~Aff =
exp [−jkr]

4πr
µ

∫∫
~Jeq exp

[
jk(~ρ′ · r̂)] ds′, (7)

and

~Fff =
exp [−jkr]

4πr
ε

∫∫
~Meq exp

[
jk

(
~ρ′ · r̂)] ds′. (8)

These equations reduce in the far-field to

~Eff =
jk exp [−jkr]

4πr

[
θ̂θ̂ ·+ φ̂φ̂·

] ∫∫ [
η

(
−n̂× ~Hap

)

+r̂ ×
(
−n̂× ~Eap

)]
exp

[
jk(~ρ′ · r̂)] ds′. (9)

Working out the math for the two primary polarizations yields a
conditional equation:

~Eff√
2η

=
jk exp [−jkr]

4πr
(1 + cos θ) T

{
θ̂ cosφ− φ̂ sinφ, ~p = x̂;
θ̂ sinφ + φ̂ cosφ, ~p = ŷ;

and ~Hff = r̂ ×
~Eff

η
. (10)

Equation (10) shows that the θ̂ and φ̂ TEM spherical components of
the far-field radiated from a TEM aperture are related via sine and
cosine, which is a definition of a Huygens source [13] (18), for which
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the Ludwig third definition of cross-polarization [14] applies. T in (10)
is defined as

T (θ, φ) =
∫∫

Q (t, ψ) exp
[
jk(~ρ′ · r̂)] ds′, (11)

or

T (θ, φ) =
∫ 2π

0

∫ 1

0
Q (t, ψ) exp [jk (at cosψ sin θ cosφ

+bt sinψ sin θ sinφ)] abt dtdψ. (12)

Substituting

u(θ, φ) = kB(φ) sin θ, (13)

where

B (φ) =
√

a2 cos2 φ + b2 sin2 φ, (14)

and

Φ (φ) = arctan [(b sinφ) / (a cosφ)] , (15)

and noting that u(θ, φ) is the normalized radian angle, simplifies (12)
to

T (u) =
∫ 2π

0

∫ 1

0
Q (t, ψ) exp [jut cos(ψ − Φ)] abt dtdψ. (16)

In order to generalize for both sum and difference patterns, Q is defined
by (17), where R(t) ≥ 0 and n is zero for sum patterns or unity for
difference patterns. ψ = ∆ is the orientation of the plane perpendicular
to the aperture in which the difference pattern is intended.

Q (t, ψ) = R (t) cos [n (ψ −∆)] ; n = 0 or 1 (17)

With the help of [15] (3.915.2) (16) reduces to

T (u) |n=0 or 1 = 2πabjn cos [n (∆− Φ)]
∫ 1

0
R (t)Jn (ut) tdt. (18)

The superscript norm is used to denote normalization by aperture area;
e.g.,

T norm
S = TS/ (πab) . (19)

The above equations specify the form of the vector far-fields in spherical
coordinates for a general elliptical aperture distribution Q. n = 0
produces a sum pattern and n = 1 a difference pattern. If the aperture
is electrically large (yielding a pattern with a narrow beamwidth
centered at θ = 0) then the (1− cos θ) term, referred to as element
factor of a Huygens source, can be neglected: in that case a study of
the radiation patterns associated with various aperture distributions
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can focus entirely on T , the radiation pattern space factor, and that is
the path taken in this paper.

In the remainder of this paper the properties of the space factor
are studied for two distinctly different types of distributions: that for
producing a radiation pattern with a main beam central peak (referred
to as a sum pattern and commonly used for data communications), and
also that for producing a radiation pattern with a central null (referred
to as a difference pattern and typically used to detect antenna pointing
error for tracking). The distribution and space factor functions
associated with the sum pattern type are respectively distinguished
as QS and TS ; whereas, those for the difference pattern type as QD

and TD.

2.3. Radiation Pattern Characteristics

In reference to the radiation patterns there are a few terms to define.
A sum pattern has a central peak on-axis (zero angle), and a difference
pattern has a central null. The angular width of a sum pattern’s main
beam at the points where the radiated power pattern drops to half its
peak value is the half-power beamwidth, or HPBW. A radiation pattern
from an aperture with uniform phase typically has pattern nulls at
regular angular intervals off-axis. The angular distance between the
two first off-axis nulls, one on each side of the axis, is the pattern’s first-
null beamwidth (FNBW). Other than the main central beam of a sum
pattern — or dual off-axis main beams of a difference pattern — the
sub-beams between the off-axis nulls are the sidelobes, and the level of
the highest sidelobe in the pattern, with respect to the level of the main
beam(s), is the peak sidelobe level (PSLL). Taper (or illumination)
efficiency, et, is defined by (20), which for an aperture with uniform-
phase and zero crosspol is the ratio of the effective radiating area to
the physical area. Zero crosspol occurs when the aperture fields, all
throughout the aperture, are all oriented in the same direction, as given
in (4).

et
.=

∣∣∣∣
∫∫

Qds

∣∣∣∣
2

Aap

∫∫
|Q|2 ds

(20)

Equation (14) in [2] gives the taper efficiency as the ratio of the squared
magnitude of the aperture-area-normalized on-axis space factor divided
by the aperture-area-normalized area integral of the square of the
distribution.

Aperture directivity is 4πr2 times the ratio of the power radiated
in one direction to the total power radiated in all directions. The
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directivity is approximated in [2], for electrically large apertures,
by (21), below, where Pap is the total TEM aperture power.

D (θ, φ) ∼ D0
|T norm|2
P norm

ap

(
1 + cos θ

2

)2

, (21)

where

D0 = πab
4π

λ2
, (22)

and

P norm
ap =

Pap

πab

.=

1
2

∫∫ ∣∣∣ ~Eap × ~Hap

∣∣∣ ds′

πab
=

∫∫
|Q|2 ds′

πab
. (23)

Borrowing terminology from antenna array theory, the T term in
(10) is referred to as the radiation pattern’s space factor [16], and
the (1 + cos θ) term in (10) as the element factor, or obliquity
factor, of a Huygen’s source [17]. The aperture-power normalized
directivity pattern of an electrically large aperture (with narrow
beamwidth), for sum or difference in general, is thereby approximated
by |T norm|2/P norm

ap , the squared magnitude of the area-normalized
space factor divided by the area-normalized aperture power.

A simple normalization is suitable to provide a basic comparison of
the radiation patterns among candidate aperture distributions. Since
sidelobe level with respect to the beam peak is typically one of the
most significant requirements for an antenna, a suitable normalization
is simply with respect to the peak of the sum pattern, so that all
normalized sum patterns peak at unity (zero dB). Difference patterns,
on the other hand, don’t have a main beam peak: A natural alternative
normalization for a difference pattern is with respect to the peak of
its matching sum pattern, which places the difference pattern’s dual
peaks at a level of about −2 dB. The difference patterns plotted in
the figures simply normalize to the pattern peak, in order emphasize
the relative sidelobe levels. The matching sum pattern results from a
hypothetical aperture distribution equal to the absolute value of the
difference pattern’s aperture distribution, and its on-axis peak value is
denoted T|D|(0), defined in (24). RD(t) is a difference pattern’s radial
distribution according to (17).

T|D| (0) .=
∫∫

|QD| ds′ =
∫ 2π

0

∫ 1

0
RD (t) |cos (ψ −∆)| abt dtdψ

= 4ab

∫ 1

0
RD (t) tdt (24)
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Equation (25), the taper efficiency of a difference pattern, is
constructed using (20), (23), and (24).

etD
.=

[
T norm
|D| (0)

]2

P norm
apD

(25)

One of the most important features of the difference distribution is
the slope of its radiation pattern about its central null. That slope
determines the sensitivity of its detection of pointing error and is
the primary coefficient in any feedback tracking control system that
uses the antenna pointing error detected by this slope. Equation (26)
represents the slope normalized by aperture area.

Snorm .=
dT norm

D (u)
du

∣∣∣∣
u=0

(26)

For the purpose of comparing slopes among candidate aperture
distributions it’s appropriate to further normalize Snorm by

√
P norm

apD

or T norm
|D| (0). Normalizing with respect to the square root of the area-

normalized aperture power would effectively reduce the slope by the
taper efficiency; whereas, the normalization of (27) by the peak of the
matching sum pattern sets the (dual) peaks of all difference patterns
at the same level of about −2 dB and so provides normalization
independent of the taper efficiency. Bayliss [18] suggests comparing
distributions by relative angle sensitivity, defined as normalizing by
the maximum possible slope. The relative angle sensitivity, based
on normalization by the matching sum pattern, is defined in (28),
where SnormT

max is the maximum matching-sum-pattern-normalized angle
sensitivity for the class of aperture distributions in consideration.

SnormT = Snorm/T norm
|D| (0) (27)

Srelative .= SnormT/SnormT
max (28)

3. SUM AND DIFFERENCE PATTERN 3P
DISTRIBUTIONS

The terms 3PS and 3PD distinguish between a 3P distribution intended
respectively for a sum and difference pattern.

3.1. Basic Sum and Difference Patterns

The simplest aperture distribution that produces a sum pattern is a
constant, and in that case the resulting space factor T is solved with
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the help of [15] (5.52.1) as

T norm
S |QS=1 = 2

J1 (u)
u

. (29)

The simplest elliptical aperture distribution that produces a difference
pattern effectively involves the difference rather than the sum of the
fields on either side of the aperture. Distinguishing respective sides
implies the choice of a particular φ angle, in which phi-plane pattern cut
the difference pattern is intended, and that angle is defined as φ = ∆.
The line that divides the two halves of the aperture is at an angle
perpendicular to ∆. Instead of simply negating the sign of the fields
on one half of the aperture, the method given in [4] is used to create a
difference pattern from a radial aperture distribution: by multiplying
the radial distribution by cosψ. In this manner, the simplest example
of a distribution that produces a difference pattern is a constant times
cosψ, in which case (30) is the space factor for the resulting difference
pattern, determined using [15] (6.561.1), where H0(z) and H1(z) are
respectively the Struve functions of order zero and one.

T norm
D |QD=cos(ψ−∆) =jπ cos (∆− Φ)

J1(u)H0(u)−H1(u)J0(u)
u

(30)

3.2. Sum Pattern Distributions (3PS)

The 3PS distribution, introduced in [2], is defined over an elliptical
aperture, depicted in Figure 1. Each unique 3P distribution is
represented by a triplet of parameter values: α, β and c. For the 3PS
distributions these three parameters represent respectively: α) the tail

Figure 1. Elliptical aperture geometry, with generic sum and
difference patterns.
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shape, β) steepness, and c) pedestal height of the distribution. Each 3P
distribution has a characteristic radiation pattern that is conveniently
expressed by a modest closed-form equation. The fact that the 3P
distribution has a closed-form radiation pattern equation provides
faster convergence for any optimization algorithm that utilizes it: in
each cycle of an iterative optimization the candidate three-parameter
distribution is quickly evaluated (in closed-form) as the optimization
algorithm proceeds. Without the closed-form equation the far-field
radiation pattern of the distribution would have to be computed
by numerical integration, which tends to require substantially more
compute time.

The 3P sum distribution is defined in [2] as Q(t) and here renamed
QS(t).

QS(t) = c + (1− c)
(√

1− t2
)α Iα

(
β
√

1− t2
)

Iα (β)
, (31)

where the domains of the three parameters (α, β, c) are α ≥ 0, β ≥ 0,
0 ≤ c ≤ 1. The far-field radiation integral for the 3P sum distribution
is solved in closed form using [15] (6.683.2).

T norm
S (u) = 2c

J1 (u)
u

+ (1− c)
2βαJα+1

(√
u2 − β2

)

Iα (β)
(√

u2 − β2
)α+1 (32)

The asymptotic behavior of TS for large u describes the level of the
far-out sidelobes, and for the 3PS distribution that behavior is in (33).
Note that for large argument, z, Jν(z) ∼ z−1/2.

TS (u)|u→∞ ∼
{

u−3/2, c 6= 0;
u−3/2−α, c = 0.

(33)

The normalization of the 3P sum distribution is discussed in [2], where
the choice is made to normalize by the square root of the normalized
aperture power integral. The aperture-area normalized power integral
is

P norm
apS = c2 + 4c (1− c)

Iα+1 (β)
βIα (β)

+
(1− c)2

2α + 1

(
1− I2

α+1 (β)
I2
α (β)

)
. (34)

The limiting cases for the 3PS distribution are discussed in [2] and
become the Bickmore-Spellmire distribution when c = 0, the parabolic
2P model when β = 0, and the 1P model when α = 0 and c = 0. These
three limiting cases are given respectively by (35), (36), and (37), and
several example distributions for each case are displayed respectively
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in Figures 2–4.

B-SQS(t) =
(√

1− t2
)α Iα

(
β
√

1− t2
)

Iα (β)
(35)

2PQS(t) = c + (1− c)
(
1− t2

)α (36)

1PQS(t) =
I0

(
β
√

1− t2
)

I0 (β)
(37)

Since the broad classes of antennas that the 3P distributions apply
to are mainly concerned with tradeoffs between directivity and PSLL,
an appreciation of the main distinctions between the three limiting
cases can be obtained by considering the uniquely different tradeoff
that each case provides between PSLL and FNBW/2, the angle (u)
at which the first off-axis null occurs, which is an indirect measure of

Figure 2. Example distributions
for 3PS limiting case of c = 0.

Figure 3. Example distributions
for 3PS limiting case of β = 0.

Figure 4. Example distributions for 3PS limiting case of α = c = 0.
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(a) (b)

Figure 5. (a) PSLL versus FNBW/2 Pareto fronts for 3PS limiting
cases of c = 0, a = c = 0, and β = c = 0. (b) PSLL versus FNBW/2
Pareto front for 3PS limiting case of β = 0.

directivity. A multi-objective optimization, such as a tradeoff between
PSLL and FNBW, is effectively summarized by a Pareto front [19, 20].
Pareto fronts for the radiation patterns of these three limiting cases of
the 3PS distribution are given by the perimeters of sample-populated
areas presented respectively in Figures 5(a) and 5(b). The case of
c = 0 appears as essentially a fan sector and fills the region between
the curves, and that of β = 0 has particularly detailed features. For
reduction of the radiation pattern (32) in the limiting case of β → 0,
note that

lim
β→0

[βα/Iα (β)] = 2αΓ (α + 1) . (38)

3.3. Difference Pattern Distributions (3PD)

The most commonly referenced distribution for a difference pattern
appears to be that of Bayliss [18], which presents a two-parameter
circular aperture distribution as an analog to the Taylor n̄ sum
distribution [17]. Section IV in [3] references the discussion in [4]
of a circular Bayliss distribution based on multiplying by cosψ.
This is a natural method of producing a difference pattern, judging
by the fact that the higher-order mode (HE21) linearly-polarized
fields in the mouth of a large corrugated horn (commonly used for
detecting tracking error in satellite earth stations) have the cosψ
dependence [21]. A difference pattern distribution for a line source
is suggested in [22] as a complement to the 3P sum distribution in [2].
That suggestion is basically to multiply the radial Q(t) distribution
in [2] by t. Heeding that suggestion, along with the cosψ factor, the
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3P difference pattern distribution reviewed in this paper for a general
elliptical aperture is defined as

QD (t, ψ) .= cos (ψ −∆) {c + (1− c)t [QS (t)|c=0]} , (39)

or

QD(t, ψ)=cos(ψ−∆)



c+(1−c) t

(√
1−t2

)α Iα

(
β
√

1−t2
)

Iα(β)



 . (40)

The 3P difference pattern far-field is solved using [15] (3.915.2, 6.561.1,
and 6.682.2):

T norm
D (u) = 2j cos (∆− Φ)

{
c

π

2u
[J1 (u) H0(u)−H1(u)J0(u)]

+(1− c)
uβαJα+2

(√
u2 − β2

)

Iα (β)
(√

u2 − β2
)α+2





. (41)

The asymptotic behavior of T for large u describes the level of the
far-out sidelobes, and for the 3P difference distribution that behavior
is given in (42). This is steeper than for the sum distribution when
c = 0.

TD (u)|u→∞ ∼
{

u−3/2, c 6= 0;
u−5/2−α, c = 0.

(42)

On-axis field strength of the matching sum pattern corresponding to
the absolute value of the 3PD distribution, solved using [15] (6.683.6),
is

T norm
|D| (0) = 2

{
c

π
+ (1− c)

√
2
π

Iα+3/2(β)
β3/2Iα(β)

}
. (43)

The total aperture power in the 3PD distribution is similarly found:

P norm
apD =

{
c2

2
+

2c (1−c)
β3/2

√
π

2
Iα+3/2 (β)

Iα (β)
+

(1− c)2

2



1− I2
α+1 (β)
I2
α (β)

2α + 1
−

β2α
2F3




[2α + 2, α + 1/2] ;
[2α+1, 2α+3, α+1] ;

β2




22α+1 (α + 1) Γ2 (α + 1) I2
α (β)








(44)

The limiting cases for the 3PD distribution that correspond to the same
aforementioned cases as for 3PS, (35)–(37), are presented in (45)–(47),
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Figure 6. Example distributions
for 3PD limiting case of c = 0.

Figure 7. Example distributions
for 3PD limiting case of β = 0.

Figure 8. Example distributions for 3PD limiting case of α = c = 0.

and example distributions for each case are displayed respectively in
Figures 6–8.

c=0RD(t) = t
(√

1− t2
)α Iα

(
β
√

1− t2
)

Iα (β)
(45)

2PRD(t) = c + (1− c) t
(
1− t2

)α (46)

1PRD(t) = t
I0

(
β
√

1− t2
)

I0 (β)
(47)

Pareto fronts that reveal the uniquely different tradeoff that each case
provides between PSLL and FNBW are presented in Figures 9(a)
and 9(b). The case of c = 0 appears as a fan sector, and that of
β = 0 has particularly detailed features. Pareto fronts revealing the
tradeoffs between PSLL and relative angle sensitivity are presented in
Figures 10(a) and 10(b). The case of c = 0 is similar in shape to
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(a) (b)

Figure 9. (a) PSLL versus FNBW/2 Pareto fronts for 3PD limiting
cases of c = 0, a = c = 0, and β = c = 0. (b) PSLL versus FNBW/2
Pareto front for 3PD limiting case of β = 0.

(a) (b)

Figure 10. (a) PSLL versus relative angle sensitivity Pareto fronts
for 3PD limiting cases of c = 0, α = c = 0, and β = c = 0. (b) PSLL
versus relative angle sensitivity Pareto front for 3PD limiting case of
β = 0.

the former set of Pareto fronts; although, in Figure 10(a) what was
in Figure 9(a) a nearly straight fan sector is seen to be significantly
curved.

Snorm = 2j cos (∆− Φ)
{

c

6
+

(1− c) Iα+2 (β)
β2Iα (β)

}
(48)

The aperture area normalized slope of the 3PD pattern is presented
in (48). Further normalizing by the peak of the matching sum pattern
and also the maximum possible slope results in the relative angle
sensitivity of the distribution, given in (50). The maximum matching-
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sum-pattern-normalized angle sensitivity, SnormT
max , for a 3PD pattern

occurs in the limit as all three of the 3P parameters approach zero, in
which case the 3PD distribution has a triangular shape peaking at the
aperture edge.

SnormT
max =

lim
α=β=c→0

Snorm

lim
α=β=c→0

T norm
|D| (0)

=
√

π

2
Γ

(
5
2

)

Γ (3)
(49)

Srelative = SnormT

/[√
π

2
Γ

(
5
2

)

Γ (3)

]
(50)

4. METAHEURISTIC OPTIMIZATION METHODS

Optimization techniques used in the electromagnetic engineering
community are often metaheuristic because of the complexity of
the tradeoffs involved. Metaheuristic methods involve stochastic
optimization to distinguish global from local optimal solutions, as
opposed to classical optimizers that are meant to produce exact
solutions for simpler classical models with local extrema, which if
applied to real-world engineering problems tend to get stuck on local
optimum solutions.

A basic overview of metaheuristic methods is provided in [23].
Such methods include Ant Colony Optimization [24], Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [25], Genetic
Algorithms (GA) [26], Invasive Weed Optimization (IWO) [27],
PSO [5–10], Simulated Annealing [28], and Tabu Search [29]. Among
these optimization techniques, the PSO is a practical balance between
model simplicity and robust, rapid, global solution convergence.
Examples of the state of the art of the application of PSO to fractal
and adaptive phased-array antennas are given in [30–32].

Optimization can pertain to a system with one or more variables
with one or more optimization objectives, goals, or constraints. With
only one objective the optimization can evaluate it with a fitness
function. If there are multiple (competing) objectives evaluation
of the optimality becomes more complicated. There are generally
two approaches to multi-objective optimization: 1) combining fitness
functions and 2) referring to a Pareto front [9, 19, 20]. A classical
way of combining multiple objectives into a single fitness function
is a weighted sum of fitness functions — one from each objective —
where the result of the overall optimization can depend on the choice
of weighting. An example is given in (51), which involves the two
competing objectives of peak sidelobe level and first-null beamwidth.
Pareto optimality represents the trade-off between multiple goals: A
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solution is Pareto optimal when it is not possible to improve one goal
without degrading at least one of the others. Optimization by Pareto
front involves more intensive numerical investigation to determine the
actual boundary of optimality between competing objectives, and a
few examples of Pareto fronts are given below. In general there is no
singly optimal solution to a multi-objective optimization: the set of
Pareto optimal multi-objective solutions is called a Pareto front.

4.1. Particle Swarm Optimization (PSO)

The PSO algorithm is similar to the concept of a swarm of bees in a
field, effectively communicating their individual findings and so guiding
the swarm as a whole ever closer to a suitable location to converge
upon. A PSO algorithm directs the search and evaluates a fitness
function, customized for the particularly specified goal(s), to evaluate
the merit of each candidate solution considered by any member of the
swarm. Example PSO convergence plots are shown in Figures 11(a)
and 11(b), using respective fitness functions given by (51) and (52),
and each with twenty agents per swarm and thirty swarm trials per
iteration. These two are comparable since they both have the same goal
of −40 dB PSLL; although, one is for a sum pattern and the other for
a difference pattern. Note that the convergence plot in Figure 11(a)
involves a fitness function that is not conditional; whereas, that in
Figure 11(b) is conditional: in the former case the average fitness is
considerably larger than in the latter; although, the rate of convergence

(a) (b)

Figure 11. (a) PSO convergence for design of 3PS pattern with
−40 dB PSLL and minimum FNBW. (b) PSO convergence for design
of 3PD pattern with −40 dB PSLL and minimum FNBW.
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appears to be a bit faster in the former than the latter.

fitness 11(a) = (PSLL (dB)− goal)2 + FNBW(u) /2, (51)

fitness 11(b) =
{

FNBW(u) /2, if PSLL ≤ goal;
999, otherwise. , (52)

The position, in model parameter space, of the search agent (swarm
member) with the best fitness value among the swarm at any iteration
is the global best for that iteration. Each search agent moves about the
parameter space and its flight path is pulled toward that global best.
It is also pulled toward its own personal best location, and its flight
path is also affected by its own inertia and random motion.

Consider the flight trajectory of any particular swarm member
(“search agent”, or “bee”) in the PSO model n-dimensional parameter
space, letting n = 2 here for simplicity. Applying real-world physics
and assuming each bee naturally counteracts the force of gravity, we
imagine that each bee has some linear momentum that Newton’s Law
preserves until external forces are applied or the bee alters its path.
External winds and individual bee behavior combine to provide a
seeming randomness to the individual flight paths. By means of the
waggle dance a bee communicates to its hive-mates in which direction
with respect to the Sun and how far it flew to reach the food source
it found. So we can imagine that each bee’s flight path is affected
by 1) Newton’s Law, 2) random motion, 3) its own knowledge of
the best place at which it has found food (personal best, or pbest),
and 4) the best overall location found by any member of the swarm
(the global best, or gbest). This is represented by (53) for the motion
of any PSO search agent. vn represents the search agent’s velocity
vector in the current (nth) iteration, xn represents its current position
vector, w is the momentum factor, c1 and c2 effectively represent spring
constants pulling the search agent respectively towards its personal
and the overall swarm’s global best locations, and rand () is a strictly-
positive valued random number function ranging between the zero and
one. ∆t is a discrete step representing the time between iterations.

xn+1 = xn + vn∆t, and
vn+1 = wvn + c1rand () (pbest − xn) + c2rand () (gbest − xn) (53)

5. PARTICLE SWARM OPTIMIZATION OF 3P
DISTRIBUTIONS

The goal for the 3P distribution is to provide an antenna aperture
distribution that provides specified radiation pattern characteristics,
such as beamwidth, PSLL, taper efficiency, sidelobe level limit (mask)
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as a function of angle, and for the difference pattern: relative
angle sensitivity. These characteristics are translated into a fitness
function for the optimizer, which by convention the PSO minimizes.
Throughout the optimization process the PSO varies the 3P parameter
values automatically, within any parameter value constraints imposed
on the algorithm. Convergence is faster when any of the 3P parameters
are constrained to within a range known to provide the desired solution.

Several examples of the application of PSO to the 3P distributions
are given. Two examples of the design of 3PS distributions by PSO
are presented: maximizing aperture taper efficiency while satisfying a
sidelobe mask, and minimizing the beamwidth with the peak sidelobe
level (PSLL) set to a target value. A study of the sensitivity of
the 3P parameter values is presented, followed by examples of 3PD
distributions design by PSO for a range of PSLL constraints.

5.1. Example 1: 3PS Maximum Gain with a Sidelobe Mask

The first example maximizes the gain with a sidelobe constraint.
Given a uniform phase aperture, which the 3P distribution assumes,
maximum gain is associated with peak taper efficiency. A formal
constraint for the sidelobes of a geostationary satellite ground station
antenna is the FCC 25.209 mask [33], which starts at 1.5 deg
from beam peak with sidelobe directivity constraint of twenty-nine
decibels isotropic gain minus twenty-five decibels times the base ten
logarithm of the pattern angle in degrees (for conventional Ku- or Ka-
band geostationary service ground stations). The conditional fitness

Figure 12. PSO 3PS radiation
pattern achieving maximum taper
efficiency while also meeting a
sidelobe mask.

Figure 13. PSO 3PS distribu-
tion and radiation pattern achiev-
ing PSLL of −30 dB peak with
minimum beamwidth.
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function which PSO minimizes for this example is

fitness 12 =
{−et, if all sidelobes below the mask;

999, otherwise. (54)

If any sidelobe exceeds the mask then the candidate 3P distribution
is deemed out-of-bounds and discarded with a very large fitness
value. This out-of-bounds treatment is the same as how search agents
that wander outside an acceptable range of parameter values can be
dealt with in the PSO algorithm by applying invisible boundaries [6].
Figure 12 shows the 3P distribution and radiation pattern from this
PSO run, which yielded 3P parameter values of alpha = 1.9389, beta
= 1.6928, and c = 0.5581. The locus of the sidelobe peaks is seen
to follow the mask, and a 96.6% taper efficiency is achieved with an
aperture diameter of 68 wavelengths.

5.2. Example 2: 3PS Minimum Beamwidth with Specified
PSLL

The second example provides a 3P antenna aperture distribution that
achieves a radiation pattern with sidelobe level (PSLL) less than
−30 dB peak while minimizing beamwidth. For this example the fitness
function is the square of the difference between the PSLL and the goal,
in dB, plus the angle, u, of the first null.

fitness 13 = (PSLL− goal)2 + FNBW/2, (55)

where the PSLL goal is −30 dB peak. The 3P parameters produced
by one PSO run meeting these constraints are alpha = 2.002, beta
= 2.877, and c = 0.306, and the resulting radiation pattern and 3P
distribution are shown in Figure 13. This figure also superimposes
(light shading) the uniform-amplitude aperture radiation pattern for
comparison — in which case the sidelobes would be considerably higher
than that provided by the optimized 3P distribution.

5.3. Example 3: 3PS Family of PSO Solutions

PSO typically yields a family of solutions, all of which satisfy the
constraints to some degree. Figure 14 shows such a family, with a PSLL
of −40 dB. The selected family of solutions is: 1) alpha = 2.2390, beta
= 0.5625, c = 0.139, 2) alpha = 1.2196, beta = 3.7930, c = 0.1015,
and 3) alpha = 0.6207, beta = 4.5970, c = 0.0757. This family
represent only three of many PSO solutions that were found to meet
the given requirements, and these three were chosen because of the
substantial variation in their alpha parameter values, to show that the
combination of a high alpha value and low beta value can provide a
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Figure 14. PSO 3PS distributions and radiation patterns for a family
of PSO solutions all achieving PSLL of −40 dB peak with minimum
beamwidth.

similar distribution as the combination of a low alpha value and high
beta. There is little difference between the distributions of each of these
family members, as the inset distribution shows (since they all meet
the same design requirements). The fitness function is given by (55).

5.4. Example 4: 3P Pattern Sensitivity to Variation of
Parameter Values

A practical design must account for implantation error, and so a
sensitivity analysis was conducted to determine how sensitive the 3P
distribution might be to variations in each of the parameter values.
The first PSO family member 3PS solution in Figure 14 is used as the
basis for the parameter sensitivity analysis. Figure 15(a) shows that
a 10% variation in the alpha parameter value can cause as much as
5–10 dB variation in the level of the first sidelobe. Figure 15(b) shows
that the beta parameter value is the least sensitive to variation of its
value: only a fewdB variation in the level of the first sidelobe level
result from a significant variation in the beta value from −100% to
+300%. Figure 15(c) shows that the 3P c-parameter has intermediate
sensitivity. The level of the first sidelobe level varies several dB with a
10% variation in the value of the c-parameter value. The corresponding
variations in 3PD patterns are comparable to those given here for 3PS.

5.5. Examples 5–7: 3PD Maximum Angle Sensitivity with
Specified PSLL

PSO examples are presented in Figures 16(a)–(c) for 3PD distributions
with PSLL design goals of respectively −30, −48 and −55 dB, while
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(a) (b)

(c)

Figure 15. (a) PSO parameter sensitivity, showing variation of
radiation pattern when only the 3PS alpha parameter value is changed
from the PSO solution value by ±10%. (b) PSO parameter sensitivity,
showing variation of radiation pattern when only the 3PS beta
parameter value is changed by −100% and +300%. (c) PSO parameter
sensitivity, showing variation of radiation pattern when only the 3PS
c parameter value is changed from the PSO solution value by ±10%.

simultaneously maximizing the relative angle sensitivity, using the
fitness function of (56). The 3P parameter values for Figure 16(a)
are alpha = 1.9949, beta = 0.0194, and c = 0.0804, in which case a
relative angle sensitivity of 79% is achieved with −30 dB PSLL. Those
for Figure 16(b) are alpha = 2.3292, beta = 1.3064, and c = 0.0460, in
which case a relative angle sensitivity of 75% is achieved with −38 dB
PSLL. The 3P parameter values for Figure 16(c) are alpha = 0.0318,
beta = 8.3484, and c = 0.0031, in which case a relative angle sensitivity
of 67% is achieved with −55 dB PSLL. The 3PD distribution can meet
even considerably deeper PSLL limits than given by these examples,
indicated by Figure 9(a). These optimal multi-objective solutions are
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(a) (b)

(c)

Figure 16. (a) PSO 3PD designed for −30 dB PSLL and maximum
relative angle sensitivity. The inset 3PD distribution is shown
normalized to its peak height. (b) PSO 3PD designed for −38 dB PSLL
and maximum relative angle sensitivity. The inset 3PD distribution
is shown normalized to its peak height. (c) PSO 3PD designed for
−55 dB PSLL and maximum relative angle sensitivity. The inset 3PD
distribution is shown normalized to its peak height.

typically found on the edge of a Pareto front. Bayliss [18] reveals
that for a difference pattern to realistically achieve maximum relative
angle sensitivity with a given maximum PSLL requires that its first
sidelobes be of uniform level, and Figures 16(a)–(c) show that the 3PD
distributions determined by PSO with those constraints have that very
characteristic.

fitness 16 =

{
− (relative angle sensitivity) , if PSLL ≤ goal;

999, otherwise.
(56)
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6. CONCLUSION

The 3P distribution is presented for both sum and difference patterns
in the context of providing a versatile amplitude distribution model
of for an entire class of uniform-phase elliptical antenna apertures.
Analytical closed form equations for several characteristics of a general
3PS or 3PD distribution were derived: the far-field radiation pattern,
taper efficiency, aperture power, asymptotic sidelobe level, and for
the 3PD also the relative angle sensitivity. The PSO algorithm was
discussed, and references for other metaheuristic optimization methods
were given. Several examples of designing 3P distributions by PSO
demonstrate that the 3P distribution can meet a range of real-world
design constraints. The PSO algorithm converges to a solution in each
case with different 3P antenna aperture design constraints. Radiation
patterns and distributions for a family of solutions which all satisfy the
same requirements were presented, and the sensitivity of each of the 3P
parameter values was investigated. The PSO optimized 3P patterns
meet peak sidelobe, taper efficiency and sidelobe mask requirements.
The PSO optimized 3P patterns display the ideal characteristic of
uniform close-in sidelobe levels when in addition to constraining the
optimization by a specified PSLL it is also additionally constrained by
maximum taper efficiency, in the case of a sum pattern, or by maximize
angle sensitivity in the case of a difference pattern. The versatility of
the 3P distribution and PSO’s utility as a metaheuristic optimizer
combine to provide customized aperture distributions for a versatile
range of applications.
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APPENDIX A. MATHEMATICAL APPENDICES

A.1. Derivation of (18), the Generalized Space Factor
Integral

T (θ, φ)|n=0 or 1 = 2πabjn cos [n (∆− Φ)]
∫ 1

0
R (t)Jn (ut) tdt (A1)

From (16) and (17),

T (θ, φ) = I1

∫ 1

0
R (t) abt dt, (A2)

where after substituting x = ψ − Φ,

I1 =
∫ 2π

0
{cos (nx) cos [n (Φ−∆)]

− sin (nx) sin [n (Φ−∆)]} exp [jut cosx] dx. (A3)
Using [15] (3.915.2), and noting that the term with sine is zero because
it’s an odd function:

I1 = 2πjn cos [n (Φ−∆)]Jn (ut) (A4)
Q.E.D.
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A.2. Derivation of (30), the Space Factor of the Simplest
Difference Pattern

T norm
D |QD=cos(ψ−∆) =jπ cos(∆− Φ)

J1(u)H0(u)−H1(u)J0(u)
u

(A5)

From (18):

T norm
D (θ, φ)=2j cos (∆− Φ)

∫ 1

0
R(t)J1(ut)tdt =

∫ 1

0
J1(ut)tdt. (A6)

[15] (6.561.1) provides
∫ 1

0
xvJv (ax) dx = 2v−1a−vπ

1
2 Γ

(
v+ 1

2

)
[Jv(a)Hv−1(a)−Hv(a)Jv−1(a)] ,

(A7)
thus

T norm
D (θ, φ) = 2j cos(∆−Φ)

(√
π

u
Γ
(

3
2

))
[J1 (u) H0(u)−H1(u)J0(u)] .

(A8)
where Γ

(
3
2

)
=
√

π/2. Q.E.D.

A.3. Derivation of (32), the 3PS Radiation Pattern Space
Factor

T norm
S (u) = 2c

J1 (u)
u

+ (1− c)
2βαJα+1

(√
u2 − β2

)

Iα (β)
(√

u2 − β2
)α+1 (A9)

From (18)

T norm
S (θ) = 2

∫ 1

0
R (t)J0 (ut) tdt

= 2
∫ 1

0



c + (1− c)

(√
1− t2

)α Iα

(
β
√

1− t2
)

Iα (β)



J0 (ut) tdt

(A10)

Consider first the constant term, utilizing [15] (5.52.1):

(5.52.1):
∫

xp+1Zp (x) dx = xp+1Zp+1 (x) (A11)
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Thereby,

2c

∫ 1

0
J0 (ut) tdt = 2c

J1 (u)
u

(A12)

Let I2 symbolize the second term on the RHS of (A10), utilizing [15]
(6.683.2).

I2 =
2 (1− c)
Jα (jβ)

∫ 1

0

(√
1− t2

)α
Jα

(
jβ

√
1− t2

)
J0 (ut) tdt (A13)

Then substitute
√

1− t2 = sin x:

I2 =
2 (1− c)
Jα (jβ)

∫ π/2

0
Jα (jβ sinx) J0 (u cosx) sinα+1 x cosxdx (A14)

(6.683.2):
∫ π/2

0
Jv (z1 sinx) Ju (z2 cosx) sinv+1 x cosu+1 xdx

=
zv
1zu

2 Jv+u+1

(√
z2
1 + z2

2

)
√(

z2
1 + z2

2

)v+u+1
(A15)

Thus

I2 =
2 (1− c)
Jα (jβ)

(jβ)α Jα+1

(√
u2 − β2

)
√

(u2 − β2)α+1

= (1− c)
2βαJα+1

(√
u2 − β2

)

Iα (β)
√

(u2 − β2)α+1
, (A16)

Q.E.D.

A.4. Derivation of (34), the 3PS Aperture Power Integral

P norm
apS = c2 + 4c (1− c)

Iα+1 (β)
βIα (β)

+
(1− c)2

2α + 1

(
1− I2

α+1 (β)
I2
α (β)

)
(A17)

The aperture power integral according to (23) is

PapS =
∫ 2π

0

∫ 1

0
Q2

S (t, ψ)abtdtdψ, (A18)

where

QS (t, ψ) = c + (1− c)
(√

1− t2
)α Iα

(
β
√

1− t2
)

Iα (β)
. (A19)
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Thus

P norm
apS = 2

∫ 1

0



c + (1− c)

(√
1− t2

)α Iα

(
β
√

1− t2
)

Iα (β)





2

tdt. (A20)

Let

P norm
apS

.= c2 + 4
c (1− c)
Jα (jβ)

I3 +
(1− c)2

J2
α (jβ)

I4, (A21)

where

I3 =
∫ 1

0
Jα

(
jβ

√
1− t2

)(√
1− t2

)α
tdt, (A22)

and

I4 = 2
∫ 1

0
J2

α

(
jβ

√
1− t2

) (
1− t2

)α
tdt. (A23)

I3 is solved by change of variables x = jβ
√

1− t2 to reduce it to the
form of (A11).

I3 =
1

(jβ)α+2

∫ jβ

0
xα+1Jα (x) dx =

Jα+1 (jβ)
jβ

(A24)

For I4 let x = 1− t2 to put it into a form that Maple solves:

I4 =
∫ 1

0
J2

α

(
jβ
√

x
)
xαdx =

J2
α (jβ) + J2

α+1 (jβ)
2α + 1

(A25)

Q.E.D.

A.5. Derivation of (41), the 3PD Radiation Pattern Space
Factor

T norm
D (u) = 2j cos (∆−Φ)

{
c

π

2u
[J1 (u) H0 (u)−H1 (u) J0 (u)]

+(1− c)
uβαJα+2

(√
u2 − β2

)

Iα (β)
(√

u2 − β2
)α+2





(A26)

From (18),

T norm
D (θ, φ) = 2j cos (∆− Φ)

∫ 1

0
R (t)J1 (ut) tdt (A27)
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where

RD (t) = c + (1− c) t
(√

1− t2
)α Iα

(
β
√

1− t2
)

Iα (β)
(A28)

The first term on the RHS with the c coefficient was derived above
starting with (A5). For the second term, define

I5 =
∫ 1

0



t

(√
1− t2

)α Iα

(
β
√

1− t2
)

Iα (β)



J1 (ut) tdt. (A29)

Let t = sinx:

I5 =
1

jαIα (β)

∫ π/2

0
J1 (u sinx) Jα (jβ cosx) sin2 x cosα+1 xdx (A30)

Utilizing (A15),

I5 =
uβαJα+2

(√
u2 − β2

)

Iα (β)
√

(u2 − β2)α+2
(A31)

Q.E.D.

A.6. Derivation of (43), 3PD Matching Sum Pattern Space
Factor

T norm
|D| (0) = 2

{
c

π
+ (1− c)

√
2
π

Iα+3/2 (β)
β3/2Iα (β)

}
(A32)

From Equation (24),

T norm
|D| (0) =

1
π

∫ 2π

0

∫ 1

0
RD (t) |cos (ψ −∆)| t dtdψ

=
4
π

∫ 1

0
RD(t)tdt (A33)

=
4
π

∫ 1

0



c+(1−c)t

(√
1−t2

)α Iα

(
β
√

1−t2
)

Iα(β)



tdt(A34)

Let t = cos θ:

T norm
|D| (0) =

2c

π
+

4 (1− c)
πJα (jβ)

∫ π/2

0
Jα (jβ sin θ) sinα+1 θ cos2 θdθ (A35)
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Using [15] (6.683.6)

(6.683.6):
∫ π/2

0
Ju (a sin θ) (sin θ)u+1 (cos θ)2p+1 dθ

2pΓ (p + 1) a−p−1Jp+u+1 (a) (A36)

T norm
|D| (0)=

2c

π
+

4(1−c)
πJα(jβ)

[
2

1
2 Γ

(
3
2

)
(jβ)−3/2Jα+3/2(jβ)

]
(A37)

Q.E.D.

A.7. Derivation of (44), the 3PD Aperture Power Integral

P norm
apD =

{
c2

2
+

2c (1− c)
β3/2

√
π

2
Iα+3/2 (β)

Iα (β)
+

(1− c)2

2



1− I2
α+1(β)
I2
α(β)

2α + 1
−

β2α
2F3




[2α+2, α+1/2] ;
[2α+1, 2α+3, α+1] ;

β2




22α+1(α+1)Γ2(α+1)I2
α(β)








(A38)

The aperture power integral according to (23) is

PapD =
∫ 2π

0

∫ 1

0
Q2

D (t, ψ)abtdtdψ, (A39)

where

QD(t, ψ)=cos(ψ−∆)



c+(1− c)t

(√
1−t2

)α Iα

(
β
√

1−t2
)

Iα(β)



 . (A40)

Thus

P norm
apD =

∫ 1

0



c + (1− c) t

(√
1− t2

)α Iα

(
β
√

1− t2
)

Iα (β)





2

tdt. (A41)

Let

P norm
apD

.=
c2

2
+ 2

c (1− c)
Jα (jβ)

I6 +
(1− c)2

2J2
α (jβ)

I7, (A42)

where

I6 =
∫ 1

0
Jα

(
jβ

√
1− t2

)(√
1− t2

)α
t2dt, (A43)
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and

I7 = 2
∫ 1

0
J2

α

(
jβ

√
1− t2

) (
1− t2

)α
t3dt. (A44)

For I6 let x =
√

1− t2 to yield a form that Maple and Mathematica
will solve:

I6 =
∫ 1

0
Jα (jβx) xα+1

√
1− x2dx =

√
π

2
Jα+3/2 (jβ)

(jβ)3/2
. (A45)

For I7 let x = 1− t2:

I7 =
∫ 1

0
xαJ2

α

(
jβ
√

x
)
dx−

∫ 1

0
xα+1J2

α

(
jβ
√

x
)
dx

.= I8 − I9 (A46)

From Maple:

I8 =
∫ 1

0
xαJ2

α

(
jβ
√

x
)
dx =

J2
α (jβ) + J2

α+1 (jβ)
2α + 1

(A47)

Maple:

I9 =
(jβ)2α

2F3

([
2α + 2, α + 1

2

]
; [2α + 1, 2α + 3, α + 1] ;β2

)

22α+1 (α + 1)Γ2 (α + 1)
(A48)

Q.E.D.

A.8. Derivation of (48), the Slope of the Difference Pattern

Dnorm
slope

.=
dT norm

D (u)
du

∣∣∣∣
u=0

=2j cos(∆−Φ)
{

c

6
+

(1− c)Iα+2(β)
β2Iα(β)

}
(A49)

Recalling (41):

T norm
D (u)

2j cos (∆− Φ)
=

{
c

π

2u
[J1 (u) H0 (u)−H1 (u)J0 (u)]

+ (1− c)
uβαJα+2

(√
u2 − β2

)

Iα (β)
(√

u2 − β2
)α+2

}
(A50)

Equation (26) defines the slope:

Dnorm
slope

.=
dT norm

D (u)
du

∣∣∣∣
u=0

(A51)

Using either Maple, Mathematica or working out the arithmetic by
hand, noting that lim

x→0
H0(x)/x = 2/π and lim

x→0
H1(x)/x2 = 2/(3π),

yields the given result.
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