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Abstract—This paper presents a novel formulation for the modeling
of electromagnetic wave propagation in pillar-type photonic crystal
waveguide devices. The structure under consideration is formed
in an infinitely extended pillar-type photonic crystal and the wave
propagation is controlled by removing some cylinders from the original
periodic structure. The structure is considered as cascade connections
of straight waveguides, and the input/output properties of the devices
are obtained using an analysis method of multilayer structure. Each
layer includes periodic circular cylinder array with defects, and the
transfer-matrix is obtained by using a spectral-domain approach based
on the recursive transition-matrix algorithm with the lattice sums
technique and the pseudo-periodic Fourier transform.

1. INTRODUCTION

Photonic crystal is a periodic structure consisting of high contrast
dielectrics, in which the electromagnetic wave cannot transmit in a
specific wavelength range. It is therefore known that, if localized
defects are introduced in the photonic crystal, the electromagnetic
fields are strongly confined around the defects. For example, point
defects in the photonic crystal work as resonance cavities and line
defects work as waveguides. Appropriate arrangements of the defects
function as photonic crystal waveguide devices (PCWD), such as
resonator filter, splitter, coupler, etc.
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The electromagnetic wave propagation in the PCWD has been
simulated using various numerical methods such as the beam
propagation method [1], the finite difference time domain method [2],
and the plane wave expansion method [3]. These methods require
adequate treatments of terminating conditions for the waves at the
input/output ends of the circuits, which are given by straight photonic
crystal waveguide (PCW) in many cases. The structure of straight
PCW is periodic in the propagation direction, and the Floquet-
mode analysis is necessary to decompose the fields in input/output
PCWs into the forward and the backward propagating components.
The Floquet-modes are the eigenmodes in periodic structures, and
the Floquet theorem asserts that the fields in the structure can be
expressed by superposition of the Floquet-modes [4]. Since each
Floquet-mode has a pseudo-periodic property, several papers [5–7]
introduce the generalized Fourier series expansion to express the fields
and the dispersion equation is derived by the multilayer technique for
periodic structures [8]. These approaches make us possible to obtain
the guided Floquet-modes in very high accuracy, but they do not seem
to be applicable to obtain the evanescent ones.

Consideration of the evanescent Floquet-modes is possible by
the Fourier series expansion method (FSEM), which was originally
developed to analyze the discontinuities in dielectric waveguides [9–
11]. This method assumes that the fields are well confined near the
defects, and introduce artificial boundaries with periodicity conditions.
Then the fields are expressed in the Fourier series expansion. The field
coefficients are matched at the boundary between the segments, and
the input/output properties of the composite structure are obtained
by the recursive calculation for stacked straight PCW sections. The
FSEM was applied to the analyses of PCWs and the Floquet-
modes are obtained by the eigenvalue analysis of the transfer matrix
for one periodicity cell in the propagation direction [12–15]. For
the PCWD formed by circular cylinders, the FSEM was combined
with the recursive transition-matrix algorithm (RTMA) [16], which
was originally developed to analyze the scattering problem of plural
cylinders situated parallel to each other [17].

This paper considers the wave propagation in infinitely extended
PCWDs formed by circular cylinders. The wave propagation is
controlled by removing some cylinders from the periodic photonic
crystal. As written above, the Floquet-modes of PCW can be
obtained by the eigenvalue analysis of the transfer matrix for one
periodicity cell in the propagation direction. The cell includes periodic
circular cylinder array with defects, and the fields have continuous
spectra in the wavenumber space. The FSEM discretizes the fields
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in the wavenumber space by introducing the periodic boundary
conditions, and the transfer matrix is defined between the Fourier
coefficients. The present formulation does not introduce the periodic
boundary conditions, but uses the pseudo-periodic Fourier transform
(PPFT) [18]. Let f(x) be a function of x, and d be a positive real
constant. The PPFT and its inverse are formally given by

f̄(x; ξ) =
∞∑

m=−∞
f(x−md)eimdξ, f(x) =

1
kd

∫ kd/2

−kd/2
f̄(x; ξ)dξ (1)

where ξ is a transform parameter, and kd = 2π/d. The transformed
function f̄(x; ξ) has a pseudo-periodic property with the pseudo-period
d in terms of x: f̄(x−md; ξ) = f̄(x; ξ) exp(−imdξ) for any integer m.
Also, f̄(x; ξ) has a periodic property with the period kd in terms of ξ:
f̄(x; ξ −mkd) = f̄(x; ξ) for any integer m. The transform parameter
ξ relates to the wavenumber when x is the spatial parameter. If the
constant d is chosen to be equal with the fundamental period in the
x-direction, kd becomes the inverse lattice constant. Because of the
pseudo-periodicity of the transformed fields, the conventional grating
theory based on the Floquet theorem becomes possible to be applied
for the scattering problem of imperfectly periodic structures. Recently,
Watanabe et al. [19] considered the scattering from periodic circular
cylinder array in which some cylinders are removed, and proposed
a formulation based on the RTMA with the lattice sums technique
and the PPFT. The present formulation extends their approach to the
analysis of wave propagation in infinitely extended PCWD formed by
circular cylinders.

2. SETTING OF THE PROBLEM

This paper considers the electromagnetic wave propagation in a PCWD
schematically shown in Figure 1. The structure consists of identical
circular cylinders that are infinitely long and described by the radius
a, the permittivity εc, and the permeability µc. The cylinders are
situated in a surrounding medium with the permittivity εs and the
permeability µs. The cylinder axes parallel to the z-axis are located
at (x, y) = (nd, (q− 1/2)h) for any integer n, q, though some cylinders
are removed to control the wave propagation. To indicate the removed
cylinders, we introduce a notation D (q), which is a finite subset of the
integer set Z. If an integer n is an element of D (q), the cylinder whose
center is at (x, y) = (nd, (q − 1/2)h) is removed.

The structure under consideration is divided into three sections
by two planes y = 0 and y = Qh. The regions y < 0 and y > Q h are
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Figure 1. Geometry under consideration.

the input/output sections consisting of straight PCWs, while the other
region 0 ≤ y ≤ Q h is a transition section. The transition section is
composed of Q layers stacked in the y-direction, and arbitrary cylinders
can be removed. The fields are supposed to be uniform in the z-
direction. Then, the problem becomes two-dimensional, and the fields
are decomposed into the transverse magnetic (TM) and the transverse
electric (TE) polarizations, in which the magnetic and the electric
fields are perpendicular to the z-axis, respectively. We consider time-
harmonic electromagnetic fields assuming a time-dependence in e−iωt.
The wavenumber and the characteristic impedance in each medium are
respectively denoted by kr = ω

√
εrµr and ζr =

√
µr/εr for r = c, s.

3. OUTLINE OF FORMULATION

3.1. Transfer Matrix for Each Layer

The structure is here treated as a multilayer structure, in which
periodic circular cylinder arrays with defects are stacked. The qth-
layer (q ∈ Z) is bounded by two planes y = qh and y = (q − 1)h. The
incident field for qth-layer consists of the waves propagating in the
negative y-direction from the plane y = qh and the waves propagating
in the positive y-direction from the plane y = (q− 1)h. Therefore, the
incident field transformed by the PPFT ψ̄(i)(x; ξ, y) can be expressed
in the plane-wave expansion [18] as

ψ̄(i)(x; ξ, y) = f (−)(x, y − qh; ξ)tψ̄(−)(ξ, qh)
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+f (+)(x, y − (q − 1)h; ξ)tψ̄(+)(ξ, (q − 1)h) (2)

where the column matrices f (±)(x, y; ξ) are generated by the plane-
waves whose nth-components are given by(

f (±)(x, y; ξ)
)

n
= ei(αn(ξ)x±βn(ξ)y) (3)

with

αn(ξ) = ξ + nkd, βn(ξ) =
√

ks
2 − αn(ξ)2. (4)

ψ̄(+)(ξ, y′) and ψ̄(−)(ξ, y′) denote the column matrices of the amplitudes
at y = y′, which correspond to the plane-waves propagating in the
positive and the negative y-direction, respectively.

The formulation shown in Ref. [19] is based on RTMA, and the
cylindrical-wave expansions are also used to express the fields outside
the cylinders. The bases functions are given by column matrices
g(Z)(x, y) whose nth-components are expressed as(

g(Z)(x, y)
)

n
= Zn(ksρ(x, y))einφ(x,y) (5)

with
ρ(x, y) =

√
x2 + y2, φ(x, y) = arg(x + iy) (6)

where Z specifies the cylindrical functions associating to the
cylindrical-wave bases in such a way that Z = J denotes the Bessel
function and Z = H(1) denotes the Hankel function of the first kind.

Using the transform relations of the expansion bases shown in
Ref. [18], Eq. (2) yields

ψ̄(i)(x; ξ, y) = g(J)(x, y − (q − 1/2)h)tā(i)(ξ) (7)

where the expansion coefficient matrix ā(i)(ξ) is given by

ā(i)(ξ) = A(−)(ξ)tV(h/2; ξ)ψ̄(−)(ξ, qh)

+A(+)(ξ)tV(h/2; ξ)ψ̄(+)(ξ, (q − 1)h) (8)
with

(V(y; ξ))n,m = δn,meiβn(ξ)y (9)
(
A(±)(ξ)

)
n,m

=
(

iαn(ξ)± βn(ξ)
ks

)m

. (10)

On the other hand, the scattered field consists of the outward
propagating waves from the cylinders in the qth-layer, and the
transformed field is expressed as

ψ̄(s)(x; ξ, y) =
∑

n∈Z
g(H(1))(x− nd, y − (q − 1/2)h)tā(s)(ξ)eindξ (11)
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where ā(s)(ξ) denotes the column matrix generated by the expansion
coefficients of the transformed scattered field. The total fields near
y = qh and y = (q − 1)h are expressed in the plane-wave expansions
with the use of the transform relations shown in Ref. [18] and the
amplitude matrices corresponding to the outward propagating plane-
waves as follows:

ψ̄(+)(ξ, qh)=V(h; ξ)ψ̄(+)(ξ, (q−1)h)+V(h/2; ξ)B(+)(ξ)tā(s)(ξ) (12)

ψ̄(−)(ξ,(q−1)h)=V(h; ξ)ψ̄(−)(ξ, qh)+V(h/2; ξ)B(−)(ξ)tā(s)(ξ) (13)

with
(
B(±)(ξ)

)
n,m

=
2

dβm(ξ)

(−iαm(ξ)± βm(ξ)
ks

)n

. (14)

An appropriate discretization is introduced in the transform
parameter ξ. Considering the periodicity of the transformed functions,
we take L sample points {ξl}L

l=1 in the Brillouin zone −kd/2 < ξ <

kd/2. Then, the column matrices ā(i)(ξ), ψ̄(+)(ξ; qh), and ψ̄(−)(ξ; (q −
1)h) at the sample points are given by

ã(i) = Ã(−)ψ̃(−)(qh) + Ã(+)ψ̃(+)((q − 1)h) (15)

ψ̃(+)(qh) = Ṽψ̃(+)((q − 1)h) + B̃(+)ã(s) (16)

ψ̃(−)((q − 1)h) = Ṽψ̃(−)(qh) + B̃(−)ã(s) (17)

with

ã(f) =




ā(f)(ξ1)
...

ā(f)(ξL)


 , ψ̃(±)(y) =




ψ̄(±)(ξ1, y)
...

ψ̄(±)(ξL, y)


 (18)

Ã(±) =




A(±)(ξ1)tV(h/2; ξ1) 0
. . .

0 A(±)(ξL)tV(h/2; ξL)


 (19)

B̃(±) =




V(h/2; ξ1)B(±)(ξ1)t 0
. . .

0 V(h/2; ξL)B(±)(ξL)t


 (20)

Ṽ =




V(h; ξ1) 0
. . .

0 V(h; ξL)


 (21)

for f = i, s.
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An approximate relation between the expansion coefficient
matrices ã(s) and ã(i) are provided by Ref. [19] in the following form:

ã(s) = M̃(q)−1
C̃(q)ã(i) (22)

with

M̃(q) =




M(q)
1,1 · · · M(q)

1,L
...

. . .
...

M(q)
L,1 · · · M(q)

L,L


 (23)

C̃(q) =




C(q)
1,1 · · · C(q)

1,L
...

. . .
...

C(q)
L,1 · · · C(q)

L,L


 (24)

M(q)
l,l′ = δl,l′T−1 −C(q)

l,l′L(ξl′) (25)

C(q)
l,l′ =


δl,l′ − wl′

kd

∑

n∈D(q)

e−ind(ξl−ξl′ )


 I (26)

L(ξ) =
∑

n∈Z\{0}
G(H(1))(−nd, 0)teindξ (27)

(
G(H(1))(x, y)

)
n,m

= H
(1)
n−m(ksρ(x, y))ei(n−m)φ(x,y) (28)

where {wl}L
l=1 denote the weight factors determined by the appropriate

numerical integration scheme to approximate integrals by using the
integrands at sample points. The (n, m)th-components of the
transition-matrix T are given by

(T)n,m = δn,m
ζsJn(ksa)J ′n(kca)− ζcJ

′
n(ksa)Jn(kca)

ζcH
(1)′
n (ksa)Jn(kca)− ζsH

(1)
n (ksa)J ′n(kca)

(29)

for the TM-polarization, and

(T)n,m = δn,m
ζcJn(ksa)J ′n(kca)− ζsJ

′
n(ksa)Jn(kca)

ζsH
(1)′
n (ksa)Jn(kca)− ζcH

(1)
n (ksa)J ′n(kca)

(30)

for the TE-polarization.
From Eqs. (15)–(17) and (22), we obtain the relation between the

amplitudes of the incoming and the outgoing plane-waves as
(

ψ̃(+)(qh)
ψ̃(−)((q − 1)h)

)
=

(
S(q)

11 S(q)
12

S(q)
21 S(q)

22

)(
ψ̃(−)(qh)

ψ̃(+)((q − 1)h)

)
(31)



454 Nakatake and Watanabe

where the submatrices of the S-matrix is given by

S(q)
11 = B̃(+)M̃(q)−1

C̃(q)Ã(−) (32)

S(q)
12 = B̃(+)M̃(q)−1

C̃(q)Ã(+) + Ṽ (33)

S(q)
21 = B̃(−)M̃(q)−1

C̃(q)Ã(−) + Ṽ (34)

S(q)
22 = B̃(−)M̃(q)−1

C̃(q)Ã(+). (35)

This can be rewritten as a relation between the plane-wave amplitudes
at y = qh and y = (q − 1)h as(

ψ̃(+)(qh)
ψ̃(−)(qh)

)
= F(q)

(
ψ̃(+)((q − 1)h)
ψ̃(−)((q − 1)h)

)
(36)

where the matrix F(q) is the transfer matrix for the qth-layer and given
as

F(q) =


S(q)

12 − S(q)
11 S(q)

21

−1
S(q)

22 S(q)
11 S(q)

21

−1

−S(q)
21

−1
S(q)

22 S(q)
21

−1


 . (37)

3.2. Floquet-modal Analysis

Let β
(q)
n and r

(q)
n be the nth-eigenvalues and the associated eigenvectors

of the transfer matrix F(q), respectively. When implementing a
practical computation, various infinite sums must be truncated. We
denote the truncation order for the plane-wave expansion by N
that truncates the expansion from −Nth- to Nth-order. Then,
the order of F(q) is 2L(2N + 1), and we arrange the 2L(2N + 1)
eigenvalues {β(q)

n }2L(2N+1)
n=1 in such a way that {β(q)

n }L(2N+1)
n=1 correspond

to the Floquet-modes propagating in the positive y-direction and
{β(q)

n }2L(2N+1)
n=L(2N+1)+1 correspond to the modes propagating in the

negative y-direction. We classify the propagation directions of the
Floquet-modes in the following rules:

• if |β(q)
n | < 1, the corresponding mode is the evanescent one

propagating in the positive y-direction.

• if |β(q)
n | > 1, the corresponding mode is the evanescent one

propagating in the negative y-direction.

• if |β(q)
n | = 1, the corresponding mode is the guided one. When

the modal power carried in the y-direction is positive (negative),
the corresponding mode propagates in the positive (negative) y-
direction.
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Here we define column matrices b(q,+)(y) and b(q,−)(y) by(
b(q,+)(y)
b(q,−)(y)

)
= R(q)−1

(
ψ(+)(y)
ψ(−)(y)

)
(38)

with
R(q) =

(
r

(q)
1 . . . r

(q)
4N+2

)
. (39)

From Eqs. (36) and (38), we may understand that each component
of b(q,±)(qh) gives the amplitude of the Floquet-modes propagating in
the ±y-direction at y = qh. Also, the propagation constants of the
nth-modes are given by

η(q)
n = −i

Ln
(
β

(q)
n

)

h
(40)

where Ln is the principal natural logarithm function.

3.3. Scattering-matrix for Composite Structure

The structure under consideration is thought as a cascade connection
of straight PCW with different defects, in which the discontinuities are
located at y = qh (q = 0, 1, . . . , Q), and the wave propagation can be
formulated by the modal analysis. We define here the S-matrix for the
region 0 < y < qh as(

b(0,−)(0)
b(q+1,+)(qh)

)
=

(
Sq,11 Sq,12

Sq,21 Sq,22

)(
b(0,+)(0)

b(q+1,−)(qh)

)
. (41)

The boundary conditions at y = qh are given by equating the
Fourier coefficients of tangential field components in both sides, and
yield

(
b(q+1,+)(qh)
b(q+1,−)(qh)

)
=

(
G(q)

11 G(q)
12

G(q)
21 G(q)

22

)(
b(q,+)(qh)
b(q,−)(qh)

)
(42)

with (
G(q)

11 G(q)
12

G(q)
21 G(q)

22

)
= R(q+1)−1

R(q). (43)

Also, Eqs. (36) and (38) give the following relations:
b(q,+)(qh) = D(q,+)b(q,+)((q − 1)h) (44)

b(q,−)((q − 1)h) = D(q,−)b(q,−)(qh) (45)(
D(q,+)

)
n,m

= δn,meiη
(q)
n h (46)

(
D(q,−)

)
n,m

= δn,me
−iη

(q)
L(2N+1)+n

h (47)
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for n, m = 0, 1, . . . , L(2N + 1).
From Eq. (42) for q = 0, the initial S-matrices are derived as

follows:

S0,12 = G(0)
22

−1
(48)

S0,11 = −S0,12G
(0)
21 (49)

S0,21 = G(0)
11 + G(0)

12 S0,11 (50)

S0,22 = G(0)
12 S0,12. (51)

When S-matrices Sq−1,11, Sq−1,12, Sq−1,21, and Sq−1,22 are given, S-
matrices of the region 0 < y < q h are derived from Eqs. (42), (44), (45)
as follows:

Sq,12 = Sq−1,12D(q)Wq,1
−1 (52)

Sq,11 = Sq−1,11 − Sq,12G
(q)
21 D(q)Sq−1,21 (53)

Sq,22 = Wq,2Wq,1
−1 (54)

Sq,21 =
(
G(q)

11 − Sq,22G
(q)
21

)
D(q)Sq−1,21 (55)

with

Wq,1 = G(q)
22 + G(q)

21 D(q)Sq−1,22D(q) (56)

Wq,2 = G(q)
12 + G(q)

11 D(q)Sq−1,22D(q). (57)

Consequently, S-matrices SQ,11, SQ,12, SQ,21, and SQ,22 for the entire
region are obtained by the initial matrices Eqs. (48)–(51) and the
recursive relations Eqs. (52)–(57).

4. NUMERICAL EXPERIMENTS

To validate the present formulation, we show here some numerical
results for specific examples. All the results are for the TM-polarized
fields.

First, we consider the guided Floquet-modes propagating in
coupled parallel PCWs schematically shown in Figure 2(a). The
photonic crystal consists of cylinders with εc = 11.56 ε0, µc = µ0,
and a = 0.2d, and the surrounding medium is with εs = ε0 and
µs = µ0. The wavelength in free space is λ0 = 1550 nm and the lattice
constant is chosen as d = h = 0.34λ0. This coupled PCWs support
only two guided-modes. The method presented in Ref. [6] is known
to provide highly accurate results for the guided-modes of the PCW
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Figure 2. Coupled parallel photonic crystal waveguides. (a) Structure
under consideration. (b) Convergence of the propagation constants.

formed by circular cylinders though it is not available for analyzing
the evanescent-modes. We have performed the same computation with
Ref. [6] and obtained accurate values as 2.34338750× 106 m−1 for the
even guided-mode and 2.05692809 × 106 m−1 for the odd one. We
use these values as the reference ones. Figure 2(b) shows the error
rates of the propagation constants of the guided-modes obtained by
the present formulation as functions of the sampling point number.
In this computation, the Brillouin zone is split at the Wood-Rayleigh
anomalies, and the sample points and the weights are determined by
applying the Gauss-Legendre scheme for the subintervals [19]. Also,
the truncation orders for the plane-wave expansions N and for the
cylindrical-wave expansions K are chosen for N = 2 and K = 4.
Considering that the reference values are in nine-digit accuracy, the
present formulation provides a fast convergence and the converged
values are in good agreements with them.

Next, we show numerical results for some basic devices constructed
by photonic crystal waveguides. the section y < 0 is supposed to
consist of a single straight waveguide supporting only one guided
Floquet-mode, and the fields are always excited from this side
by the guided mode propagating in the positive y-direction. We
choose the parameters for the surrounding photonic crystal as follows:
permittivity of the surrounding medium εs = ε0; lattice constants
d = h = 340 nm; permittivity and radius of the arrayed cylinders εc =
12.25 ε0 and a = 0.2 d; permeability of the surrounding medium and
the arrayed cylinders µs = µc = µ0. Using these values, a waveguide
formed by a single straight line defect supports only one guided
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Floquet-mode and the fields are confined near the defects. Figure 3(a)
shows a structure of photonic crystal waveguide filter consisting of
a resonance cavity weakly coupled with straight waveguides. The
transition section consists of five layers, in which the resonance
cavity is formed by removing one cylinder in the third-layer, and the
input/output sections are the single straight waveguides. The power
reflection and transmission spectra of Figure 3(a) are computed for
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N = 2, K = 4, and L = 30, and plotted in Figure 3(b). We also plotted
the results obtained by the FSEM combined with the RTMA [16]. It is
seen that the transmission spectra has sharp resonance peak at around
λ0 = 0.91µm, and the results of the present formulation are in very
good agreement with those of the FSEM combined with the RTMA.
Figure 4(a) shows a structure of photonic crystal crank with resonance
cavities at the corners, and the obtained power spectra are shown in
Figure 4(b). The transition section of this structure consists of three
layers, and the input and the output waveguides do not face each
other. We can see three resonance peaks as shown in Figure 4(b), and
the results of the present formulation are in good agreement with the
corresponding results of the formulation shown in Ref. [16].

5. CONCLUSION

This paper proposes a spectral-domain formulation of the pillar-type
PCWD based on the RTMA with the use of the PPFT. The structure
was treated as a multilayer structure of periodic circular cylinder
arrays with defects, and the wave propagation was obtained by the
modal analysis. The structure in each stacked layer is an imperfectly
periodic due to the defects, and the fields have continuous spectra in
the wavenumber space. To define the transfer matrix of stacked layer,
we applied the PPFT, and the transformed fields were discretized in the
Brillouin zone. Also, derivation of the transfer matrix was based on the
RTMA with the lattice sums technique to accelerate the convergence.
The Floquet-modes are obtained by the eigenvalue calculation of the
transfer matrix, and the modal-analysis becomes possible without
using periodic boundary conditions. The present formulation was
validated by comparing with the numerical results with those of the
conventional formulations. If the present formulation is applied to
the photonic crystal of infinite extent without defects, the off-diagonal
block elements of the matrices M̃(q) and C̃(q) are vanished and the
formulation becomes completely same with the classical formulation
of the RTMA with the lattice sums technique but with the use of
wastefully large matrices.
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