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Frequency Selective Surface with Arbitrary Shapes and Its
Application to Filter Design

Maurice Sesay1, 2, Xin Jin1, and Zhengbiao Ouyang1, *

Abstract—Investigation on dielectric frequency selective structure with arbitrary shaped grating is
done numerically for filter applications. To obtain well designed parameters, the effects of shape, size
and dielectric constant of the structure are carefully studied. We examine in detail various structures
and their spectral response which have not been reported by other authors. It is also shown how the
frequency selective behavior of the structure can be controlled to meet a specific purpose for narrow
linewidth filtering for normal incident angle. Results obtained for the scattering of several dielectric
frequency selective surfaces are compared with both theoretical and experimental results presented in
literatures, showing very good agreement. The effect of arbitrary angle of incidence is also shown to
excite higher order Floquet modes that affect the filtering properties.

1. INTRODUCTION

A dielectric grating is an array of dielectric material having a periodic variation in refraction index.
The analysis of the electromagnetic behavior of such structures has been the subject of various studies.
Moreover, a variety of devices used in the microwave and optical frequency bands, such as frequency-
selective filters and polarization filters, have been proposed [1–4]. The sidebands of the filter can
be made arbitrarily low over a large frequency range by adding layers with dielectric constants and
thicknesses satisfying antireflection (AR) and high-reflection (HR) conditions [3]. Furthermore, periodic
array structures also have many applications in antennas and waveguides for bandwidth enhancement
or dual-band operations [5].

Various numerical methods have been used to investigate the scattering problem. When the
scatterer is a circular cylinder or sphere, the eigenfunction expansion method can be used. On the other
hand, numerical techniques such as the finite element method [6], differential method [7] and domain
methods [8, 9] have to be used for gratings in arbitrary shapes and complex structures. Furthermore, a
numerical method based on a novel full wave vector-modal method [10, 11] for studying guidance and
scattering by all-dielectric-guiding periodic structures has been presented, which has been applied to
the accurate analysis of the modal spectrum, propagation constants and fields distribution of dielectric
periodic structures for both TE and TM polarizations. Recently, modified dielectric frequency selective
surfaces (MDFSS) have been proposed in [12]. In the MDFSS, the medium of higher constant named as
core is unchanged, while the other medium, named as “cladding”, is substituted with a proper number
of dielectric sub-gratings. Through cascading MDFSSs, enlarged bandwidth and angular stability have
been demonstrated for stop-band filters [13]. However, some unique shapes of gratings and structures
for filter design have not been studied in detail by most of these authors.

We focus our attention on filter properties of structures that have unique shapes with reduced edges
in the case of squares. Furthermore, we present ways of controlling the spectral properties for these
structures.
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In this paper, we present detailed examinations on the design of filters for microwave applications
using the numerical method based on volume integral equation [14] and method of moments (MoM) [15]
with point matching. These methods are general and can be applied to a range of scattering problems
including dielectric inhomogeneous materials. The structures considered in this paper does not require
the rigorous coupled-wave theory used in [16, 17] to obtain the unique results. The scattering parameters
of a one-dimensional (1-D) dielectric frequency selective structure (FSS) formed by one or two dielectric
slabs with circular or deformed cylinders known as apertures within a unit cell are investigated. The
motivation to carry such an investigation is to study how multiple scattering between objects can
be used to control the filter properties. Controlling the resonance peak and bandwidth properties
of the structure is of great priority in filter design and is highlighted in this paper without using
complex design methodology or structures presented by other authors. Practically available dielectric
materials are used in the investigation for proper choice of filter parameters. Numerical examinations
of a dielectric frequency selective structure (DFSS) with two arbitrary shaped cylinders are considered.
Unique spectral properties are obtained, of which we firstly investigated various parameters by brute-
optimization method with single element per unit cell. This technique enables us to know which
parameter plays a dominant effect on the spectral property. We then used the optimized parameters
for our required filter design. As a further investigation, we considered the effect of arbitrary incident
angle of waves to the structure. The incident angle consideration shows that higher Floquet modes are
excited, and these modes affect the spectral properties of the filter. In this paper, we are also able to
design narrow-linewidth filters.

2. METHODOLOGY AND FORMULATION

A two-dimensional grating composed of an array of uniformly spaced and identically shaped objects
is arranged in the x direction with periodicity d as shown in Fig. 1. The incident field is a plane
wave that is polarized in the z direction, which corresponds to a TM polarization in our case. The
periodic structure is immersed in free space which separates the medium into two regions: region I, the
homogeneous free space, and region II. The grating consists of cylinders with an arbitrary deformed
shape. The total electric field E(r) in region I is the superposition of the incident field Ei(r) and the
scattered field from the periodic structure expressed in terms of Floquet theorem as follows [14]:

E(r) = Ei(r)− 1
4
jk2

0

∞∑

l=−∞

∫

s0

H
(2)
0 (k0ρl)E(r0) exp(−kxld)(εr(r0)−1)ds0 (1)

In Eq. (1), k0 is the wave number in region I, defined as k2
0 = ω2µ0ε0 where ε0 and µ0 are the free

space dielectric and permeability constants respectively; the time variation factor exp(jωt) is suppressed.
The incident electric field Ei(r) is propagating in region I with its k vector on the x-y plane at an angle
θi with respect to the y axis and r is the position vector. The wave vector is given by k = x̂kx + ŷky

where kx = −k0 sin θi and ky = k0 cos θi are the wave constants in the x and y directions, respectively.
S0 is the surface cross sectional domain in the reference region II which consists of the unit cell where
the integration is performed. εr is the inhomogeneous relative dielectric constant of the cylinders in

Figure 1. Geometry for a single layered grating with arbitrary shaped cylinders.
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the region II. H
(2)
0 is the zeroth-order Hankel function of the second kind. ρl is the distance between

the observation point r and the source point r0 of the zeroth-order cylinder. To obtain the matrix
equations for Eq. (1) by MoM, the pulse function is used as the basic function with a point matching
technique. The reference region is divided into N number of cells, and the total electric field E(r)
and relative dielectric constants are assumed to be constant on each cell in the reference region. After
several manipulations, the matrix equation is obtained as follows:

N∑

n=1

CmnEn = Ei
m (2)

where the matrix coefficient Cmn is given in reference [14]. En is the total electric field at cell n and Ei
m

the incidence field at cell m. The total unknown En can be solved by the GMRES (generalized minimum
residual) solver. The matrix coefficients can be solved by the use of lattice sum techniques [18] and
Poisson sum transformation [19]. With the total electric field obtained, the scattered fields radiating
outwardly above and below the grating structure can be expressed as follows:

Er
s =

∞∑

l=−∞
b+
l exp[−jkxlx− κ(kxl)y] (3)

Et
s =

∞∑

l=−∞
b−l exp[−jkxlx + κ(kxl)y] (4)

where,

b±l = −jπ/2
N∑

n=1

En[εr(n)−1]k0anJ1(k0aa)
1

κ(kxl)
exp[+jkxlxn±jκ(kxl)yn] (5)

kxl = kx0 + ld (6)

κ(kxl) =
(
k2

0 − k2
xl

)1/2 (7)

and kxl is the Floquet wave constant in x direction. The Floquet modes radiating above the grating
represent the reflected field with Floquet mode amplitudes b+

l and the modes radiating below the
grating represent the transmitted field with Floquet mode amplitudes b−l . These modes constitute both
propagating and evanescent modes in the homogeneous regions and the respective amplitude coefficients
are obtained in [14]. The reflectance and transmittance from the grating structure are given by:

|Rl|2 =
∣∣b+

l

∣∣ Re[κ(kxl)]
k0 cos θinc

(8)

|Tl|2 =
∣∣δ0l + b−l

∣∣ Re[κ(kxl)]
k0 cos θinc

(9)

where Re[κ(kxl)] is the real part of the propagating wave constant in y direction.

3. NUMERICAL CONSIDERATIONS

Numerical calculations are carried out for detailed examination of the scattering properties for various
shaped structures including two scattering elements array. The results are shown for the frequency
range that satisfied the condition d/λ < 1. For normal incident angle, only the fundamental Floquet
mode l = 0 is propagating in this range, thus the characteristics are plotted for the reflectance as a
function of normalized wavelength, denoting the power reflection coefficient |R0|2 of the fundamental
space harmonic. The size of the aperture is appropriately chosen to be less than the free space wavelength
so as to avoid higher order propagation that might leads to various problems like Wood’s abnormality.
We also analyzed for the case of an arbitrary incident angle and realized that higher order modes are
excited. The propagation of the higher order modes together with the zeroth-order mode is not good for
filter operation because it destroys the spectral properties of the filter. Before carrying out our design
in detail, we firstly validate our data by comparing with the numerical results by other authors.
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3.1. Numerical Results Validation

In order to compare our results with those of previous studies, the periodic grating in Fig. 2 consisting
of two dielectric slabs in a period is considered. The grating thickness h is chosen to be half-wavelength
for the central wavelength of the filters, so the spectral response shows a reduced reflectance around this
wavelength. However, a simple reflection filter with a single-layer waveguide grating has been designed
for a normal TM-polarized incident wave, whose reflectance property is shown in Fig. 3.

Figure 2. Model of a rectangular grating
denoting grating period by d, width by l1 and
l2, layer thickness by h and relative dielectric
constants by εr1 and εr2.

Figure 3. Reflectance of a grating consisted of
two dielectric slabs showing validated results.

The frequency dependence for the grating shown in Fig. 3 is given for the spectral range 13–16 GHz.
The peak’s frequency is exactly 14.9 GHz for the curve in solid line. The following parameters for the
curve are used: d = 11.28mm, h = 4.37mm, εr1 = 6.13 (Eglass), εr2 = 3.7 (silica), and l1 = l2 = d/2.
For these parameters, a half-power bandwidth of 250MHz is obtained from the range of 14.80–15.05 GHz.
The result shows close agreement with that in [10]. Furthermore, the dotted line in the figure depicts
resonance at the frequency of 14GHz, which shows closed agreement with that in [3].

The operating parameters for the dotted lines are: εr1 = 2.59 (Plexiglas), εr2 = 2.05 (Teflon),
h = 0.7 cm and d = 1.65 cm. As these results show closed agreements with that obtained by other
authors, the validation of our numerical codes is confirmed.

3.2. Filter Design

This section is devoted to designing band-stop filters in the microwave frequency region. Firstly, we
do parameter checking for single resonance (maximum reflection) at the wanted frequency by changing
the size and shape of the elements at normal incidence. For this design process, the goal is to have a
more thorough understanding of the relationship of aperture size, shape and periodicity to the spectral
response of a DFSS. Deriving some rules from this information would be extremely beneficial to future
FSS design work. Unfortunately, from a manufacturing standpoint, it is not always possible to construct
an FSS with perfect square apertures. As studying the reflection profile of circular apertures is not
enough, one should also investigate the effects of other shapes in controlling reflectance profile like those
achieved in this paper.

3.2.1. Choice of Parameters

Since calculation of the reflectance or coupling coefficients for the FSS requires integration over the
surface area of an aperture, the resonance wavelengths for the FSSs with equivalent area apertures are
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Figure 4. Modeling shapes transformation:
(I) bowtie, (II) rounded square, (III) deformed
elliptical.

Figure 5. Reflectance of a periodic grating
showing the effect of cylinder radius for a Teflon
grating (εr = 2.05) with d = 0.8λ0.

not identical. To understand the variations of the resonance wavelength, we used circular aperture as a
base to analyze an arbitrary shaped structures obtained through various transformations, as shown in
Fig. 4. In Fig. 4, a is the radius of the circular cylinder used as the base structure.

The bowtie, rounded square and deformed elliptical shapes are obtained with y4a2 ≤ x4(a2 − x2),
x4 + 2x2a2 − 2y2a2 + y4 ≤ 0 and (x2 + y2 + b2)2 ≤ 4b2x2 + c4, respectively. The parameters b and c are
constants that alter the shape of the structure.

We first consider the influence of the aperture size on the reflectance properties for a Teflon grating
with εr = 2.05 and d = 0.8λ0, as shown in Fig. 5. It can be seen that the bandwidth and resonance
wavelength varies with the aperture size of the cylinder.

A further study is carried out for the influence of the dielectric constant on the reflectance property
of the structure. For fixed values of a = 0.15d and d = 0.8λ0, the reflectance for several practical
available materials is shown in Fig. 6. Our main concern here is to further investigate the bandwidth
and reflectance peak shifting effects for the purpose of looking for narrow band filters. Selecting the
dielectric constant of the material for design purpose depends on the available materials within the
frequency range of interest. From Fig. 6, it can be seen that the reflectance curves for Plexiglas and
Polystyrene with relative dielectric constants εr = 2.59 and εr = 2.54 respectively are very close in
profile to each other because of the close material constants. However, it should be pointed out that
the resonance wavelength is a nonlinear function of the dielectric contrast between the materials. Fig. 6
also shows that a dielectric material with large constant can lead to broader bandwidth.

This can be explained from resonant waveguide principle that large relative dielectric constant of
the grating region leads to an increasing confinement of the modes.

Frequency selective property is also greatly dependent on the shape of the elements in the grating.
All results shown here correspond to the shapes in Fig. 4 for a = 0.15d and d = 0.8λ0 and the reflectance
for these shapes is indicated in Fig. 7. The dotted, dashed, solid and dash-dot-dotted lines indicate
the result for the circular, the bowtie, the rounded square and the deformed elliptical shape gratings,
respectively. It can be seen that rounded square grating shows close reflectance profile to that of a
circular cylinder grating with an approximate left-right symmetry because the cross sectional areas are
of closed proximity.

Also similar explanation can be given to the bowtie and deformed elliptical shaped gratings that
show reflectance profiles close to each other. Since the reflection property depends on the shapes as
well as the dielectric constant of the cylinders in the grating, we combined two cylinders with different
shapes and material constants in a unit cell for investigation.

When designing a narrowband reflection filter, the array period and the aperture area are clearly
the factors that are most important in determining the bandwidth and resonance wavelength. It is also
quite apparent that resonance at a specifically desired wavelength requires a very accurately defined
period and aperture dimension [20–23].
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Figure 6. Reflectance of a periodic grating
showing material effect for a cylinder with a =
0.15d and d = 0.80λ0.

Figure 7. Reflectance for various shapes for
plexiglass (εr = 2.59) with d = 0.80λ0.

(a) (b)

Figure 8. (a) Circular aperture grating of radius a, (b) rounded square aperture. The grating period
is denoted by d, layer thickness h = 2a, distance between centers d12, and dielectric constants by εr1

and εr2.

3.2.2. Proposed DFSS

Following the analysis in the previous section, several DFSSs consisting of two elements in each unit
cell are proposed and studied numerically. It is found after detailed examinations that the shape and
suitable dielectric constant strongly affect the resonance peak and bandwidth. However, the circular
and rounded square cylinders show possible candidates for the application of narrow band filters and
they also show symmetrical line width properties.

In this section, gratings with circular and rounded square apertures, indicated in Fig. 8, are
investigated respectively. The two elements in the unit cell are formed by circular cylinders in Fig. 8(a)
and by rounded squares in Fig. 8(b) are shown. Both material composition and structural properties
such as the distance d12 between cylinders centers can be vary to obtain good filtering properties. The
period and thickness are chosen after various numerical calculations in order to set the resonance peak at
the center in the frequency band. We examine how d12 affects the bandwidth and resonance frequency
of the reflectance profile after setting the resonance peak.

Figure 9 shows how the bandwidth of the filter can be controlled by adjusting the distance between
the two apertures in the unit cell. For d = 14mm, a = 2.8mm εr1 = 6.13 (E-glass), and εr2 = 3.7
(silica), it is possible to design both narrow and broad band filters with the same circular aperture
grating as indicated in Fig. 9. For such a design, the half-power bandwidth is broadening as the
separation increases. It is also quite evident that a specifically desired resonance wavelength requires
accurate period and aperture size prediction. Also, this kind of aperture arrangement shows possible
way to control the bandwidth without changing the fundamental parameters.

Generally, as the half-power bandwidth decreases, the resonance frequency becomes more sensitive
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with it and a slight shift in it could move peak’s frequency away from the spectral band of interest.
Fortunately, for the structure discussed and parameters specified, shifting the apertures from d12 = 0.52d
to 0.65d has little effect on the peak’s frequency as indicated in Fig. 9. This is a useful discovery for
the design and applications of DFSS filters.

As a further study, the reflectance for two dielectric materials with εr1 = 2.59 (Plexiglas) and
εr2 = 2.54 (Polystyrene) is also investigated, as indicated in Fig. 10 for a circular aperture grating
with d = 17.6mm, a = 3.52mm and varying d12. It can be observed from Fig. 10 that the profiles
are asymmetrical with both bandwidth and resonance frequency varying simultaneously as the distance
between the apertures. This result shows a drastic shift in the peak’s frequency as compared to the
results shown in Fig. 9. It can be seen that smaller material contrast has stronger effect on the resonance
property. In this result, we only concentrate on the effect of altering the distance between apertures for
a given period and aperture size, so as to obtain a profile that will lie within the frequency of interest.

The phenomena by the results shown in Figs. 9 and 10 originate from the relative contrast between
the two materials and period. However, if the period is small, as for the case in Fig. 9, the relative
contrast is the major factor which affects the bandwidth as a result of change in the distribution of
materials. If the period is large, the unit cell’s structural property would exert an apparent influence,
as depicted in Fig. 10.

The reflectance for a rounded square aperture grating is shown in Fig. 11 for which the parameters
are: d = 16mm, a = 3.2mm, with other parameters being the same as that for Fig. 10. From Fig. 11,
it can be seen that a rounded square aperture grating shows a great symmetry property in comparison
to that in Fig. 10. In spite of this, increase in distance between cylinders also experiences a negative
shift in the resonance frequency, same as observed in Fig. 10 because relative material contrasts are the
same.

To find a more precise relationship between d12, the resonance peaks and bandwidth, more data
points from Fig. 11 and Fig. 10 are examined as shown in Fig. 12.

For the bandwidth data, the curves for both circular and rounded square cylinders are given in
black circle and blue square marked lines in Fig. 12. The peak frequency curves for both circular and
rounded square cylinders are also given in red circle and green square marked lines respectively in
Fig. 12. The data shows a slight exponential form indicating the nonlinear relationship between the
bandwidth and peak frequency to d12. The peak frequency experiences a rapid exponential decay for
a circular-cylinder grating and a slow exponential decay for a rounded-square cylinder grating. The
bandwidth on the other hand shows a slight exponential increase for both circular and rounded-square
cylinders.

Figure 9. Reflectance for a circular aperture
grating for the bandwidth controls with relative
dielectric constants being the same as that for the
solid line in Fig. 3.

Figure 10. Reflectance for a circular aperture
grating with d = 17.6mm, a = 3.52mm, εr1 =
2.59 (Plexiglas) and εr2 = 2.54 (Polystyrene).
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Figure 11. Reflectance for a rounded square
cylinder grating with d = 16mm, a = 3.2 mm,
and relative dielectric constants the same as
that for Fig. 10.

Figure 12. Bandwidth and peak frequency versus
d12 for both circular and square aperture grating.

It is found that the circular aperture experiences more drift in the resonance (peak) frequency as
d12 increases and the bandwidth shows less prominent changes.

3.2.3. Influence of Arbitrary Incident Angle on DFSS

Spectral properties for the DFSS at normal incidence have been calculated, and important results are
shown in the above sections. For arbitrary incident angles, the electromagnetic field reaches different
parts in the array at different times. We will discuss some of their influence on the peak frequency and
bandwidth using the parameters in Figs. 9 and 10 for circular elements with results shown in Fig. 13.

The insert between Figs. 13(a) and (c) shows the incidence of plane wave on the unit cell with
angle θ which is measured from the y-axis. It can be seen that when an arbitrary angle is incident on
the structure, higher Floquet modes are excited. These higher order modes are non-propagation modes
that decay exponentially in space. The excitation of these modes gives an unusual spectral property
that tends to destroy the resonance peak for normal incidence as shown in Figs. 13(a), (b), (c) and (d).
Fig. 13(c) shows that, the first order mode is excited after 20◦ of incident angle. In Fig. 13(d) it can
seen that, the DFSS acts as a mirror at 80◦ for a wide range of frequency from 14 GHz to 15.5 GHz.
The field patterns clearly show this effect: the field is concentrated above the structure and none below
the structure.

3.2.4. Application (Narrow-linewidth Filter)

For filter design it is better to use normal incident angle. Further, for line-width filter we use rounded
square aperture grating, because its reflectance profiles show symmetry property and experiences less
drift in the peak’s frequency compared to that of circular aperture structure. It is shown that an
FSS with rounded square aperture tends to produce a nice resonance in bandstop reflection profiles.
Furthermore, the resonance wavelength and bandwidth appear to be dependent on the periodicity of
the array and the dimensions of the apertures.

Figure 14 shows a narrow-linewidth filter for a rounded square cylinder with εr1 = 2.59 (Plexiglas),
εr2 = 2.54 (Polystyrene) and h = 6.7 mm. To determine the shape of the rounded square cylinder, the
constant b = c = 0.67a and the radius of the circular cylinder a = h/2 are used. A highly efficient
narrow-linewidth filter with a broadly very low sideband reflectance response is realized by careful
selection of the structural and material parameters for the grating. A single peak is obtained and
the peak frequency is altered by varying the period d. The two filter lines in Fig. 14 correspond to
d = 16.1mm (solid line) and d = 1.5mm (dash line), respectively. For the parameters indicated, the
peak’s frequencies are 13.82 GHz and 14.65GHz, respectively. The corresponding linewidths (full width
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(a)

(b)

(c)

(d)

Figure 13. Transmittance and reflectance for εr1 = 6.13 (Eglass), εr2 = 3.7 (Silica), d = 14mm,
a = 2.8mm and d12 = 0.52d with arbitrary incident angle (a) θ = 30◦ and (b) θ = 80◦ (with field
patterns shown at 14 GHz and 16.5 GHz); (c) Variation of θ at 15GHz; (d) Reflectance for d = 17.6mm,
a = 3.52 mm, εr1 = 2.59 (Plexiglas), εr2 = 2.54 (Polystyrene) and d12 = 0.6d for various angles of
incidence.

Figure 14. Narrow-linewidth filter for a rounded square aperture with εr1 = 2.59 (Plexiglas), εr2 = 2.54
(Polystyrene) and h = 6.7mm.
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at half maximum) are 1.48MHz and 1.43MHz, respectively The resulting inter-modulation index is by
∆ε = εr2 − εr1 = 0.05.

4. CONCLUSIONS

Frequency selective properties for the periodic array of an arbitrary shaped dielectric cylinder have been
numerically examined. It was seen that a DFSS can be designed with specified filtering characteristics,
including the peak’s frequency, bandwidth reduction, and linewidth control. Using practical materials, a
filter design was achieved with peak’s frequencies at 13.82 GHz and 14.65GHz, showing low symmetrical
sidebands within the frequency range of interest. The bandwidth of the filter can be controlled by simply
adjusting the distance between the two cylinders. Arbitrary incident angles greater 20◦ can excite higher
Floquet modes. Higher incidence angles can destroy the resonance peak as the evanescence modes start
propagating. The multilayered frequency selective structure will be proposed in another paper.
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