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Abstract—This paper presents an analytical method to calculate the
scattering parameters of a wireless power transmission link composed
of electrically small single loop resonators. The proposed method
takes into account all the different couplings in the structure. First,
the method is presented and used to find the S-parameters for
links composed of circular and rectangular resonators. The model
is then used to find the optimal topology for a given transmission
distance. Validation of the model is done by comparing its results with
experimental measurements. Based on this model, a software used for
the design of wireless power transmission links has been developed
and is presented. Finally, demonstrations that this model produces
excellent results are provided. At resonant frequency, an accuracy
better than 2% is reached.

1. INTRODUCTION

WIRELESS POWER TRANSMISSION is an idea that has fascinated
generations of researchers. The basic concept was proposed and
demonstrated a century ago by Nicola Tesla, who carried out several
experiments on wireless power transmission by radio waves [1].

Interestingly, in the last decade, wireless power transmission has
again become a field of interest. It enables new applications in several
fields including customer’s electronics, military, medicine and more.
One of the most promising techniques is based on resonant magnetic
couplings [2].

The main advantage of this technique compared to a simple
inductive coupling is its high efficiency. It has been shown that high
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transmission efficiency could be achieved over distances of more than
1 meter with relatively small transmitters.

Several papers have been published on this topic. First, in [3]
a technique to analyse Wireless Power Transmission Links (WPTL)
was derived using the coupled-mode theory. This method provides
a good approximation but its accuracy is too low to be useful for
final designs or optimizations. Then, in [4, 5], systems for recharging
electrical devices based on WiTricity are proposed. In [4], a comparison
between traditional chargers and a charger based on WiTricity is made,
and in [5] the issue of misalignments between transmitter and receiver
is addressed. Then in [6] the design of WPTL for implantable devices
is presented. It provides interesting results concerning the influence of
different structural parameters on the efficiency of the link.

The contribution of this paper is to present a novel analytical
technique to design WPTLs. This has several advantages: it is faster
and easier to implement in an optimization software (like the one
presented in this paper) and it has a high accuracy. Indeed, the error
at the operating frequency is less than 2%.

The WPTLs discussed in this paper are composed of electrically
small resonators made of a single loop inductor in series with a discrete
capacitor. These WPTL are in fact two pole filters and can be analysed
using the well-known filter theory developed for microwave filters [7].

In Section 2, the theory of WPTL is presented. In Section 3, an
analysis is performed to evaluate the impedance matrix of the link.
This matrix is then used to extract the S-parameters. In Section 4,
the influence of misalignment on transmission efficiency is studied. In
Section 5, the WPTL design software is presented and used to find
the optimal topology for a given transmission. Finally, in Section 6 an
experimental validation is shown.

2. THEORY

Figure 1 shows the proposed WPTL where e is the distance between
coupling loops and resonators, c is the transmission distance and r
the radius of the coupling loops and resonators. All loops are axially
aligned. The transmission of the link is given by [7]:

S21 =
2

QE
· jK(

1
QE

+
1
Q

+ jΩ
)2

+ K2

, (1)

where Ω is the normalized frequency, K the coupling coefficient, Q the
unloaded quality factor and QE the external quality factor. Neglecting
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Figure 1. Schematic of the link.

the losses, we can simplify the equation as follows:

|S21|Ω=0 =
2KQE

(KQE)2 + 1
. (2)

For a lossless transmission where |S21| = 1, we obtain the following
expression

K =
1

QE
. (3)

According to (3), the maximum transmission is obtained at the
resonant frequency when the external quality factor QE is equal to the
inverse of K [7, 8]. It is for this reason that the feeding and loading
loops are of high importance. Hence, for a given transmission distance,
they must be carefully designed and positioned. One can physically
move them back and forth in order to find the distance that meets this
requirement. This makes the 4-loop design especially interesting and
flexible in comparison to the 2 loops design. It should be noted that a
2-loop design could also meet the requirement of (3) if an alternative
coupling circuit (capacitors for example) was used. Their transmission
efficiency could be identical provided that the coupling circuits have the
same losses. However the Q-factor of capacitors is usually smaller than
the Q-factor of loops. Hence, coupling using loops generally provides
the highest efficiency. If one knows the Q-factor of the capacitors,
the efficiency could easily be calculated with the same technique as
presented in this paper.

To maximize the transmission, one has to maximize the product
of the resonators quality factor and the coupling coefficient, which is
defined by:

K =
L12√
L1L2

. (4)
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Interestingly, K is independent of the resonator’s number of turns
which means that increasing these would increase Q but not K. Q can
be enhanced by enlarging the wire radius. This way, it is thus also
possible to achieve comparable transmission efficiency with single loop
resonators. The latter presents several advantages, such as ease of
fabrication and compactness [8].

The resonators studied in this paper are electrically small and
made of a single loop in series with a capacitor. The capacitor value
is carefully chosen to obtain the maximum efficiency at the desired
frequency. These values are dependant of all the dimensions of the
structure, including all coils. The derivation of an analytical technique
is then a clear advantage to speed up the design process.

The inductances can be analytically calculated using a magneto-
statics technique and the WPTL can be modelled using discrete cou-
pled resonators. Figure 2 shows the equivalent circuit of the latter
where, R2, R3 and R4 are the internal resistances of the inductors and
Rs and Re are the resistances of the source and the load respectively.
In the equivalent circuit, the first loop corresponds to the feeding loop,
the second and third loops correspond to the two resonators and the
last loop, to the load loop. Following the procedure given in [9], the
transmission coefficient S12 and S21 are equal and given by:

S12 =
2Re · I2

Vs
, (5)

where the [S] matrix, is the 2 × 2 scattering matrix of the complete
structure, normalized to 50 Ω and Vs is the feed loop voltage. This
equation can be expressed in term of the impedance matrix as:

S12 = 2R2 · [Z]−1
41 . (6)
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Figure 2. Equivalent circuit of the link.
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The reflection coefficient S11 is given by:

S11 = 1− 2Re · I2

Vs
. (7)

The reflection coefficient can also be expressed in term of the
impedance matrix as:

S11 = 1− 2Re · [Z]−1
11 . (8)

To determine the impedance matrix of the equivalent circuit, the
well-known Kirchhoff’s voltage law is applied to each of the four loops.
Then, for each loop, the mutual inductance created by the other loops
is added. Finally, the equations are written in matrix form and the
impedance matrix is extracted:

Z =




Z11 −jωM12 −jωM13 −jωM14

−jωM21 Z22 −jωM23 −jωM24

−jωM31 −jωM32 Z33 −jωM34

−jωM41 −jωM42 −jωM43 Z44


 . (9)

In the matrix, Z11, Z22, Z33 and Z44 are defined as follows,

Z11 = Rs + R1 +−jωL1, (10)

Z22 = R2 + jωL2 +
1

jωC2 + G2
, (11)

Z33 = R2 + jωL2 +
1

jωC3 + G3
, (12)

Z44 = RL + R4 + jωL4. (13)

The first and last terms of the main diagonal correspond to the
sum of the resistance and inductive reactance of feeding loop and
load loop, respectively. The second and third terms of the main
diagonal correspond to the sum of the resistance, inductive reactance
and capacitive reactance of the two resonators. Finally, the terms that
are not on the main diagonal correspond to the mutual inductances
between the loops.

As can be seen, all mutual inductances, which are shown on
Figure 2, are considered, i.e., the mutual inductance between loops and
resonators, between both resonators, and between both coupling loops.
Hence, every significant parameter is considered in the impedance
matrix presented in (9).

Therefore, if the value of the inductances and mutual inductances
are known, it is possible, using (6), (8) and (9) to calculate exactly the
scattering parameters of the link.
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3. EVALUATION OF THE IMPEDANCE MATRIX

In this section, the impedance matrix is evaluated analytically for two
different geometries, namely the circular loops and the square loops.
The procedure detailed in [10] is used to calculate the inductance and
the wire resistance is evaluated directly, taking into consideration the
skin effect.

3.1. Self and Mutual Inductance of Circular Loops

The loops analyzed in this paper are electrically small. Hence, it is
possible to calculate the inductance exactly using the magnetostatics
techniques. In the case of a circular loop, the inductance is given
by [10]:

Lc =
Ψloop

I
= µ0

√
a (a− rw)

[(
2
k
− k

)
K (k)− 2

k
E (k)

]
, (14)

where Ψ is the flux through the loop, I the current in the loop, a
the radius of the loop, rw the radius of the wire, µ0 the vacuum
permeability. K and E are the complete elliptic integral of the first
and second kind, and k is given by:

k2 =
4a2

(4a2 + d2)
. (15)

Similarly, the mutual inductance between two loops is given
by [10–12]:

Mc,12 = µ0

√
ab

[(
2
k
− k

)
K (k)− 2

k
E (k)

]
, (16)

where b is the radius of the second loop.

3.2. Self and Mutual Inductance of Rectangular Loops

Similarly, following the procedure detailed in [10], one can find the self
and mutual inductances for rectangular loops. For electrically small
structures the self-inductance is found using the following equation:

Lr =
µo

π

[
−(l − rw) · sinh−1

(
l−rw

w−rw

)
−(w−rw) · sinh−1

(
w−rw

l−rw

)

+ (l − rw) · sinh−1

(
l − rw

rw

)
+ (w − rw) · sinh−1

(
w − rw

rw

)

+ rw · sinh−1

(
rw

w − rw

)
+ rw · sinh−1

(
rw

l − rw

)
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+2
√

(l − rw)2 + (w − rw)2 − 2
√

(w − rw)2 + (rw)2

−2
√

(l − rw)2 + (rw)2 − 2rw · ln 1 +
√

2 + 2
√

2rw

]
, (17)

where l is the length and w the width of the loop (as shown in Figure 3).

L

loop 1

loop 2 d

rw

Figure 3. Schematic of the two rectangular loops for mutual
inductance calculation.

The mutual inductance between two square loops of side length l1
and l2 that are parallel and have their centers aligned can be calculated
analytically. To do so, the square loops are split into four pieces of
wire and the partial mutual inductance between each pair of wire is
calculated. The partial mutual inductance between two parallel wires
of same length is given by:

Mp (l, rw, d) =
µ0

2π
l


ln


 l

d + rw
+

√
l

d + rw

2

+ 1




−
√

1 +
d + rw

l

2

+
d + rw

l


 , (18)

where l, rw and d are the length of the wires, the radius of the wire
and the shortest distance between the wires, respectively. Based on
this expression and using simple geometrical manipulations, we can
also calculate the mutual inductance between wires of different length.
By doing so for each pair of wires and making the sum of all, we obtain
the mutual inductance between two parallel rectangular loops:

Mr,12 = 4
[
Mp (p + l2, d1, rw2)−Mp (p, d1, rw2)

−Mp (p + l2, d2, rw2) + Mp (p, d2, rw2)
]
, (19)

where l2 is the side length of the biggest loop and l1 of the smallest, p
is given by:

p =
l1 − l2

2
, (20)
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and d1 and d2 are given by:

d1 =

√
l1
2
− l2

2

2

+ d2, (21)

d2 =

√
l1
2

+
l2
2

2

+ d2. (22)

Hence, using (17) and (19) one can calculate the self and mutual
inductance of two square loops.

3.3. Resistance

Finally, the wire resistance of a loop, when considering the skin effect,
is given by the Rac-TED-ML [13] formula as follow:

R =
L

σπδ (2r − δ) (1 + Y )
, (23)

where σ is the wire conductivity, r is the wire radius, δ is the skin
depth and L is equal to 2πr for the circular coil and equal to 4l for the
square coil and Y is a correction factor given in [13]. The Rac-TED-
ML formula provides accuracy better than 0.09% [13] in comparison
with the exact calculation using Kelvin Bessel formula.

In conclusion, for a given link and topology, we can calculate all
the self and mutual inductances and resistances present in our model.
Then, using (9), the impedance matrix is evaluated.

Finally, using (6) and (8), an accurate evaluation of the
scattering parameters is obtained. Hence, for this link, the maximum
transmission, bandwidth and other parameters can be analytically
calculated and optimized.

4. INFLUENCE OF MISALIGNMENT ON
TRANSMISSION EFFICIENCY

Until now we only have considered the case of perfectly aligned
resonators. In this section, the influence of misalignment between the
resonators is taken into account.

The effect of a misalignment is solely the reduction of the mutual
inductance; it does not influence the inductance nor the quality factor
of the structures. Hence, its influence can be observed by calculating
the variation of the mutual inductance alone.
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The mutual inductance between two structures can be calculated
using the Neumann integral as follow:

M12 =
µ0

4π

∮

c1

∮

c2

dl1 · dl2
R12

, (24)

where µ0 is the vacuum permeability and is equal to 4π · 10−9 H/cm.
c1 and c2, the integral boundaries, are the circumference of the first
and second loop, respectively, and R12 is the distance between two
infinitesimal lengths dl1 and dl2. The radius of the wire is considered
small compared to the size of the structure. This equation is easily
evaluated numerically. Alternatively, although it might be more
complex, one can use an analytical approach like the one in [14].

In order to study the effects of lateral misalignment, an initial
setup of two perfectly aligned square loops of 10 cm of side length
distanced from each other by 10 cm (center-to-center) has been
considered (as shown in Figure 4(a)). Then, a parallel translation
of one of the loops from −25 cm to +25 cm is undertaken while the
other structure does not move. The influence of this translation
on the mutual inductance is calculated using (24). To validate our
calculations, a full wave simulation using HFSS is also performed.
The results are shown on Figure 5(a). The agreement between our
calculations and the full-wave simulations is excellent. The maximum
is obtained when the two structures are perfectly aligned. Also, when
the translated structure is moved by one time its diameter (10 cm), the
mutual inductance is only reduced by 20%.

In order to study the effects of angular misalignment, the same
setup was used (see Figure 4(b)). This time, one loop is rotated on
itself while the other structure does not move (for a rotation of zero,
the structure are axially aligned). The influence of this rotation on the
mutual inductance is calculated using (24) and compared with HFSS
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10 cm

-25 cm -25 cm0 cm 
10 cm

10 cm

10 cm

x
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x

y

loop 1

loop 2
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loop 2
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Figure 4. (a) Lateral misalignment. (b) Angular misalignment.
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(a)

(b)

Figure 5. (a) Mutual inductance vs. translation angle for two square
resonators with 10 cm side length for a transmission distance of 10 cm.
(b) Mutual inductance vs. rotation angle for two square resonators
with 10 cm side length and 10 cm transmission distance.

simulations. The results are shown on Figure 5(b). On this figure, one
can see that the maximum is reached for perfectly aligned resonators
(at 0 and 360 degrees) and that, at 90 degrees, the mutual inductance
is zero.

The influence of rotation and translation has been considered.
In both cases, one can see that the best transmission is reached
when the structures are perfectly aligned. Misalignment results in a
reduction of the mutual inductance and, as explained in Section 3,
in the transmission efficiency. The proposed technique is very
versatile and could be used to evaluate the space region where the
power transmission is higher than a certain threshold. For mobile
applications, it could also assess the percentage of time that an
application is powered wirelessly.

5. OPTIMIZATION OF WPTLS

Now that we have an accurate analytical method to calculate the
impedance matrix, it is possible to use it for the optimization of the
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structure. Therefore, to facilitate the design of WPTLs, a software
called WPTLDesigner was developed using Matlab. Figure 6 shows
the software GUI. The software has two main modes of operation. The
first one is to calculate the scattering parameters for a given topology.
In this mode, the dimensions, the distance between resonators, the
distance between resonators and coupling loops, and the values of
the capacitors must be specified to the software. Then, the software
undertakes the calculation using the analytical method presented in
this paper and plots the scattering parameters as a function of the
frequency.

Figure 6. Screenshot of WPTLDesigner.

The second mode gives the possibility of automatic tuning. In this
mode, only the frequency of use, the dimensions and the transmission
distances must be specified to the software. The software then finds the
optimal coupling distance and capacitors values using the presented
analytical method in combination with the optimization toolbox of
Matlab. Then, it displays the scattering parameters as a function of
the frequency.

Now, this software will be used to evaluate the influence of several
variables on the efficiency of the link. The influence of the distance
between the resonator, the size of the resonator, the frequency and the
wire radius will be studied. In order to do so, we will perform three
types of optimization: optimization for given distance and frequency
but variable resonators size; optimization for given distance and size
but variable capacitors and finally, optimization for given distance and
frequency but variable wire radius. All optimizations are performed for
a link made of square resonators. The results for circular resonators
are very similar.

Also, the importance of the three secondary couplings will be
analyzed. Theses are the coupling between the loading and feeding
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loop, between the first and the third loop and between the second and
the fourth loop.

Finally, the importance of the losses in the wire and the capacitors
is analyzed.

5.1. Optimization for Given Distance and Frequency but
Variable Resonator Size

As a first optimization, the distance between resonators is kept
constant while the size of the resonators is varied. Meanwhile, the
capacitors are adjusted to keep a constant resonant frequency of
25MHz. The conductance of the capacitors is calculated using the spice
model available on the Website of KEMET Electronic Corporation.
Finally, the coupling loops are tuned to reach maximum transmission.
This procedure has been applied for five transmission distances ranging
from 10 cm to 50 cm. The results are shown on Figure 7(b).
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Figure 7. (a) Transmission vs. length of square resonator for a
frequency of 25 MHz for a distance of 10 cm to 50 cm. (b) Transmission
vs. frequency for 5 resonators size. The frequency is varied by changing
the capacitor value.

We can see that the transmission always increases with the size
of the resonator. However, it is obvious that for sizes higher than
a certain value, corresponding to approximately the transmission
distance, enhancement of the transmission becomes negligible. Hence,
this fact is capital to finding the best compromise between transmission
efficiency and resonator size, and it can be used to design optimal
transmission link.

5.2. Optimization for a Given Distance and Size but
Variable Frequency

Then, for a given distance and resonator size, the frequency is varied by
tuning the capacitors. The conductance of the capacitor is calculated
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using the same method as in the last section. Again, the coupling
loops are tuned to reach the maximal transmission. Calculations are
undertaken for 5 resonator’s lengths, ranging from 10 cm to 50 cm. The
transmission distance was set to be equal to the length of one side of
the resonator.

Figure 7(a) shows the results. It can be seen that the transmission
increases with the frequency. The reason is that the required capacitors
to reach smaller frequency have higher values and more losses. Hence,
the quality factor is smaller which lead to a smaller KQ product and
a smaller transmission efficiency.

In conclusion, there is a correlation between the frequency and the
transmission efficiency but it is mainly related to the quality factor of
the capacitors involved. Hence, the choice of the capacitors for the
design of the WPTL is very important.

5.3. Optimization for Given Distance and Frequency but
Variable Wire Radius

Finally, for given distance and frequency, the wire radius is varied.
Five radiuses, ranging from 0.75 mm to 2 mm, are considered. The
wire radius of both resonators and coupling loops are varied. The
same tuning was made as for the other optimizations. Also, the
distance between the resonators is equal to the resonator side length.
Figure 8(a) shows the results.

We can see that the transmission efficiency increases with the wire
radius. This can be explained by the fact that a resonator with a
larger wire radius has a better quality factor and fewer losses. More
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Figure 8. (a) Transmission vs. length of square resonator
for a frequency of 25 MHz for wire radius of 0.75 mm to 2mm.
(b) Transmission for different cases. Case A: all couplings and losses
are considered; Case B: all secondary coupling are neglected; Case C:
coupling between feeding and loading loop is neglected; D: all losses
are neglected; E: only the capacitors losses are neglected.
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importantly, this effect is less important when reaching the maximum
transmission region. The difference between the largest and smallest
wire radii, for a length of 20 cm and above, is only of about 0.3 dB.
However, if the size of the resonator is kept at a value comparable to
that of the transmission distance, as proposed earlier, the wire radius
has a significant impact.

5.4. Influence of Secondary Couplings and Losses

An analysis of the importance of the secondary coupling, and of the
wire and capacitors losses has been made. Figure 8(b) shows the
results.

In Case A, all couplings and losses are considered. To analyse
the influence of the secondary coupling, two cases are considered. In
Case B, all secondary couplings are neglected. In Case C, only the
coupling between the loading and feeding loop is neglected. One can
see that the secondary couplings don’t have a significant influence on
the center frequency. However, they are extremely important outside
the passband. They should always be considered for an accurate model
over a large frequency band.

To analyze the influence of the losses, two cases are considered. In
Case D, all losses are neglected. In Case E, only the capacitor losses
are neglected. For both cases, all couplings are considered. One can
see that, when all losses are considered, the maximal transmission is
equal to 1.4 dB. When the capacitor losses are neglected, the maximal
transmission increases to 0.7 dB. Finally, when the wire losses are
neglected, it increases to 0 dB (lossless transmission). Hence, in this
case, the capacitor and wire losses are each responsible of a loss of
efficiency of approximately 7%. Therefore, the choice of low loss
capacitor and wire is of first importance.

6. EXPERIMENTAL VALIDATION

Finally, the proposed technique was experimentally validated using
inductors made of copper wire with diameter of 1.5 mm and standard

Table 1. Parameters of the measured WPTLs.

Radius/Length Capacitor Frequency
Circle 1 5.5 cm 220 pF 20.1 MHz
Circle 2 7.1 cm 330 pF 14 MHz
Square 1 10.8 cm 220 pF 18.2 MHz
Square 2 14.5 cm 330 pF 12.2 MHz
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through-hole capacitors. To measure the transmission, a 2-port
network analyzer with standard coaxial cables was used and a
calibration was undertaken. The measurement of several topologies
of WPTLs were performed and compared with the theoretical
calculations. Table 1 shows the details of these tests and Figure 9 and
Figure 10 show the results. As for Figure 11, it shows the experimental
setup for those validations.

As can be seen, the agreement between the proposed method
and the measurement is excellent for all topologies. At the resonant
frequency, the difference between calculation and measurement for
the transmission is less than 2%. The proposed technique provides
accurate results over a wide frequency band. The level of accuracy
enables efficient optimization of WPTLs.
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Figure 9. (a) Comparison of calculation and measures for a
circular link with a radius of 5 cm and a capacitor value of 220 nF.
(b) Comparison of calculation and measures for a circular link with a
radius of 7 cm and a capacitor value of 330 nF.
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Figure 10. (a) Comparison of calculation and measures for a
square link with length size of 10 cm and capacitor value of 220 nF.
(b) Comparison of calculation and measures for a square link with
length size of 14 cm and capacitor value of 330 nF.
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Figure 11. Photo of the physical model.

7. CONCLUSION

This paper presented a novel analytical model for calculating the
transmission of a WPTL composed of electrically small single loop
resonator. This model predicts, with an accuracy better than 2%, the
transmission of WPTLs for different topologies and frequencies.

Furthermore, a software based on the proposed model was
developed and presented, which greatly simplifies the design process
of WPTLs by allowing their optimization. It is then shown that
increasing the size of resonators beyond the transmission distance does
not enhance the transmission efficiency significantly. It was also shown
that the wire radius has a significant impact on efficiency especially
when the transmission distance is similar to the size of the resonators.
Finally, it was shown that when the resonators are composed of a single
loop with a capacitor, the Q-factor of capacitor has a significant impact
on the efficiency of the link. Therefore, they must be carefully chosen
to meet the requirement of the designed WPTL.
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