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Abstract—In this paper, we describe two parallel MRTD algorithms.
Both algorithms are proved to be feasible by comparing the result of
the serial MRTD method, the efficiency of them are also compared in
order to evaluate a better strategy. Moreover, a novel implementation
of “complex frequency-shifted” perfect matched layer (CFS-PML) with
auxiliary differential equation (ADE) is presented for the MRTD
method. The implementation is easier to obtain and more memory
saving when treating more generalized media, and numerical results
demonstrate that the CFS-PML with ADE is more absorptive than
the popularly used APML. Furthermore, using one of the parallel
algorithms and the CFS-PML, the characteristic of the field cross-
section distribution of the electromagnetic pulse (EMP) propagation
in vaulted tunnel is studied.

1. INTRODUCTION

The Multi-Resolution Time-Domain (MRTD) technique was first
published in 1996 by Krumpholz and Katehi [1, 2], and has been
developed rapidly as an efficient numerical algorithm in the time-
domain like the long established Finite Difference Time-Domain
(FDTD) technique [3–17] and other time-domain methods [18–20]. As
the dispersion of the MRTD scheme compared to the conventional
FDTD scheme shows an excellent capability to approximate the exact
solution with negligible error for sampling rates approaching the
Nyquist limit, it becomes possible that larger targets can be simulated
without sacrificing accuracy. However, owing to the limitation of
the computer memory, the calculation can be only implemented in
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a finite area. So, for the intensive computation and storage, there
are some challenges for its practical implementation when dealing
with the electrically large and complex electromagnetic structures. To
overcome the computation power and storage requirement bottlenecks,
this paper focuses on the parallel implementation of the S-MRTD
based on Daubechies’ compactly supported scaling functions with
two vanishing moments [21, 22]. As the Message Passing Interface
(MPI) [23] is becoming the new international standard for parallel
programming, the MPI library is employed to exchange the electric
and/or magnetic fields. We describe two parallel MRTD approaches,
which of the efficiencies are compared in this paper. For the sake
of simplicity and compactness, a parallel MRTD algorithm for the
mode based on the one-dimension domain decomposition method is
presented.

We also describe the CFS-PML [24] with auxiliary differential
equation for the S-MRTD in detail. Numerical results show that the
technique is more efficient at numerical reflection and memory saving
than that of the widely used APML [25].

2. PARALLEL MRTD ALGORITHM

Just like the FDTD, MRTD is also nearly inherently parallel in nature
since only local information is needed for updating the fields at each
time increment. Parallel MRTD can be seen as a kind of algorithm
that the whole computational domain is divided into several sub-
domains and each node only handles for the corresponding sub-domains
calculation. Therefore, the requirement of computational storage and
CPU time is reduced several times, which implies that the parallel
MRTD is faster than a serial counterpart almost by a factor n, where
n is the number of processors.

2.1. MRTD Scheme

Maxwell’s curl equations in the time domain

∇×E = −µ
∂H
∂t

− σmH

∇×H = ε
∂E
∂t

+ σE





(1)

are discretized on the traditional Yee grid. As the theory in [21],
the fields are expanded in Daubechies’ compactly supported scaling
functions φ [26], which approximately satisfy the shifted interpolation
property [27]

φ (k + M1) = δk,0 (2)
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for k integer, where

M1 =
∫ +∞

−∞
xφ (x)dx (3)

is the first-order moment of the scaling function and the Kronecker
delta function. This property yields a simple algorithm for
inhomogeneous problems through the local sampling of the field values
regardless of the complexity of the inhomogeneity [21].

According to the wavelet-Galerkin scheme based on Daubechies’
compactly supported wavelets, a system of updating equations similar
to the S-MRTD [2] method can be obtained

Eφx,n+1

i+ 1
2
,j,k

= CAmEφx,n

i+ 1
2
,j,k

+ CBm

[
1

∆y

∑

l

a(l)H
φz,n+ 1

2

i+ 1
2
,j+l+ 1

2
,k

− 1
∆z

∑

l

a(l)H
φy,n+ 1

2

i+ 1
2
,j,k+l+ 1

2

]
(4)

where

CAm =
2εm − σm∆t

2εm + σm∆t
(5)

CBm =
2∆t

2εm + σm∆t
(6)

the subscript m = (i + 1/2, j, k). The coefficients a(l) for 0 ≤ l ≤ 2
have been tabulated in [28].

2.2. The First Domain Decomposition Method (DDM-I)

The DDM-I is shown in Fig. 1, this method uses an MPI function to
send the Hx,y(:, :, nk1− 1), Hx,y(:, :, nk1− 2), Hx,y(:, :, nk1− 3) and
Ex,y(:, :, nk1−1), Ex,y(:, :, nk1−2) from the processor N to N+1, and
to calculate the Ex,y(:, :, nk0), Ex,y(:, :, nk0 + 1), Ex,y(:, :, nk0 + 2)
and Hx,y(:, :, nk1−1), Hx,y(:, :, nk1−2) in processor N +1. The MPI
function is once again to send the Ex,y(:, :, nk0), Ex,y(:, :, nk0 + 1),
Ex,y(:, :, nk0 + 2) and Hx,y(:, :, nk1− 1), Hx,y(:, :, nk1− 2) from the
processor N + 1 to N .

2.3. The Second Domain Decomposition Method (DDM-II)

The DDM-II is shown in Fig. 2. In this approach, the MPI function is
to send the Hx,y(:, :, nk1 − 1), Hx,y(:, :, nk1 − 2), Hx,y(:, :, nk1 − 3),
Hx,y(:, :, nk1−4) and Hx,y(:, :, nk1−5) from processor N to N+1, the
Hx,y in the processor N , received from the processor N+1, is then used
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Figure 1. Two adjacent sub-domains.
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Figure 2. Sub-domains with three cells overlap.

to calculate the Ex,y(:, :, nk0 − 2), Ex,y(:, :, nk0 − 1), Ex,y(:, :, nk0),
Ex,y(:, :, nk0 + 1) and Ex,y(:, :, nk0 + 2) in the sub-domain N . The
same procedure is then used in the processor N+1. Compared with the
DDM-I, only the magnetic fields are exchanged in DDM-II, however,
the Ex,y above should be updated in both the processor N and N + 1.
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2.4. The Parallel MRTD Algorithms Using MPI

MPI is an international standard that supports message passing in a
parallel processing system, and provides a standard environment for
this purpose as well as a standard communication library. Based on
MPI, a parallel computation can be composed of a number of processes,
each works on some local data. The MPI standard defines interfaces to
two languages, C and Fortran, and we use Fortran95 in programming
in this paper.

According to the domain decomposition method mentioned above,
the original problem is divided into several sub-domains in terms of the
features of the problem. Each sub-domain is treated as a process, and
MPI connects these processes together. Before a program is executed,
the user sets the number of processors to be used.

A standard parallel MRTD algorithm consists of parallelism steps
as follows:
a) MPI initialization.
b) Determination of the process number.
c) Reading and computation of simulation parameters.
d) Creation of the derived data types for communication purpose.
e) Start time iterations (time-stepping).
f) End.

3. APPLICATION OF CFS-PML TO MRTD METHOD

3.1. Formulation

In this section, the CFS-PML for MRTD based on Daubechies scaling
functions is discussed. For the sake of generality example, a lossy
medium is assumed here. In the PML layer, the formulation is posed
in the stretched coordinate space [29]

jωεEx + σEx =
1
sy

∂

∂y
Hz − 1

sz

∂

∂z
Hy (7)

where si are the stretched-coordinate metric, which are proposed to be

si = κi +
σi

αi + jωε0
, i = x, y, z (8)

and then we can get



1
si

=
1
κi

+
σ′i

α′i + jωε′i(
σ′i = −σi, ε′i = ε0κ

2
i , α′i = κ2

i αi + κiσi

) (9)



228 Liu, Chen, and Zhang

where σi, κi and αi are nonnegative reals, and κi ≥ 1. This choice for
the variables was originally proposed by Kuzuoglu and Mittra [30].

Inserting (9) into (7), we obtain

jωεEx+σEx=
1
κy

∂

∂y
Hz− 1

κz

∂

∂z
Hy+

σ′y
α′y+jωε′y

∂

∂y
Hz− σ′z

α′z+jωε′z

∂

∂z
Hy

=
1
κy

∂

∂y
Hz − 1

κz

∂

∂z
Hy + ϕexz − ϕexy (10)

where

ϕexy =
σ′y

α′y + jωε′y

∂

∂y
Hz (11)

ϕexz =
σ′z

α′z + jωε′z

∂

∂z
Hy (12)

Here we rewrite (11)–(12) as

jωε′yϕexy + α′yϕexy = σ′y
∂

∂y
Hz (13)

jωε′zϕexz + α′zϕexz = σ′z
∂

∂z
Hy (14)

then transform (10), (13) and (14) into time domain

ε
∂

∂t
Ex + σEx =

1
κy

∂

∂y
Hz − 1

κz

∂

∂z
Hy + ϕexz − ϕexy (15)

ε′y
∂ϕexy

∂t
+ α′yϕexy = σ′y

∂

∂y
Hz (16)

ε′z
∂ϕexz

∂t
+ α′zϕexz = σ′z

∂

∂z
Hy (17)

Also for the sake of simplicity in the presentation and without loss
of generality, the fields Ex, Hy and Hz the auxiliary variables ϕexy and
ϕexz are expanded in terms of scaling functions only in space domain
and pulse functions in time domain.

Ex(~r, t)=
+∞∑

i,j,k,n=−∞
Eφx,n

i+ 1
2
,j,k

hn(t)φi(x)φj(y)φk(z) (18)

Hy(~r, t)=
+∞∑

i,j,k,n=−∞
H

φy,n+ 1
2

i+ 1
2
,j,k+ 1

2

hn+ 1
2
(t)φi+ 1

2
(x)φj(y)φk+ 1

2
(z) (19)
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Hz(~r, t)=
+∞∑

i,j,k,n=−∞
H

φz,n+ 1
2

i+ 1
2
,j+ 1

2
,k

hn+ 1
2
(t)φi+ 1

2
(x)φj+ 1

2
(y)φk(z) (20)

φexy(~r, t)=
+∞∑

i,j,k,n=−∞
φφx,n

exy ,i+ 1
2
,j,k

hn(t)φi+ 1
2
(x)φj(y)φk(z) (21)

φexz(~r, t)=
+∞∑

i,j,k,n=−∞
φφx,n

exz ,i+ 1
2
,j,k

hn(t)φi+ 1
2
(x)φj(y)φk(z) (22)

where Eφx,n

i+ 1
2
,j,k

, H
φy,n+ 1

2

i+ 1
2
,j,k+ 1

2

, and H
φz,n+ 1

2

i+ 1
2
,j+ 1

2
,k

, φφx,n

exy ,i+ 1
2
,j,k

and φ
φx,n+ 1

2

exz ,i,j,k+ 1
2

are the coefficients for the fields and the auxiliary variables expansions
in terms of scaling functions which are equal to the corresponding fields
and auxiliary variables. The indexes i, j, k, and n, are the discrete
space and time indices related to the space and time coordinates via
x = i∆x, y = j∆y, z = k∆z, and t = n∆t, where ∆x, ∆y, ∆z, and
∆t, represent the space and time discretization intervals in x-, y-, z-
and t-direction. The function h(t) is defined as Haar’s scaling function,
and φ is Daubechies’ scaling function with two vanishing moments.

With the wavelet-Galerkin scheme based on Daubechies’ com-
pactly supported wavelets, a system of updating equations similar to
the S-MRTD method can be obtained
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the CAm, CBm are the same with (5) and (6), and definitions for P z
k

and Qz
k are similar with P y

j and Qy
j .

Observing (23)–(25), it is seen that the explicit time-marching
schemes for the field and the auxiliary variables are obtained at the
(n + 1) time step. And the schemes satisfied the stability condition
for the S-MRTD scheme [2]. It is also obvious that the CFS-
PML implementation requires no more than two auxiliary variables
per field component, which is less than that reported by previous
implementation of this method [25]. Therefore, the CFS-PML method
is more straightforward and memory saving. Moreover, we use
perfectly electric conductor (PEC) walls to terminate the PML regions.

Equations for Ey and Ez are as follow:
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The other set of equations for updating H can be obtained by duality.
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Figure 3. Computational model.
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3.2. Result of the Reflection Error

To demonstrate CFS-PML termination of the S-MRTD lattice, a 3-D
lattice of the dimension Nx × Ny × Nz = 36 × 36 × 22 was used,
surrounding a computational domain of the dimension 20×20×6 with
a PML layer 8-cell thick. The media with constitutive parameters
εr = 7.0 and σ = 0.3 is introduced into the computational domain.
As shown in Fig. 3, the excitation was applied to the electric field
component Ex at the center of the computation domain as follows:

Eφz,n+1
i,j = Eφz,n

i,j − (n∆t− 3t0)
t0

exp
(
−(n∆t− 3t0)2

t20

)
(30)

where t0 = 2.0 ns. The space is discretized with a mesh with ∆x =
∆y = ∆z = 0.05m, and the time step is ∆t = 55.556 ps. Within the
PML layer, the constitutive parameters σi and κi are scaled using a
pth order polynomial scaling [31],

σ(ρ) = σmax

(ρ

d

)p
(31)

κ(ρ) = 1 + (κmax − 1)
(ρ

d

)p
(32)

where ρ denotes the distance from the interface of the computational
domain and the PML into the PML layer, d is the depth of the PML,
and p is the order of the polynomial. A choice for σmax can be expressed
as

σopt =
(m + 1)

150π
√

εr∆
(33)

where ∆ is the grid spacing along the normal axis and there is no
difference between x-, y-, and z-direction in all computations in this
article. Another PML parameter α is not scaled, and is constant
through the PML. In this article, the reflection error was computed
at the sampling point A that corresponding to Ex a cell from the PML
interface, where electromagnetic wave is incident normally. In order to
isolate the error due to the PML from grid dispersion error, a reference
problem was also simulated: the same mesh is extended 100 cells out
in all dimensions, leading to a 236 × 236 × 222 cell lattice. The error
relative to reference solution was then computed as

errordB = 20 log10

∣∣Ex(t)− Exref
(t)

∣∣
max

∣∣Exref
(t)

∣∣ (34)

where Ex(t) represents the time-dependent discrete field computed
within the working volume of the 36×36×22 lattice, Exref

(t) represents
the same discrete field computed by the reference problem.
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It is instructive to observe the maximum reflection error
experienced by the CFS-PML method with ADE as a function of the
constitutive parameters κmax, σmax and α. Fig. 4 shows the contour
plots of the maximum relative error over 900 time steps at point A
versus κmax and σmax with α = 0.001. It can be demonstrated that as
low as −120 dB maximum error is achieved.
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Figure 5 does the same with the same κmax and σmax as Fig. 2 but
for the APML. It can be seen that the maximum error is on the order of
−63 dB. Compared with the APML, a dramatic improvement of nearly
60 dB is obtained with the CFS-CPML. Moreover, the optimal error
is realized over a much broader range of κmax and σmax, making these
values easier to predict.

3.3. Implementation of the Parallel CFS-PML

For the sake of simplicity, the parallel implementation for the CFS-
PML is also based on the one-dimension domain decomposition
method. The material characteristics of each cell in the entire
computation domain and the corresponding coefficients associated with
the MRTD updating equations are stored in three-dimensional arrays.
From Eqs. (23)–(25), it can be seen that the governing equations are
the same for the fields inside the CFS-PML and the inner sub-domains.
Thus the most important thing for CFS-PML is to assign appropriate
material characteristic to each cell.

To implement this in parallel code, we first define a temporary
three-dimensional array for the entire computational space on each
processor. After assigning appropriate material characteristic to each
cell, the required material characteristic array of each processor can be
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extracted form the temporary one according to the processor position.
Such processing method is straightforward and easy to implement,
moreover, it is not necessary to decide which processor a specific cell
belongs to, thus saving CPU time.

4. APPLICATION OF THE PARALLEL MRTD
ALGORITHMS

EMP propagation in tunnel is a significant subject to study, the
interest stems from two application areas: electromagnetic protection
against the EMP weapons, which are mainly of interest for the military
applications and the ultra-wideband (UWB) communication in tunnel
which driven by the commercial application. When predominating
the characteristic of the field cross-section distribution of the EMP
propagation in tunnel, we could install the sensitive electromagnetic
devices or the shielding equipments such as wave-guide widows,
metallic doors and filters at the place where the filed distribution
is weak, or change the distributed direction of some components to
weaken the coupling energy. For the wireless communication, we could
install the antennae at the place where the field distribution is strong
to get high coupling energy.

4.1. Model of the Tunnel

The compendious model of the vaulted tunnel is illustrated in Figs. 6
and 7. The dimensions of the tunnel cross-section are shown in
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Figure 6. The computational model of the tunnel.
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Fig. 7(a). The source is placed near the CFS-PML. For the purposes
of this study, constitutive parameters for soil were assumed, giving
σs = 0.004, εrsoil = 9.0. The constitutive parameters for the wall and
arris of the straight part can be defined as

wall : εeq = 9.0, σeq =
σs

2
, arris : εeq =

3ε0εr + ε0

4
, σeq =

3σs

4
Following the procedure of [32], the conformal technique in [32] can

be also used here. Then the constitutive parameters for the wall and
arris of the crooked part can be defined via the conformal technique.
The conformed vault of the tunnel is shown as Fig. 7(b).

4.2. Setting the Excitation Source

In the waveguide system [33], the excitation source is usually
introduced robustly according to propagation model such as TE10,
TM11, etc.. Though in this case we can’t get the analytical model of
the wave propagation, the way that the excitation sources induced in
the waveguide system can still be employed here, which can be showed
as follows

En+1
tan (i, j, ks) = En

tan(i, j, ks) + f(i, j, ks)g(t) (35)

where the subscript ‘tan’ denotes the E-field distributed in a transverse
cross section at z = ks∆z of the tunnel structure in Fig. 6, f(i, j, ks) is
the function of the field distribution and g(t) refer to the time function
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determine the bandwidth of the sources. Here we set f(i, j, ks) as the
model of TM11 propagation in waveguide approximately, though the
model doesn’t satisfy the boundary condition of the tunnel, we could
believe that after the wave propagating a certain length, the model
will be in a steady state which approach TM11 propagation model of
the tunnel itself.

TM11 propagation model is defined as

Ex = −jβ11
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(π

a
x
)

sin
(π

b
y
)

e−jβ11z,

Ey = −jβ11

k2
c

π

b
A sin

(π

a
x
)

cos
(π

b
y
)

e−jβ11z

Ez = A sin
(π

a
x
)

sin
(π

b
y
)

e−jβ11z

Hx =
jωε

k2
c

π

b
A sin

(π

a
x
)

cos
(π

b
y
)

e−jβ11z,

Hy = −jωε

k2
c

π

a
A cos

(π

a
x
)

sin
(π

b
y
)

e−jβ11z

Hz = 0





(36)

g(t) in (12) set to be a differential Gaussian electric pulse that
g(t) = E0(t − t0) exp(4π(t− t0)2/τ2) with τ = 3.0 ns, E0 = 1000 V/m
and t0 = τ .

4.3. Feasibility and Application of the Parallel MRTD
Algorithms

To check whether the parallel implementation is feasible or not,
comparison between serial MRTD and parallel MRTD is executed
to analyze the proposed problem. Here we define that the tunnel
is 45 m long, the space is discretized with an MRTD lattice with
∆x = ∆y = ∆z = 0.03m, ten-cell-thick PML layers terminate the
grid. This results in a 260 × 173 × 1720 cell lattice, and time step is
∆t = 33.333 ps. f(i, j, ks) is located at the x-y plane with z = 0.3 m,
the sampling point is located at the center of x-y plane with z = 43 m
The simulation is performed for 10000 time steps. The computational
domain is divided in the z-direction because of its high efficiency of
data exchange and the property of the computational model.

The computational requirement is enabled to be executed on a
single PC. Here the hardware platform of the PC is as follows: Intel(R)
Core(TM) i7 2.93 GHz CPU, 7.93GB Memory; and the software
platform: Microsoft Windows XP Professional, Fortran 90 Complier,
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MPICH2-1.0.6-WIN32-IA32 Software. We use the serial MRTD and
parallel MRTD (4 PC nodes) to compute the case, and then compare
the electric field Ey at the reference point.

As shown in Fig. 8, we can conclude that parallel MRTD gives
the same result as serial MRTD dose. But the serial MRTD will be
helpless when more grids are involved in simulating the tunnel, and
then only parallel MRTD can work.
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Figure 8. Comparison between serial MRTD and parallel MRTD.

In order to identify which parallel approach is more efficient, a
comparison work is carried out here. As shown in Table 1, where T1

is the execution time on one processor (serial MRTD), and Tn is the
execution time on n processors, we can see that the execution time
is not reduced by a factor n, this is because some fields around the
processor boundary will require a small amount of information from the
neighboring processors, those required data values from the MRTD gird
on neighboring processors are thus exchanged, and this communication
introduces an overhead into the parallel MRTD code that is not present
in the serial form. Moreover, it is obvious that the DDM-I is a little
more efficient than DDM-II, and this is because that the total number
of the exchanged data is the same in both approaches, but the Ex,y

fields shown in Section 3, part II are updated twice in DDM-II, which
results in more execution time.

Next, using the parallel MRTD (DDM-I), we define that the
tunnel is 200m long, the space and time step, f(i, j, ks) are the same
as before. This results in a 260 × 173 × 7020 cell lattice, and the
simulation is performed for 20000 time steps. A sampling cross-section
is located at the x-y plane with z = 150m. As it’s difficult to get
the analytic result of the field cross-section distribution with different
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Table 1. (a) Performance increase against the number of processors
(DDM-I). (b) Performance increase against the number of processors
(DDM-II).

(a)

Number of

Processors
Execution Time/s

Speed up

Sp = T1/Tn

Efficiency

η = Sp/n

1 556.4 1 100%

2 394.6 1.41 70.5%

3 268.8 2.07 69.0%

4 209.2 2.66 66.5%

(b)

Number of

Processors

Execution

Time/s

Speed up

Sp = T1/Tn

Efficiency

E = Sp/n

1 556.4 1 100%

2 406.1 1.37 68.3%

3 278.2 2.00 66.6%

4 213.2 2.61 65.1%

(a) (b)
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(c) (d)

(e) (f)

Figure 9. The cross-section distributions of the fields. (a) Ex (V/m).
(b) Hx (A/m). (c) Ey (V/m). (d) Hy (A/m). (e) Ez (V/m).
(f) Hz (A/m).

excitation propagation models, the result from numerical simulation is
all-important for the engineering underground.

Figures 9(a)–9(f) denote the cross-section distributions of the
fields of E and H in the tunnel. Observing the results, it is seen
that the mainly characteristics of the fields’ distributions are generally
similar with that in the perfect waveguide. Though the field Hz is
not zero, it is very small compared with the other five fields. And
the distribution characteristics for Ex and Hy, Ey and Hx are similar,
which can be validated from Eq. (36). Take Ex as example, Ex has
two peaks along the x-direction, one of which is positive, the other
one is negative. Moreover, the Ez, field basically distributes as the
stationary wave along the x and y coordinates, and the energy of Ez

field is mainly located in the middle area of the cross-section.
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5. CONCLUSION

In this paper, we present two parallel MRTD approaches. Details about
the implementations of the domain decomposition, message passing
between the neighboring processors and CFS-PML with ADE are also
provided. Numerical results show that both methods are feasible, and
the DDM-I is more efficient than DDM-II. The proposed method of
CFS-PML with ADE is more straightforward to implement compared
with conventional APML. Numerical examples show that maximum
errors on the order of −120 dB were recorded for the CFS-PML,
compared to −110 dB for the APML. And a striking advantage of CFS-
PML with ADE is that the optimal reflection error can be realized
over a much broader range of κmax and σmax, making these values
easier to obtain. Moreover, the computational model of a vaulted
tunnel is established, and the characteristics of the fields’ cross-section
distributions of the TM11 propagation model in the vaulted tunnel is
obtained and analyzed.
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