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Abstract—Fractal antennas have undergone dramatic changes
since they were first considered for wireless systems. Numerous
advancements are developed both in the area of fractal shaped elements
and fractal antenna array technology for fractal electrodynamics. This
paper makes an attempt of applying the concept of fractal antenna
array technology in the RF regime to optical antenna array technology
in the optical regime using nonlinear array concepts. The paper further
discusses on the enhancement of nonlinear array characteristics of
fractal optical antenna arrays using nonlinearities in coupled antennas
and arrays in a conceptual manner.

1. INTRODUCTION

Nonlinear Antennas were extremely complicated in analysis, design
and expensive [1]. In the 1980’s and 1990’s, however, came the
development of antenna and antenna array concepts for commercial
systems, and increases in digital signal processing complexity that
pushed single antenna wireless systems close to their theoretical
(Shannon) capacity. Nonlinear antennas are now seen as one of
the key concept to further, many-fold, increase in both the link
capacity, through pattern tailoring, spatial multiplexing, and system
capacity, through interference suppression and beam forming, as well as
increasing coverage and robustness for antenna designs. Furthermore,
decreases in integrated circuit cost and antenna advancements
have made these antennas attractive in terms of both cost and
implementation even on small devices. Therefore an exponential
growth have been seen in nonlinear antenna research, the inclusion
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of nonlinear antenna technology into wireless standards, and the
beginnings of widespread deployment of nonlinear antennas in wireless
networks. The concept of nonlinear antennas can be extended to the
optical regime for Free Space Optics (FSO) also. Section 2 discusses
on the fractal theory, Section 3 discusses on the fractal optical antenna
arrays and its importance. Section 4 discusses on the Iterated function
systems. Section 5 discusses on the nonlinear fractal optical antenna
array and finally Section 6 concludes the paper.

2. FRACTAL THEORY

Fractal theory is an emerging theory which revolutionized the way the
scientists think about the nature of the world [2–10]. Derived from the
Latin word meaning break apart the term fractal was originally coined
by Mandelbrot to describe a family of complex shapes that possess an
inherent self-similarity or self-affinity in their geometrical structure. A
fractal is a recursively generated object having a fractional dimension.
These intricate iterative geometrical oddities first troubled the minds
of mathematicians around the turn of the twentieth century, where
fractals were used to visualize the concept of the limit in calculus.
What particularly confounded the mathematicians is that when they
carry the limit to infinite, properties of these objects such as arc
length would also go to infinity, yet the object would be bounded
by a given area. However it was only during the mid-1970s that a
classification was assigned to these objects and the full significance
of fractal theory began to come to light. Fractal objects appear over
and over throughout nature and are the product of simple stochastic
mechanisms at work in the natural world. Fractal patterns often
represent the most efficient solutions to achieving a goal whether it is
draining water from a basin or delivering blood throughout the human
body. These objects have also been used to describe the structures
of fern and trees, the erosion of mountains and coastlines, and the
clustering of stars in a galaxy. For these reasons it is desirable to
utilize the power of fractal geometry to describe the layout of antenna
arrays in the RF regime and optical antennas in the optical regime.
Fractal arrays are used to increase the bandwidth of the antenna and to
reduce grating lobes. These arrays have fractional dimensions that are
found from generating sub array used to recursively create the fractal
array. Repetitive application of a generating sub array can form a rich
class of fractal array. A generating sub array is a small array at scale
one (P = 1) where P is the scale factor, and is used to construct
larger arrays of higher scales (P > 1). The generating sub array
elements are turned on and off in a particular pattern in many cases.
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A set formula for copying, scaling, and translation of the generating
sub array is then followed in order to produce the fractal array.
Hence, fractal arrays that are created in this manner will compose
of a sequence of self-similar sub arrays. In other words, this may be
conveniently considered as an array of arrays. Some recent research
on Sierpinski carpet arrays, multiband arrays, fractal ultra-wideband
arrays, super wideband antennas gives promising and excellent results
for the application of fractal concept in antenna arrays [11–16]. The
different types of fractal antenna arrays include cantor recipe set for
linear fractal antenna array, planar Sierpinski carpet array, triangular,
square and hexagonal antenna arrays.

3. FRACTAL OPTICAL ANTENNA ARRAYS

The absorption or emission of a photon by an electronic transition,
e.g., in an atom, molecule, QD or color center is determined by the
light matter interaction in the optical regime [17]. Their absorption
and emission rate are limited by the weak and Omni directional
interaction with light, since they are far less than the operating optical
wavelength of light. Radiation in the RF regime also faced similar
problems. However, these problems were encountered and addressed
long ago. Since electrical circuits are much smaller than the operating
wavelength usually around 50 to 60 Hz, they radiate very little. This
problem of antenna length for wireless communication was addressed
by introduction of various modulation schemes for analog and digital
communication. To enable wireless communication they are connected
to antennas that have dimensions in the order of the wavelength.
These antennas are designed to effectively convert electrical signals into
radiation and vice versa. Exactly the same concept can be applied in
optics. By near field coupling of light into the LSPR modes of a metal
NP, the interaction of quantum emitter with light can be improved to
a great extent. A strong local field at the NP is formed by the LSPRs
of a metal NP. If an emitter is placed in this field, its absorption and
emission of radiation are enhanced. The function of the NP is then
analogous to an optical antenna as in the case of an RF antenna in the
RF regime. In this way excitation and emission rates can be increased
and the angular, polarization and spectral dependence controlled.

The fractal antenna array concept in the RF regime requires
an antenna array combined with fractal array processing technology
such as Iterated Function Systems (IFS). Similarly for fractal optical
antenna arrays, for incorporating the fractal concept into the optical
antenna an Optical Signal Processor (OSP) combined with optical
antenna arrays needed. Antenna arrays are used in the design of
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apertures for modern radar and high performance communication
systems in the RF regime. There are many advantages by using
arrays especially their high gain, directivity, and the possibility of
beam steering which is called beam scanning. Arrays can be mainly
classified into two types based on their dimension, single dimensional
array and multidimensional array. The multidimensional array consists
of two dimensional arrays or planar array and three dimensional arrays.
Depending on the Lattice structure arrays are classified as uniform and
non-uniform arrays. Non uniform linear arrays are called as nonlinear
arrays. Uniform arrays are called as periodic arrays. Depending upon
the distribution of array elements the arrays can be classified into dense
arrays and sparse arrays. Table 1 shows the trade-offs between dense
and sparse antenna arrays for various properties [18]. Much of the
explanation about antenna array is available in the texts [19–23].

Table 1. Trade-offs between dense and sparse antenna arrays.

Property Dense array Sparse array

Variance of the antenna match High Low

Average side lobe levels Low Moderate

Peak side lobe levels Moderate Low

Hardware density High Low

Power per element Low High

Aperture size needed Small Large

Number of elements for an aperture Many Few

Coupling Strong Weak

Achievable Bandwidth > 10 : 1 À 10 : 1

4. ITERATED FUNCTION SYSTEMS (IFS)

For the construction of a broad spectrum of fractal geometries, Iterated
Function Systems (IFS) are powerful mathematical toolsets [18].
These IFS are constructed from a finite set of contraction mappings,
each based on an affine linear transformation performed in the
Euclidean plane. The most general representation of an affine linear
transformation ωn consists of six real parameters (an, bn, cn, dn, en,
fn) and is defined as

(
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y′

)
= ωn

(
x
y

)
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+
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The parameters of the IFS are often expressed using the compact
notation (

an

cn

bn

dn

∥∥∥∥
en

fn

)
(3)

where coordinates x and y represent a point belonging to an initial
object and coordinates x′ and y′ represent a point belonging to the
transformed object. To scale rotate, shear, reflect and translate
any arbitrary object, this general transformation can be used. The
parameters an, bn, cn and dn control rotation and scaling while en

and fn control linear translation. Consider a set of N affine linear
transformations ω1, ω2, ω3, ω4, . . . , ωN . This set of transformations
forms an IFS that can be used to construct a fractal of stage `+1 from
a fractal of stage `

F`+1 = W (F`) = ∪N
n=1wn(F`) (4)

where W is the Hutchinson operator and F` is the Fractal of stage `.
The pattern produced by the Hutchinson operator is referred to as the
generator of the fractal structure. If each transformation reduces the
size of the previous object, then the Hutchinson operator can be applied
an infinite number of times to generate the final fractal geometry, F∞.
For example, if set F0 represents the initial geometry, then this iterative
process would yield a sequence of Hutchinson operators that converge
upon the final fractal geometry F∞.

F1=W (F0) , F2 =W (F1) , . . . , Fk+1 =W (Fk) , . . . , F∞=W(F∞) (5)

If the IFS is truncated at a finite number of stages L, then the object
generated is said to be a prefractal image, which is often described as
a fractal of stage L.

The IFS approach is the most common method used to construct
deterministic fractal array geometries; however, deterministic fractals
may not resemble natural objects very closely because of their perfect
symmetry and order. But random fractals more closely resemble
natural objects because their objects are often created using purely
stochastic means on the other hand. However these objects are
difficult to work with especially in the context of optimization,
because their structures cannot be recreated with exact precision. A
specialized type of fractal geometry called a fractal random tree was
developed in an effort to bridge the gap between deterministic and
random fractals. This new construct combines together properties
of both deterministic and random fractal geometries. Therefore a
more generalized expansion of deterministic fractal based geometry
is introduced, called polyfractal geometry. In order to construct a
poly fractal the IFS technique introduced must be expanded to handle
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multiple generators. Polyfratcal arrays are constructed from multiple
generators, 1, 2, . . . , M , each of which is having a corresponding
Hutchinson operator W1, W2, W3, . . . , WM . Each Hutchinson
operator Wm in turn contains Nm affine linear transformations,
ωm,1, ωm,2, ωm,3, . . . , ωm,Nm. The IFS code for generating an inverted
Sierpinski gasket and the IFS code and associated connection factors
for Sierpinski based polyfractal geometries are shown in Table 2 and
Table 3 respectively. The same concept can be applied to optical
antenna arrays to get the novel smart optical antenna arrays using
smart-fractal concepts. A fractal optical antenna can be designed using
the application of fractal concept properly incorporated into an optical
antenna.

Table 2. IFS code for generating an inverted Sierpinski gasket.

w a b c d e f

1 1/2 0 0 1/2 0
√

3/4
2 1/2 0 0 1/2 1/2

√
3/4

3 1/2 0 0 1/2 1/4 0

Table 3. IFS code and associated connection factors for Sierpinski-
based polyfractal geometries.

w a b c d e f : κ

Generator 1
1 1/2 0 0 1/2 0

√
3/4 : 1

2 1/2 0 0 1/2 1/2
√

3/4 : 1
3 1/2 0 0 1/2 1/4 0 : 2

Generator 2

1 1/2 0 0 1/2 0
√

3/4 : 2
2 1/2 0 0 1/2 1/2

√
3/4 : 1

3 1/2 0 0 1/2 1/4 0 : 2
4 1/2 0 0 −1/2 1/4

√
3/2 : 1

5. NONLINEAR FRACTAL CONCEPT FOR OPTICAL
ANTENNA ARRAY

The concept of Nano antennas has emerged in optics as an enabling
technology for controlling the spatial distribution of light on sub
diffraction length scales. Analogously to classical antenna design, the
objective of optical antenna design is the optimization and control of
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the energy transfer between a localized source acting as a receiver or
transmitter, and the free radiation field. Most of the implemented
optical antenna designs operate in the linear regime that is the
radiation field and the polarization fields are linearly dependent on
each other. When this linear dependence breaks down, however new
interesting phenomena arise, such as frequency conversion, switching
and modulation. Beyond the ability of mediating between localized and
propagating fields, a nonlinear optical antenna provides the additional
ability to control the interaction between the two. The nonlinear
antenna converts the frequency of the incident radiation centered at
by a predefined amount into a new frequency band centered at. It
is vital to know the basic properties of nonlinear antenna and then
focus on the nonlinearities achievable either in single NP systems or
more complex-coupled NP systems. In practice the use of nonlinear
materials either metals or dielectrics in the design of optical antennas
is a promising route towards the generation and control of optical
information. Optical antennas link objects to light [17]. The main
idea is shown in the block diagrams in Figure 1 and Figure 2. In
the first method as shown in Figure 1, the linear optical antenna
array is considered first and then the nonlinear fractal antenna concept
using fractal theory is applied which results in a nonlinear fractal
optical antenna array. The optical signal processor controls the optical
antenna array and the nonlinear fractal part. In the Second method
shown in Figure 2, the nonlinear optical antenna array is considered
first and the linear fractal concept is applied using fractal theory which
results in the nonlinear array. The optical signal processor controls
both the part, for tailoring the beam shape and for producing the beam
in the desired direction. Figures 3 to 6 show the array factor pattern
and directivity pattern [7] of the fractal antenna array in the RF regime
which is essentially the same for optical antenna array when operated

Linear 
Optical 
antenna array

Nonlinear 
Fractal 
antenna 
concept and 

Nonlinear 
fractal 
optical 
antenna 

Optical 
Signal
Processor 
(OSP)

fractal theory array

Figure 1. Block diagram of
nonlinear fractal optical antenna
array system, First method.
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optical 
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Figure 2. Block diagram of
nonlinear fractal optical antenna
array system, Second method.
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Figure 3. Fractal optical an-
tenna array pattern for P = 4;
δ = 3 in the optical regime is the
same as in RF regime when oper-
ated in fundamental mode.
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Figure 4. Fractal optical an-
tenna array pattern for P = 1 to
4; δ = 7 in the optical regime is
the same as in RF regime in fun-
damental mode.

Figure 5. Fractal optical an-
tenna array directivity pattern for
P = 4; δ = 3 in the optical regime
is the same as in RF regime in fun-
damental mode.

Figure 6. Fractal optical an-
tenna array directivity pattern for
P = 1 to 4; δ = 3 in the opti-
cal regime is the same as in RF
regime in fundamental mode.

in the fundamental mode of operation [17]. Consider a quantum object,
such as a molecule, QD or atom. The typical timescale for an electric
dipole transition to emit a photon is on the order of nanoseconds and
the photon is emitted in dipole angular pattern. This slow undirected
interaction places several limits on their absorption and emission of
light. First, the long radiative lifetime limits the maximum amount of
photons that can be emitted per second, i.e., the maximum brightness.
Second, if faster competing loss channels and/or depahsing are present
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as is often the case for condensed matter at room temperature; a slow
interaction becomes a weak interaction. The emitter then absorbs
only a small fraction of the incident light, and radiates its energy with
a low efficiency. Third, the undirected nature of the interaction makes
it challenging to efficiently collect the emission and further reduces the
probability of absorption under illumination.

The interaction of the emitter with light can be improved by near
field coupling to a second larger but still small object: an antenna.
The emitter now mainly absorbs and emits light through the modes of
the antenna. By suitably designing the antenna, the absorption and
emission rates can be enhanced. Furthermore the angular, polarization
and spectral dependence of both the emission and absorption can
be controlled. Consider a number of such objects are placed near
the light source in an angular split. Let there be ‘n’ such objects.
Considering uniform distribution in space of a two dimensional medium
the angular separation ‘θ’ between one object and the other object for
linear spacing in the theta plane is given by

θ =
2π

n
(6)

Let us consider a simple nonlinear spacing of the objects placed at
0, nX◦, n2X◦, n3X◦, . . .. A suitable mechanism should be devised
to select a particular antenna. Optical Signal Processor (OSP)is used
to select a particular object depending upon the requirement and the
optical antenna will radiate in that particular direction. Depending
upon the element selected the excitation ratio on the selected element
to the reference element is given by [17]

γexc,n

γexc,0
=

|p.Eloc(r, ϕ, θ, ω)|2
|p · Eloc,0(r, ϕ, θ, ω)|2 (7)

where γexc,n is the excitation rate on the nth element and γexc,0 is the
excitation rate on the reference element, p is the unit vector in the
direction of the orientation of the dipole moment, Eloc (r, ϕ, θ, ω) is
the resulting local electric field at the emitter position on the emitter
dipole moment, Eloc,0 (r, ϕ, θ, ω) is the resulting local electric field at
the reference position on the reference dipole moment.

The power from each emitter is given by

P (r, ϕ, θ, ω) =
|E (r, ϕ, θ, ω)|2

2Z0
(8)

where E (r, ϕ, θ, ω) is the electric field on each emitter and P (r) is
given by

P (r) =
∫

π

∫

2π
P (r, ϕ, θ, ω) sin θdϕdθ (9)
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The ratio of excitation to the nth element with respect to the reference
element is given by

γr.n

γr,0
=

Pn(r)
P0(r0)

(10)

The coupling efficiency is given by

ηc (r) =

∫
π

∫
2π P (r, ϕ, θ, ω) sin θdϕdθ

P (r)
(11)

The ratio of power dissipated by the nth element to the reference
element power emitted is given by

γn,diss

γr,0
=

Pn,diss

P0(r0)
(12)

ηq =
γr

γr + γnr
(13)

γnr = γdiss + γint (14)
γ = γr + γnr (15)

The loss in power is proportional to the square of the current and the
total loss in the antenna array follows the equation

Ptot = n (Pdir + Pfeed + Pref ) = n
(
I2
dir + I2

feed + I2
ref

)
R (16)

with n being the number of antenna elements, Idir , Ifeed , and Iref being
the current inside the director, feed element and reflector respectively
and R being the resistance of the nano rod.

A measure of the total loss in the array is the absorption A, which
can be deduced from the reflectance R, transmittance T and scattered
intensity S by the simple expression

A = 1− T −R− S (17)

where scattering is negligible in the array structure. Since the reflected
intensity of the antenna array depends on the direction of illumination,
and transmittance is equal for the different illumination angles, the
absorption depends on the angle of incidence.

For any antenna, both at RF and optical frequencies, it is very
important to quantify how directed the emission is. The antenna
directivity D is defined as the power emitted into desired direction
compared with the power averaged over all directions. The angular
directivity D describes how effectively the power is concentrated into
a particular direction, a very small solid angle or approximately a plane
wave. D = 1 for a hypothetical isotropic emitter, while the maximum
of the angular directivity for an EHD in an isotropic homogeneous
environment is 1.5. An even more important figure of merit for
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antenna performance is the power gain, a key figure which combines
directivity and efficiency. The antenna gain quantifies how much the
total efficiency is increased, compared with an isotropic emitter. Thus
the gain quantifies how much the antenna improves the emission by
redirecting it into a given angle. When placing an antenna near
an emitter, the excitation and emission rates are both altered. The
enhancement of the emission rate into a certain angle and polarization
is equal to the excitation rate enhancement for illumination by a plane
wave under the same angle with the directivity is given by

D (φ, θ) =
4πP (r, φ, θ)

P (r)
(18)

The antenna gain quantifies how much the total efficiency is increased,
compared with an isotropic emitter with ηq,0 = 1 and is given by

G (φ, θ) = ηqD (φ, θ) (19)

for same polarization. Thus the changes are linked by the angular
directivity D. This is the reciprocity theorem for antennas.

Hence the gain quantifies how the antenna improves the emission
by redirecting it into a given angle.

The reciprocity theorem for antennas is mathematically described
as

γexc(φ, θ)
γexc,0

=
D (φ, θ)

D0

γr

γr,0
(20)

in which the subscript 0 marks again the reference situation that can be
freely chosen. The reciprocity assumes that the excitation and emission
occur at the same wavelength and that the excitation rate is calculated
for plane wave illumination with a polarization equal to the emission
polarization. The equation can be adapted for arbitrary polarization
and illumination.

The input impedance of the optical antenna may generally be
written using the nano circuit model as

zin =
1

1/Za − jωC
(21)

where C = ε0S/g is the gap nano capacitance. The real and imaginary
parts of the intrinsic antenna impedance Za = Ra − jXa may then be
expressed as a function of the input resistance and reactance given by

Ra =
R0

1 + ωC
(
2X0 + ωC

(
R2

0 + X2
0

)) (22)

Xa =
X0 + ωC(R2

0 + X2
0 )

1 + ωC
(
2X0 + ωC

(
R2

0 + X2
0

)) (23)
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in order to de-embed the intrinsic impedance of the optical antenna
when evaluated with full-wave simulations. The input impedance of
fractal antenna is given by

zin(FRACT ) = F ∗ zin (24)

where F accounts for the fractal array impedance factor. If a NP load
with arbitrary permittivity εL in the gap is included, then the input
impedance is changed to

Rin =
g2Ra

g2 − 2ωεLgSXa + ω2ε2LS2(R2
a + X2

a))
(25)

Xin =
g(gXa − S(R2

a + X2
a)ωεL

g2 − 2ωεLgSXa + ω2ε2LS2 (R2
a + X2

a))
(26)

For simplicity, complete filing of the gap by the NP is assumed.
However, more complex configurations with parallel or series
combination of NPs with different fractal configurations can be
considered. Some fractal configurations can include the Cantor recipe
set for the linear array or the Sierpinski carpet for planar array. The
open-circuit resonance of interest for matching and radiation purpose is
obtained when Rin is a maximum and Xin = 0 at the radian frequency
given by

ω0 =
gXa

S(R2
a + X2

a)εL
(27)

which is the most celebrated parallel resonance equation between
the intrinsic impedance and the load impedance. Enabling tuning
of the resonance frequency by increasing the load permittivity, the
operational bandwidth of the antenna also called the sensitivity s to
the load permittivity is defined as

s =
∂ω0

∂εL
(28)

At the operating optical frequency, the intrinsic impedance of the
nano antenna is determined by the sensitivity. The sensitivity of the
optical antenna is optimized by the proper choice of the geometrical
antenna parameters and the operational bandwidth for the application
of interest. The fractal geometry plays a major role in this part.
Linear array, planar array, triangular array, hexagonal array, concentric
circular ring sub-array generators plays a vital role in determining the
geometrical parameters of the optical antenna array using smart fractal
concepts. This is particularly important for smart antenna, biosensing
or SERS applications as the proper tailoring of the antenna intrinsic
impedance is directly related to its sensitivity and bandwidth.
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Nonlinear optics exploits the nonlinear relationship between the
exciting electric field ~E and the resulting polarization ~P in general.
The relationship between ~E and ~P is linear for weak excitation fields,
and most optical antennas operate in this regime. However, for strong
excitations the response ~P depends on higher powers of ~E, which gives
rise to interesting and technologically important phenomena, such as
frequency mixing, rectification or self-phase modulation. The nonlinear
relation between ~P and ~E can be expressed as a series given by

~P = ε0

[
χ(1) ~E + χ(2) ~E ~E + χ(3) ~E ~E ~E + χ(4) ~E ~E ~E ~E + . . .

]
(29)

where the susceptibilities χ are tensors of rank n+1. The polarization
~P constitutes a secondary source current that, when inserted into
Maxwell equations, gives rise to a set of nonlinear differential equations.
Since the light matter interaction is inherently weak, however it is
very usual to approximate the response of a charged NP by a driven
harmonic oscillator that is Lorentz atom model. The charges oscillating
at the new frequencies induce polarization currents P (t), that give rise
to electromagnetic radiation at those new frequencies. For the driving
field E(t) = E cos(ωt), the induced SHG nonlinear polarization is given
by

P 2 (t) = ε0χ
(2)E2 (t) = 2ε0χ

(2)E2 + 2ε0χ
(2)E2 cos (2ωt) (30)

A constant dispersion free nonlinear susceptibility is assumed for
simplicity. The THG components are given by

P 3 (t) = ε0χ
(3)E3 (t) =

1
4
ε0χ

(3)E3 cos (3ωt) +
3
4
ε0χ

(3)E3 cos (ωt) (31)

where the first term describes the THG and the second term is the
Kerr nonlinearity which is the change of the refractive index of the
material at the fundamental frequency. The driving field contains more
than one discrete frequency, nonlinear response at mixing frequencies
ω1 + ω2, difference ω1 − ω2, or four wave mixing (4WM) given by
ω1 ± ω2 ± ω3. Another class of nonlinear process involves a sequence
of distinct optical interactions, such as the absorption of two photons
followed by the emission of one photon, a process referred as TPL
which is a third order nonlinear process. It is a very powerful tool to
study local fields near metal nano antennas because of its quadratic
intensity dependence. The Poynting theorem for the average rate of
energy dissipation in a polarizable metal is given by

Pabs = −
∫

V

〈
~j (~r, t) · ~E (~r, t)

〉
dV (32)
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where 〈. . .〉 denotes the time average and ~j = d~P/dt is the polarization
current density. For a time harmonic field given by ~E(~r,t) =
Re[ ~E(~r,ω)exp(−iωt), the Equation (32) changes to

Pabs = −1
2

∫

V
Re

[
~j (~r,ω) · ~E (~r,ω)

]
dV (33)

The lowest order term in Equation (29) contributes to the Pabs that
is associated with χ(1) and is responsible for linear absorption is given
by

P
(1)
abs =

ω

2

∫

V
Im

[
χ(1) (ω)

]
~E ~E∗dV (34)

Similarly the next highest contributing term associated with χ(3) and
responsible for two-photon absorption is given by

P
(3)
abs =

ω

2

∫

V
Im

[
χ(3) (ω,−ω, ω)

]
~E ~E∗ ~E ~E∗dV (35)

For an extended isotropic material irradiated by a plane wave, the
above equation reduces to

P
(3)
abs ∼ Im

[
χ(3)

] ∣∣∣ ~E
∣∣∣
4

(36)

The assemblies of metal NPs play a vital role in many applications.
Optical plasmonic properties depend on the interplay between its
constituting NPs. However, the near field interaction of an NP with its
adjacent NP results in couple LSPRs. Even though the absolute LSPR
shift depends on the size, shape, type, surrounding medium, a universal
rule of the fractional shift of the wave length ∆λ/λ0 can be observed
when the distance S between NPs is scaled by their characteristic
dimension D given by

∆λ

λ0
=

λ1 − λ0

λ0
∼ κ exp

(
− S

τD

)
(37)

For the coherent control of nano optical excitations, the relation
between local electric field and the external incident electric field is
given by

~E (~r,t) =
∫

space
d~r′

∫ t

−∞
dt′S

(
~r, ~r′, t− t′

)
~Eext

(
~r′, t′

)
(38)

For frequency domain description, the convolution leads to a simple
multiplication

~E (~r,ω) = S̃ (~r,ω) ~Eext (ω) (39)
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where S̃ stands for the tensorial linear response function. The above
equation can be written in component notation as a sum over two
terms

~E (~r,ω) =

(
Ex (~r,ω)
Ey (~r,ω)
Ez (~r,ω)

)
=

∑2

j=1




Sj
x (~r,ω)

Sj
y (~r,ω)

Sj
z (~r,ω)


Ej

ext(ω) (40)

Both the external transverse frequency domain field and the local field
are complex valued quantity given by

Ej
ext (ω) = Aj

ext (ω) eiϕj
ext (ω) (41)

and the Fourier inverse gives

~E (~r,t) = F−1
{

~E (~r,ω)
}

(42)

and the interaction with the wave function ψ (r, t) of a quantum
mechanical system gives

V (~r,t) = −µ · ~E (~r,t) (43)

with the dipole operator µ in electric dipole approximation. For local
polarization mode interference, the far field polarization components
are orthogonal to each other and the total far field intensity is given
by

Iext (ω) ∼
∣∣∣ ~Eext (ω)

∣∣∣
2

=
∣∣A1

ext (ω)
∣∣2 +

∣∣A2
ext (ω)

∣∣2 (44)

For the near field case the total local intensity is obtained from

I (~r,ω) ∼
∣∣∣ ~E (~r,ω)

∣∣∣
2

=
∑

n=x,y,z

∣∣∣∣∣∣

2∑

j=1

Sj
n (~r,ω) Aj

ext (ω) eiϕj
ext (ω)

∣∣∣∣∣∣

2

(45)

For local pulse compression Equations (40) and (41) can be written as

~E (~r,ω)=







S1
x (~r,ω)

S1
y (~r,ω)

S1
z (~r,ω)


A1

ext (ω)+




S2
x (~r,ω)

S2
y (~r,ω)

S2
z (~r,ω)


A2

ext (ω) e−i∆ϕext (ω)


 eiϕ1

ext (ω) (46)

where the external phase difference is defined in the frequency domain
by

∆ϕext (ω) = ϕ1
ext (ω)− ϕ2

ext (ω) (47)

For fixed phase difference ∆ϕext(ω), the local spectral phase can be
changed to a modified phase

ϕmod
x (~r,ω) = ϕx (~r,ω)+ϕ1

ext (ω) (48)
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For a short pulse, ϕmod
x (~r,ω) = 0, therefore

ϕ1
ext (ω) = −ϕx (~r,ω) (49)

For optimal control, we have to identify a suitable observable whose
expectation value shall approach a given target. For controlling local
fields on a spatial scale, let us start with the local spectral density
defined in Equation (45) and integrate over frequency to obtain the
local linear flux

F (~r)=

∫ ∞

0

dω
∑

n=x,y,z

∣∣∣
∑2

j=1
Sj

n (~r,ω) Aj
ext (ω) eiϕ

j
ext (ω)

∣∣∣
2

∼
∫ ∞

0

dωI(~r, ω) (50)

The objective is to enhance the local flux at an arbitrary position ~r1

and to suppress it at a different position ~r2. The fitness function is

f
[
~Eext(ω)

]
= F (~r1)− F (~r2) (51)

A necessary condition for global optimal control is given by
δ

δ [∆ϕext (ω)]
f

[
~Eext(ω)

]
= 0 (52)

The solution for Equation (52) for a linear response is given by

∆ϕext (ω)

=arctan

{
Smix (~r2, ω) sin[θmix (~r2, ω)]− Smix (~r1, ω) sin[θmix (~r1, ω)]

Smix (~r1, ω) cos [θmix (~r1, ω)]− Smix (~r2, ω) cos [θmix (~r2, ω)]

}
+kπ (53)

where k is an integer. The response-function mixing amplitude with
the condition Smix (~r,ω) ≥ 0 and mixing angle θmix (~r,ω) is given by

Smix (~r,ω) eiθmix (~r,ω) =
∑

n=x,y,z
S1

n(~r,ω)
[
S2

n (~r,ω)
]∗ (54)

The optimum external field amplitude is given by

Aj
ext (ω) = γj (ω)

√
Iin (ω) (55)

For optimum transmission coefficients, the solution pairs are given by
[
γ1 (ω) , γ2 (ω)

]∈
{
[0, 0] ,

[
1,−Cmix (ω)

C2 (ω)

]
,

[
−Cmix (ω)

C1 (ω)
, 1

]
, [1, 1]

}
(56)

with the coefficients given by

Cj (ω) =
∑

n=x,y,z

(∣∣Sj
n( ~r1,ω)

∣∣2 − ∣∣Sj
n (~r,ω)

∣∣2
)

(57)

and

Cmix (ω) = Smix (~r1, ω) cos [θmix (~r1, ω) + ∆ϕext (ω)]
−Smix (~r2, ω) cos [θmix (~r2, ω) + ∆ϕext (ω)] (58)
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In the case of linear optical antenna array, the emission pattern steadily
rotates from the dipole pattern of the horizontal emitter towards
the dipole pattern of the vertical antenna dipole moment, when the
resonant length of the antenna is reached. For nonlinear distribution
of the array elements, the rotation pattern is nonlinear and depends
on the assembly of the adjacent NPs. The horizontal dipole moment
of the emitter plus the transverse response of the antenna and the
vertical dipole moment of the antenna mode effectively determines the
angular emission. As the antenna is tuned into resonance with the
emission wavelength, the balance progressively shifts from the emitter
dipole towards the perpendicular oriented antenna dipole, until the
antenna mode dominates and fully determines the angular emission.
Hence, the presence of an antenna at resonance has a major effect.
It can enhance the rate with almost three orders of magnitude while
the emission pattern can be fully redirected. This concept can be
made use for redirecting the beam in different directions. By varying
the antenna length,tuning the antenna resonance to the excitation
wavelength can be done. For studying the antenna resonance patterns,
monopole antennas are fabricated with different lengths. The antenna
response as a function of antenna length is studied. The observed
narrow molecular fluorescence spots confirm the role of the sharp tip.
In principle any sharp metallic tip can confine the field through the
lightening rod effect. Thus it is important to verify the role of the
antenna resonance. To this end the antenna length was controllably
varied between approximately 30 and 140 nm.

Optical antennas work both in excitation and emission. To
enhance the excitation level, spatial localization and enhancement
are used in an antenna. Let us consider the emission control of a
single quantum system by the antenna. The spectral, polarization and
angular response of the antenna-emitter can be studied, independent of
the details of the measurement procedure and the absolute fluorescence
intensity by carefully observing a single emitter. Unlike in the case of
ensemble emitters, the polarization and angular emission observed are
independent of how the system was illuminated, as emitter-antenna
position and orientation are well defined, in a single emitter. This
polarization and angular emission of a single emitter are very crucial,
when it is coupled to an optical antenna. For monopole and dipole
antennas, the polarization of the emission provides information about
the orientation of the effective dipole moment dominating that emission
which in turn determines the optical beam focusing direction. If
fractal ensemble pattern is used, the fractal array concept increases
the computation speed rapidly as the number of elements increase for
rapid beam form computation as given in the Table 4. P refers to the
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stages of growth and δ refers to the number of elements in each stage.
For example for P = 3 and δ = 7, the fractal array factor is 300 times
faster to calculate than the conventional array for rapid beam forming
computation.

Table 4. Illustrating the number of times faster for rapid beam
forming computations.

P = 1 P = 2 P = 3 P = 4 P = 5
δ = 3 1 2 4 10 24
δ = 5 2 6 20 78 312
δ = 7 3 12 57 300 1680
δ = 9 4 20 121 820 5904

The size, shape, material and enclosing medium determine the
resonance of a single plasmonic nanostructure. The inter particle
distance in an ensemble of NPs influences the spectral position,
extinction amplitude as well as the decay dynamics (line width of
the LSPR). The entire property of the array is determined by the
characteristics of each particle in the array. Dense arraying or sparse
arraying can be used to fulfill the requirement. A transition from near-
field coupling to far field coupling, which extends to only a few tens of
nanometers, takes place with increasing distance between the NPs. At
the same time, there are some limitations in increasing the distance to
beyond some extent. Also in the far field regime, for NPs sufficiently
small compared to the operating wavelength (electrostatic limit), the
NPs in the array can be seen as individual scatterers of the incoming
radiation, with the scattered field being of dipolar character. However,
for sufficiently large distances, the interference of the scattered field
determines the optical properties of the array configuration.

6. CONCLUSION

A proper nonlinear fractal array configuration is required where no
radiation is scattered into diffraction orders, for efficient receiving and
focusing of optical radiation to the sub wavelength region without
losing energy by scattering. By reciprocity, in order to achieve
highly directive radiation into one direction, the opening of diffraction
channels has to be carefully suppressed by carefully choosing the non-
linearity determined by the fractal array configuration using dense or
sparse array with respect to the resonant wavelength of the individual
antennas in the array. The optical antenna array along with the
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nonlinearities in coupled antennas and arrays concept increases the
rapid beam form computation and pattern tailoring for smart beam
forming using the iterated function system (IFS) concept for the
nonlinear fractal optical antenna array.
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