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Phase Shifting Holography for THz Near-field/Far-field Prediction

Gary Junkin*

Abstract—With a view to extending techniques for THz antenna near-field/far-field prediction, this
communication derives general analytic expressions for calibrated phase shifting holography (PSH) and
introduces a new 120◦ three-step PSH method that avoids switching off the reference field and has
symmetrical performance over the entire complex plane, providing spurious free far-field prediction.
Numerical tests with simulated near-field patterns at 372 GHz confirm the convenience of the method
and give an indication of the precision required for the phase shifts.

1. INTRODUCTION

Near field intensity holograms carried out with arrays of power detector elements could be a viable
technology for far-field radiation pattern prediction of electrically large THz antennas. Holography has
a number of attractive features, for example, waves from both the reference and the antenna-under-test
(AUT) travel similar paths, so errors related to source instability in frequency and phase as well as
propagation effects can be reduced. Moreover, for prediction angles within about ±30◦ holography
is insensitive to scanner planarity errors, provided of course that the reference wave incident angle
is also within this range. Off-axis near-field holography requiring the entire hologram pattern was
experimentally demonstrated at 94 GHz in [1]. The method was adapted from the well known Fourier
transform version of holography by Leith & Upatnieks [2], but requires relatively large scan distances.
Additionally, sampling requirements are greater than those of conventional near-field methods. The
goals of near-field holography therefore suggest the use of in-line holograms, originally proposed by
Gabor [3].

In 1966, Gabor & Goss [4] presented a practical solution for in-line holography that has over the
last decade evolved into Phase Shifting Holography (PSH) for digital in-line optical microscopy [5]. This
is a point by point in-line holographic method that typically requires three intensity measurements; two
intensity measurements with the reference in quadrature phase states, and additionally the intensity of
the AUT (or object) near-field with the reference switched off. PSH can be performed with holograms
having any arbitrary reference wave phase shift not close to integer multiples of π. We shall refer to
this two-step method as A2H to recall that one AUT plus two hologram measurements are required.

This communication extends the analysis of PSH in order to facilitate general calibration and error
budget analysis for phase-shifters having arbitrary S21. It is shown that when the reference wave is
sufficiently strong a condition C is met [6], and then only two holograms are required (C2H). However,
in this case an entire scan of the AUT near-field intensity is needed to determine the minimum reference
level. More importantly, the sensitivity of the two-step complex field solution to phase-step calibration
errors is highly asymmetric, leading to spurious far-field grating effects. To avoid this, a new three-step
hologram method (3H) is proposed here, employing phase shifts of 0◦, 120◦ and 240◦ to achieve optimum
solution symmetry. No switching-off the reference wave is required, and any level of reference wave is
valid. This choice has the following added advantages: (a) avoids difficulties in parts of the complex
plane when noise is present; (b) reduces the solution sensitivity to errors in the value of the phase shift;
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(c) provides three complex field solutions that can be averaged to recover signal-to-noise ratio. The
proposed hologram recording configuration shown in Fig. 1 is quasi on-axis, given that the reference
horn must be positioned to avoid illuminating the AUT.

2. THEORETICAL DEVELOPMENT

2.1. General Formulation of Two Step PSH (A2H)

Consider two voltage waves S and R entering a power detector, where S is the complex AUT field
and R is a complex reference wave. For convenience divide S by ejφR = R/|R| so that |S + R| can be
written as |A + |R|| where A = Ar + jAi= Se−jφR . Hologram intensity is the power detected from the
interference between AUT and reference fields. Two holograms are recorded, the first is H1 given by

H1 = |A + |τ1R||2 = Io + 2 |R|Ar (1)

where we have chosen τ1 = 1. The sum of the separate power terms is

Io = |A|2 + |R|2 (2)

and the associated ‘difference hologram’ [6] is

I1 = H1 − Io = 2 |R|Ar (3)

The second hologram intensity H2 is formed by phase shifting the reference wave by a complex factor
τ2 = τ2r+jτ2i = |τ2|ejaτ2 where aτ2 = arg(τ2) can have any value not close to an integer multiple of π.
The magnitude |τ2| is left arbitrary to model the variation of S21 of a real phase shifter when the phase
state is changed.

H2 =
∣∣Ae−jaτ2 + |τ2R|

∣∣2 = |A|2 + |τ2R|2 + 2 |τ2R|Re(Ae−jaτ2) (4)

and the corresponding difference hologram is

I2 = H2 −
(
Io + |R|2

(
|τ2|2 − 1

))
= 2 |τ2R|Re(Ae−jaτ2) (5)

Combine I1 with I2 weighted by a complex factor α, and defining γ as follows

I1 + αI2 = 2 |R| (Ar + α (Arτ2r + Aiτ2i))
def= 2 |R| γA (6)

Collecting real and imaginary parts in (6) dictates that simultaneously γ = (1 + ατ2r) and
γ = −jατ2i thus leading to α = −1/τ2 and hence

γ = je−jaτ2 sin aτ2 (7)

The complex AUT field is therefore given by

S = AejφR =
ejφR

2|R|γ
(

I1 − 1
τ2

I2

)
(8)

Because of the sin aτ2 term in (8), phase steps close to π cannot be used. The solution (8) can
be generalized for the case of two arbitrary phase shifts, where say H2 is combined with hologram H3,
recorded with phase shift τ3, as follows:

S =
R

|R|
[
XiΥi −Xr+XrΥr

|Υ|2−1
+ j

XiΥr + Xi−XrΥi

|Υ|2−1

]
(9)

where

X = Xr + jXi =
1
|R|

(
I2

τ2
+

I3

τ3

)
(10)

and

Υ = Υr + jΥi =
1
2

(
e−2jaτ2 + e−2jaτ3

)
(11)
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and similarly to (5)

I3 = H3 −
(
Io + |R|2

(
|τ3|2 − 1

))
(12)

As expected in holography, the reference wave magnitude |R| and phase φR must be known a priori.
In practice this could be done by creating holograms of the reference horn with a small calibrated horn
acting as AUT. The final far-field precision will inevitably depend on how accurately the near-field
reference wave can be measured or perhaps calculated. The three power measurements include hologram
intensities H1, H2 and AUT power density |A|2 with the reference field switched off. Additionally, the
complex reference modifier τ must be known precisely as can be appreciated in Fig. 2, which shows the
asymmetrical nature of the sensitivity of the solution to calibration errors in the phase shift. In order
to improve the symmetry of the solution we suggest in Section 2.3 using phase shifts of 120◦ and 240◦
instead of 90◦ and 180◦. As mentioned in the introduction, this choice reduces sensitivity to errors in
the phase change, avoids solution problems in certain parts of the complex plane when noise is present
and provides three correct solutions that can be averaged to recuperate signal to noise ratio.
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Figure 1. Proposed holographic system configuration for near-field antenna measurements. The
reference horn is positioned to avoid illuminating the AUT.

2.2. Two Step PSH with Excess Reference Power (C2H)

A special case of PSH eliminates the requirement to measure |A|2 and hence only two holograms are
required, in addition to the reference wave. Since we suppose |R| is known, the value of |A|2 can be
determined from H1 and H2 provided special condition C of Equation (18) is met as follows.

We first acquire a solution for Io in a similar way to [7] for τ1 = 1 and τ2 = τ = τr + jτi, as

I±o (H1,H2, R, τ) =
T1 ± τi

√
T2 |R|4 + T3 |R|2 + T4

|τ |2 − 2τr + 1
(13)

where
T1=|R|2 ((|τ |2 − 1

)
τr+1+τ2

i −τ2
r

)
+H1

(
|τ |2−τr

)
+H2 (1−τr) (14)

T2=4τr

(
|τ |2 + 1

)
− |τ |4 − 2

(
τ2
r − τ2

i

)− 4 |τ |2 − 1 (15)

T3=2 (H1 + H2)
(
|τ |2 + 1− 2τr

)
(16)

T4=2H1H2 −H2
1 −H2

2 (17)
Notice that in the special case where τ = exp(±jnπ) for odd integer n then (13) reduces to

Io = 1
2(H1+H2) as expected. When arg(τ) 6= nπ, the correct solution is dictated by the sign of C in

the following equation.

C =
T5

(
|τ |2 − 2τr + 1

)
− T6

τi
(18)
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Figure 2. The calculated relative error in A, using either Equations (8) or (9), is shown as a function
of the calibration error in the phase shifter τ . The two extreme cases show the asymmetric nature of
this error in the complex plane.

where

T5=
1
2

(
H1 + H2 − |R|2

(
|τ |2 − 1

)
− 2 |R| (Ar + Arτr + Aiτi)

)
(19)

T6=H2+|τ |2 H1+|R|2 (
1−τ2

r +τ2
i

)
+τr

(
|R|2 |τ |2−H1−H2−|R|2

)
(20)

Not unexpectedly, the complex value of A = Ar+jAi is a prerequisite to the calculation of C. This
method must therefore choose a sufficiently strong reference level so that everywhere C > 0 and the
correct solution for Io is always the positive term.

2.3. Three Step PSH (3H)

This is also a non-switching method that avoids measuring |A|2, but replaces it with a third hologram
with reference wave phase shift τ3. The approach places no constraint on the relative levels of R and
S and is attractive since it avoids the relatively slow process of switching on/off the reference wave.
Phase shifting is fast, so all three measurements can be performed sequentially. To use the combination
of second and third holograms having τ2 = τ2r + jτ2i and τ3 = τ3r + jτ3i, an additional solution for
I±o (H2, H3, R, τ2, τ3) is required as follows:

I±o = − 1
2T6

(
T5 ±

√
T 2

5 − 4T6T7

)
(21)

where

K2 = |R|2
[
|τ2|2 − 1

]
; K3 = |R|2

[
|τ3|2 − 1

]
(22)

T1 =
τ2iτ3r − τ3iτ2r

|τ2| |τ3| ; T2 =
1

[2T 1 |R| |τ2| |τ3|]2
(23)

T3 = τ3i (H2 −K2)− τ2i (H3 −K3) (24)

T4 = τ3r (H2 −K2)− τ2r (H3 −K3) (25)

T5 = T2 [2T3 (τ2i − τ3i) + 2T4 (τ2r − τ3r)]− 1 (26)

T6 = T2 |τ2 − τ3|2 ; T7 = |R|2 + T2

(
T 2

3 + T 2
4

)
(27)

Given a set of three holograms {H1, H2, H3} we can choose three pairs {(H1, H2), (H1, H3),
(H2, H3)}, leading to a total of six possible values of Io according to the twin values given by
Equations (13) and (21). These are:

{Io} =
I+
o (H1,H2, R, τ2) I−o (H1,H2, R, τ2)

I+
o (H1,H3, R, τ3) I−o (H1,H3, R, τ3)

I+
o (H2,H3, R, τ2, τ3) I−o (H2, H3, R, τ2, τ3)

(28)
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At least three values in the set {Io} of (28) will be identical in noiseless conditions for arbitrary values
of τ1, τ2. Given the presence of noise, the correct solutions are never identical so a search is made for
the closest matching group of three solutions. This is achieved by first sorting and then finding the
closest three values on a squared error basis. However, in the particular case of phase shifts of 90◦
and 180◦ when noise is present this approach is not valid over the entire complex plane. This special
case requires a more costly search based on the solutions An

12, An
13 for each of the n = 1, . . . , 6 values

of In
o = {Io} calculated using (8) or (9) for hologram pairs (H1, H2) and (H1, H3). The solution An

23
based on the paired holograms (H2, H3) gives a further means of comparison. The difference between
solutions is calculated as (29) and the best solution for Io is Im

o corresponding to ξm = min{ξ}.

ξn =
|An

23 −An
12|+ |An

23 −An
13|

|An
12|+ |An

13|+ |An
23|

(29)

The final value of A is the average of {Am
12, Am

13, Am
23}. As a bonus, the extra third hologram

measurement gives a noticeable improvement in SNR compared to PSH (A2H) where only one solution
is calculated.

2.4. Noise Model

The robustness of the PSH (3H) field reconstruction algorithm has been tested with simple pre-detector
and post-detector noise mechanisms as shown in Equations (30) and (31), where N1,2(t) are taken as
normal distributions with variances σ2

1, σ2
2 respectively.

|A+R+N1 (t)|2 = I2
o +2Re (AR)+2Re (AN1 (t))+2Re (RN1 (t))+|N1 (t)|2 (30)

|A + R|2 + |N2 (t)|2 = I2
o + 2Re (AR) + |N2 (t)|2 (31)

The noise power density of the beat noise in (30) is proportional to the product of the total coherent
field strength A + R with the standard deviation σ1 of the equivalent voltage noise source N1(t). In
comparison, post-detector noise power density, for example from thermal noise, is proportional to the
variance σ2

2 of the equivalent instantaneous noise voltage source.

2.5. Verification with a 372 GHz Antenna FEKO Simulation

The antenna used to test the algorithmic performance in a typical near-field measurement configuration
is a conventional Cassegrain with a rotated main parabolic reflector [8]. Geometric Optics (GO) with
GTD diffraction was carried out with the commercial software FEKO, at both 372 GHz and 186 GHz.
Fig. 3 shows the sensitivity of the complex near-field to an independent error in just one of the phase
shifts, indicating that for accurate far-field performance the phase shift should be known to within
±0.1◦. If all phase shifts errors have a common factor, then the near-field error is also approximately a
complex factor, and hence is not so critical.
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Figure 4. The back-propagated field of a 372 GHz 0.3 m diameter dual reflector antenna using FEKO
to model the near-field and PSH (3H) for holographic reconstruction. (a) Horizontal axial plane
reconstruction. In this case the near-field is noiseless. (b) Transverse reconstruction of the aperture
plane focused at the sub-reflector plane. The near-field SNR is 20 dB with respect to near-field beam
peak. The dimensions of the antenna are identical to those in [8].
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Figure 5. Predicted far-field of the 372 GHz 0.3 m diameter dual reflector antenna showing FEKO
reference far-field and PSH (3H, 0◦/120◦/240◦) holographic reconstruction. SNR corresponds to 20 dB
with respect to near-field beam peak.

Figure 4(a) shows the back-propagated complex field recovered by PSH (3H) (under noiseless
conditions) superimposed on the back-propagated reference wave and demonstrates how the approach
here is much more compact than that reported by this author in [1]. Fig. 4(b) shows the AUT aperture
image referred to the plane of the sub-reflector, showing perfect solution symmetry using PSH (3H) with
only 20 dB SNR (at beam peak). The main-reflector is configured for a 2◦ beam-shift which appears
as a horizontal displacement and the GO integration used by FEKO can be seen in the sub-reflector
region of the image.
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The predicted far-field shown in Fig. 5 is a superposition of 10 patterns generated with the pre-
detector noise mechanism of Equation (30) and compared to the FEKO reference in red. The expected
2◦ beam shift and the sub-reflector spillover side-lobes are faithfully predicted.

3. CONCLUSIONS

A new three-step 120◦ PSH algorithm with solution symmetry and improved SNR is a good candidate
for THz near-field/far-field predictions. The phase of the phase-shifter is a critical parameter that
should be calibrated to better than about ±0.1◦ for accurate far-field prediction. The technique could
have good data acquisition speed as it avoids switching on/off the reference wave, once the reference
wave is known. Unlike Phase Retrieval which requires complete patterns, this method does not have any
special sampling requirements and works on a point by point basis. In common with standard complex
near-field measurements, these latter features are very convenient for antenna near-field alignment and
spatial under-sampling using directive probes.
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