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Parallel Implementation of Hybrid GSA-NM Algorithm for Adaptive
Beam-Forming Applications

Korany R. Mahmoud1, * and Safwat Hamad2

Abstract—Recently researchers have great interest in using multi-core processors for applications
requiring intensive parallel computing. In this paper, an approach for the implementation of hybrid
parallel Gravitational Search Algorithm (GSA) and Nelder-Mead (NM) algorithm using open Multi-
Processing (OPEN-MP) on multi-core processors is proposed for beam-forming applications. The
proposed parallel GSA-NM algorithm is used to optimize the complex excitations, amplitudes and
phases, of the adaptive array elements to synthesize the array beam-pattern. The array consists of 24-
elements uniformly distributed in a circular configuration. To measure the performance of the proposed
approach, the results are compared with those obtained using parallel hybrid CFO-NM, and PSO-NM
Algorithms.

1. INTRODUCTION

Smart antenna arrays with adaptive beamforming capability are very effective in the suppression of
interference and multipath signals to provide interference reduction and improve the capacity, data
rates, and performance of wireless mobile communication [1, 2]. Smart antenna array is one of the most
important problems to apply the optimization techniques.

Global optimization techniques such as Particle Swarm Optimization (PSO), Central Force
Optimization (CFO), and Bacterial Swarm Optimization (BSO) are well known alternatives for global
optimization based on a nature-inspired heuristic [3–5]. Extensive experimentations were applied to
compare their performance through a number of case studies in sequential mode. PSO showed to
have good performance, low computational complexity, few parameters and gives good results. On
the other hand, CFO has a higher computational complexity but it gives better results [6]. Recently,
Gravitational Search Algorithm (GSA) is considered as a new optimization technique based on the
law of gravity and mass interaction [7]. A set of various standard benchmark functions, synthesis of
thinned scanned concentric ring array antenna, and a fully digital controlled reconfigurable concentric
ring array antenna problems were examined [7–9]. In most cases the GSA provided superior or at least
comparable results with PSO and CFO. In [10], the length and width of a rectangular patch antenna
has been calculated using GSA optimization technique. The GSA is proposed in [11] for Direction of
Arrival (DOA) estimation method based on maximum likelihood (ML) criteria for a Uniform Circular
Array (UCA) of 12 elements. The results are compared with those obtained using PSO and multiple
signal classification (MUSIC) algorithms in terms of Root Mean Square Error (RMSE). It is found that,
the GSA gives better performance in terms of computed final fitness values and computational time.
In [12], planar ultra-wide band (UWB) antennas with irregular radiator shapes are designed using GSA
and compared with those obtained using CFO algorithm. The comparison between GSA and CFO
showed that, the GSA has better performance than the CFO algorithm in terms of computed final
fitness values and computational time.
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However, for time-critical applications such as in adaptive beam-forming applications a large
processing time is required. Hence, the demand for a parallel solution that accelerates these
computations is required. Therefore, a parallel version of optimization algorithms is proposed and
implemented either using Compute Unified Device Architecture (CUDA) applied on a Graphics
Processing Unit (GPU) [13, 14] or using Open Multi-Processing (Open-MP). In [14], the parallel
implementation of CFO and PSO for beamforming application is presented using CUDA applied on
a GPU. The comparative study between CFO and PSO showed that; in the sequential mode, CFO
algorithm produces more accurate results than the PSO algorithm. However, PSO algorithm takes less
time than CFO algorithm. In parallel mode, the PSO produced more accurate results than the CFO
algorithm due to problems faced in parallelizing CFO using CUDA [14].

On the other hand, Open-MP is designed to support portable implementation of parallel programs
for shared memory multiprocessor architectures [15]. Open-MP is a set of compiler directives and
callable runtime library routines that extend FORTRAN, C and C++ to express shared memory
parallelism. Recently, many algorithms are implemented in parallel using Open-MP achieving good
results in addition to its simplicity in implementation compared to other parallel methods used as
CUDA applied on GPU in which the accuracy is reversely proportional with the speed up rate. Open-
MP gives a high accuracy results equal to the accuracy of the sequential implementation. In general,
it provides an incremental path for parallel conversion of any existing software, as well as targeting at
scalability and performance for a complete rewrite or entirely new software [16].

As explained in previous literatures [6, 17–19], better results can be achieved using hybrid method
combining two algorithms, global metaheuristics and local search algorithm. The global metaheuristics
is used as an efficient algorithm to localize the “best” areas and the local search method is used to refine
the results. Nelder-Mead technique was proposed by John Nelder & Roger Mead (1965) as a technique
for minimizing an objective function in a many-dimensional space [20]. The method approximates
a local optimum of a problem when the objective function varies smoothly and is unimodal. In [6],
a hybrid approach involving Central Force Optimization (CFO) and Nelder-Mead (NM) algorithm is
proposed for accurate determination of resonant frequency and feed point calculation of rectangular
microstrip antenna elements with various dimensions and various substrate thicknesses. It is found
that, hybrid CFO-NM algorithm not only decrease the required processing time, but also gives better
results compared to stand-alone CFO algorithm. In [17], a hybrid BSO-NM technique is proposed to
optimize a bow-tie antenna for 2.45GHz applications. The BSO-NM algorithm has produced results
better than those generated by stand-alone BSO algorithm. In order to emphasize the benefits of
using such hybrid algorithms, the hybrid CFO-NM and BSO-NM algorithms are considered to optimize
the design of tri-band slotted bow-tie antenna and hexa-band planar inverted-F antenna, respectively,
in [18, 19].

This paper presents an approach for hybrid parallel GSA-NM algorithm implementation using
Open-MP on multi-core processors for beamforming synthesize. To measure the performance of the
proposed approach, the results are compared with those obtained using other parallel hybrid techniques
such as CFO-NM, and PSO-NM. The rest of the paper is structured as follows: Section 2 presents the
problem formulation. In Section 3, the parallel algorithms implementations are presented. In Section 4,
the results are presented and discussed. Finally, Section 5 outlines the conclusions.

2. PROBLEM FORMULATION

In this work, the array structure consists of 24 isotropic elements uniformly distributed in the x-y plane
along the perimeter of a circle of radius r as shown in Figure 1. The distance between adjacent elements
is dc = 0.5λ where λ is the wavelength. For beam-forming synthesis, at each scenario, the feeding
of each antenna element (amplitude and phase) needs to be optimized to maximize the main-lobe to
certain directions and minimizing in other directions.

The following objective function rewards the antenna array for maximizing the output power toward
the desired signal at ϕi and minimizing the total output power in the direction of the interfering signals
at ϕj .

Fitness =
∑L

i=1
|AF (ϕi)| −

∑K

j=1
|AF (ϕj)| (1)
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where the constant L represents the number of desired users, and K represents the number of interferers.
AF (ϕ) is the array factor that will be maximized or minimized in specific directions using evolutionary
algorithms.

AF (θ, ϕ) =
∑N

n=1
Inej[β∗r∗sin(θ)∗cos(ϕ−posn)−αn] (2)

where In and αn represent the excitation amplitude and phase of the n-th element, respectively. posn
is the angular position of the n-th element in x-y plane (θ = 90◦), r is the radius of the circular array,
and β is the phase shift constant (2π/λ).

Figure 1. Geometry of the UCA.

3. PARALLEL IMPLEMENTATION OF OPTIMIZATION ALGORITHMS

This section explains parallelism of different optimization algorithms PSO, CFO, and GSA using Open-
MP. Firstly, parallel implementation of PSO algorithm will be introduced, and then parallel CFO and
GSA will be described.

3.1. Parallel Particle Swarm Optimization (PSO)

The PSO has attracted a lot of attention since its introduction in 1995 [4]. In the PSO, each solution is a
point in the search space called a particle in the algorithm. Each particle flies through the D-dimensional
problem space learning from the best experiences of all particles. For D-dimensional problem, the
position of i-th particle is represented as Xi = (xi1, xi2, . . . , xiD). The particles move to the next
position by a rate of position change Vi = (vi1, vi2, . . . , viD). The next position xk+1

iD = xk
iD + vk+1

iD ∆t,
where ∆t is a unit time step.

The time distribution of PSO in sequential mode (applied on a single thread on CPU) shows that,
updating particle’s position and acceleration do not takes much time, only 10% of the whole required
running time while the step of evaluating fitness takes the remaining 90% of the whole required time.
Therefore, the part of evaluating the fitness is the most effective part needs to be parallelized. The
parallel implementations of PSO algorithms must have essentially the same structure of the sequential.
PSO is easily implemented in parallel using Open-MP applied on a multi-core processor. The following
pseudo code shows what is performed for each particles of PSO using Open-MP.

#pragma omp parallel for
For each particle
{

Update the position of all particles
Re−evaluate the fitness of all particles

}
For anyone who has ever struggled with threads, making a program multi-threaded with a single

line change is amazing! Typically many lines of code must be written, implementing thread pools
which dealing with critical sections, semaphores, and mutexes. To run the iterations of the for-loop in
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Figure 2. Flow chart of the parallel PSO algorithm.

parallel, the code line pragma statement is written before the for-loop. Figure 2 shows the flowchart
of parallel PSO algorithm.

3.2. Parallel Central Force Optimization (CFO)

Central force optimization (CFO) was introduced as a new deterministic metaheuristics for multi-
dimensional search and optimization based on the metaphor of gravitational kinematics [5]. It models
“probes” that “fly” through the decision space (DS) by analogy to masses moving under the influence of
gravity. Equations are developed for the probe’ positions and accelerations using the analogy of probe
motion in a gravitational field.
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In contrast to PSO, the sequential time distribution of CFO shows that the step of updating the
acceleration takes the most processing time of 99.63%. The acceleration update equation in CFO is
dependent on the updated position and fitness for all probes. Therefore to be able to implement CFO
in parallel, firstly update acceleration for all probes then update position and fitness for all probes. As
shown in the pseudo code using Open-MP to make use of multi-threading, some parallelization is added
inside the calculation of the acceleration and position. Figure 3 shows the flowchart of parallel CFO
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Figure 3. Flow chart of the parallel CFO algorithm.
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algorithm.
#pragma omp parallel for
For each probe
{

Update the Acceleration of probe
}
#pragma omp parallel for
For each probe
{

Update the position of probe
}
#pragma omp parallel for
For each probe
{

Re-evaluate the fitness of probe
}

3.3. Parallel Gravitational Search Algorithm GSA

In GSA, each agent has the following specifications: position and mass. The position of the mass
corresponds to a solution of the problem, and its mass is determined using a fitness function. Variation
in the velocity or acceleration of any mass is equal to the force acted on the system divided by mass [7].
The sequential time distribution of GSA shows that the step of updating the acceleration takes 79% of
the required processing time compared to 99.63% for CFO. GSA is easier to be implemented in parallel
with Open-MP compared to CFO. The following pseudo code shows what is performed for each GSA
probe.

#pragma omp parallel for
For each prob
{

Update the Acceleration of prob
}
#pragma omp parallel for
For each prob
{

Update the position and velocity of prob
}
#pragma omp parallel for
For each prob
{

Re-evaluate the fitness of prob
}
The flowchart of parallel GSA algorithm is shown in Figure 4. From experimental it was found

that the parts that parallelized and reduced the execution time are“re-evaluate the fitness of particle”
and inside the calculation of “update acceleration method”. Compared to sequential pseudo code, the
pragma statement is the only line of code that changed and added before the for-loop that needs to
be parallelized. This instructs Open-MP to run the iterations of the for-loop in parallel.

Unfortunately, the parallelization of Nelder Mead algorithm using Open-MP not affected on the
execution time. The main reason is referred to the small for loops in the Nelder Mead so its sequential
time is not so much compared to the overhead of the parallelization.

4. RESULTS AND DISCUSSION

To measure the performance of the proposed hybrid parallel GSA-NM algorithm for adaptive
beamforming applications, four different scenarios are considered. The tests were performed on HP
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Figure 4. Flow chart of the parallel GSA algorithm.

Pavilion dm4 Notebook PC, Intel R© Core(TM) i5 CPU M460 @ 2.53 GHz RAM 4.00GB run on windows
7 64 bit operating system. Table 1, shows the number of agents and iterations number required for each
algorithm either in case of stand-alone or hybrid algorithms in addition to the required processing time.

Firstly, the performance of parallel GSA algorithm in beam-forming synthesize is studied and
compared with other parallel PSO and CFO algorithms. As shown in Figure 5 for stand-alone
algorithms, the parallel GSA has better performance than parallel CFO and PSO for all considered
scenarios which can be clearly identified from the computed final fitness values shown in Figure 6. In
average the GSA and CFO outperform the PSO by 65.09%, 29.84% respectively. However, the PSO is
found to be faster than CFO and GSA by 5.63, and 3.59 times, respectively. As an advantage of parallel
implementation, it is found that the speed up rate of parallel GSA, CFO, and PSO are 1.71, 1.45, and
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Table 1. Number of agents and iterations in case of stand-alone and hybrid algorithms.

STAND-ALONE

ALGORITHM
HYBRID ALGORITHM

PSO CFO GSA PSO-NM CFO-NM GSA-NM

No. of agents for Global optimization 90 180 90 90 180 90

No. of iterations for Global optimization 500 250 500 300 225 450

No. of NM iterations 400 100 100

Sequential (Elapsed CPU time in secs) 2.86 12.41 9.35 1.71 11.2 8.38

Parallel (Elapsed Open-MP time in secs) 1.52 8.56 5.46 0.86 7.53 4.86

Speed up rate 1.88 1.45 1.71 1.99 1.49 1.72

1.88, respectively. In terms of required computational time, it is found that the required processing
time for parallel GSA is less than that required for parallel CFO by 36.2%.

Now, the hybrid parallel implementation of GSA-NM, CFO-NM, and PSO-NM algorithms are
studied and compared with each other and with parallel stand-alone results. Firstly as shown in Table 1,
for parallel hybrid algorithms the number of iterations of global optimizations GSA, CFO, and PSO
are deducted to 450, 225, and 300 iterations, respectively, based on the convergence behavior shown
in Figure 6. Then Nelder-Mead algorithm is followed with iterations number of 100, 100, and 400 for
GSA, CFO, and PSO, respectively to keep the overall evaluation number approximately the same.

As shown in Figure 5, the capability of the uniform circular array (UCA) array to maximize
the power in certain directions and minimize in others are significantly improved using parallel hybrid
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Figure 5. Beam-forming patterns.
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Figure 6. Fitness value versus iterations.

techniques compared to stand-alone algorithms for all considered scenarios. In average, the hybrid GSA-
NM, CFO-NM, and PSO-NM algorithms outperforms the stand-alone algorithms by 16.75%, 34.92%,
and 41.93%, respectively. In addition the average required processing time is decreased by 10.98%,
12.03%, and 43.42% for GSA, CFO, and PSO respectively.

As shown in Figure 7, the sequential hybrid GSA-NM algorithm is found to be faster than CFO-
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Figure 7. The processing time for sequential and parallel algorithms.

NM algorithm by 25.17%. While the processing time of parallel GSA-NM using Open-MP is found to
be faster than parallel CFO-NM algorithm by 35.46% due to the higher speed up rate for GSA-NM
algorithm which is 1.72 compared to 1.49 for CFO-NM algorithm.

Comparing the required processing time of parallel hybrid PSO-NM algorithm to CFO-NM and
GSA-NM, it is found that the speed up rates is increased to 8.75, 5.65, respectively. Generally, the PSO
is found to be faster than both algorithms due to algorithm simplicity, but with worse performance.
It should be declared that, for the complexity analysis of the considered parallel algorithm it is found
that, Big.O for the PSO algorithm is O(N2). However, Big.O for the both GSA and CFO algorithm is
found to be O(N3) where N is the maximum number of particles.

Although GSA has the same idea of CFO, it performs different computations and hence outperforms
the CFO optimization technique for adaptive antenna beam-forming.

5. CONCLUSION

In this paper, a parallel GSA is implemented using Open-MP to accelerate the computations required
for beam-forming synthesize. Then the results are compared with those obtained using PSO and CFO
algorithms. The comparison shows how the parallel version of the PSO, CFO and GSA outperforms
the sequential one in terms of reducing time by 46.85%, 31.02%, and 41.6%, respectively. Also, the
parallel hybrid GSA-NM algorithm is proposed and compared to CFO-NM, PSO-NM algorithms. It is
found that the hybrid algorithms outperformed stand-alone algorithms by 16.75%, 34.92%, and 41.93%
in addition to decreasing the average required processing time by 10.98%, 12.03%, and 43.42% for GSA,
CFO, and PSO, respectively.
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