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Abstract—A passive millimeter-wave imager BHU-2D-U based on
synthetic aperture interferometric radiometer (SAIR) technique has
been developed by Beihang University. The imager is designed for
detecting concealed weapons on human body and operated under
the near-field condition of the antenna array, thus the conventional
Fourier imaging theory does not apply. In this paper, an accurate
numerical image reconstruction algorithm using regularization theory
is proposed. By means of adding a prior information of desired
brightness temperature image, the influences of measurement noise
and focusing error on the reconstructed image have been reduced.
Numerical simulations and experiments on BHU-2D-U have been
performed to verify the superiorities of the proposed algorithm over
the corrected Fourier method and the Moore-Penrose pseudo inverse
method. The results demonstrate that the proposed method is an
advantageous imaging algorithm for near-field millimeter-wave SAIR.

1. INTRODUCTION

Passive millimeter-wave imagers have become popular for high
resolution observation of concealed weapons detection applications [1–
5]. Compared with X-ray or radar instruments, passive imagers receive
spontaneous radiations emitted or reflected by the interested subjects.
Therefore, passive imagers are more appropriated if considering
the human health issues. The Synthetic Aperture interferometric
radiometer has been proved effective and capable of delivering high
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spatial resolution over large field of view (FOV) required in the security
applications.

A two-dimensional SAIR imager BHU-2D-U has been developed
at Beihang University with an imaging distance about 3 m [6], which
is operated under the near-field condition of the utilized antenna
array. Thus, the Fourier imaging theory generally employed in the
interferometry and radio astronomy applications does not apply any
longer. To solve this problem, two methods have been reported:
Corrected Fourier method introducing correction phase terms is able
to provide accurate results by assuming point source condition but
not for the cases of extended targets [7–9]. The alternative imaging
method on the basis of Moore-Penrose pseudo inverse algorithm has
been verified for the one-dimensional SAIR [10, 11]. However, the
image reconstruction problem is not well-posed, when the large number
of antennas and large FOV are applied. The ill-posed problem indicates
that small focusing error and measurement noise in actual instrument
can lead to large distortions in the reconstructed image. To reduce
the errors in the reconstructed image, this paper presents a numerical
imaging algorithm, which regularizes the problem with the aid of a
prior information of the desired solution [12, 13].

In this paper, the near-field imaging principle of SAIR is
reviewed, which indicates the unavailability to reconstruct brightness
temperature image from near-field visibility function analytically. To
solve the problem, a numerical imaging method is proposed by referring
to the physical property of desired brightness temperature distribution
and the regularization theory, which results smaller errors in the
reconstructed image. To support the theoretical analysis, numerical
simulations and experiments are carried out based on BHU-2D-U. The
results verify the advantageous of the proposed algorithm for near-field
millimeter-wave SAIR.

2. NEAR-FIELD IMAGING PRINCIPLE AND
PROPOSED IMAGE RECONSTRUCTION ALGORITHM

2.1. The Visibility Function

The principle of SAIR is to measure the spectral components of the
brightness temperature distribution in the FOV by correlating signals
that are received by the antennas arranged in a plane, as is illustrated
in Figure 1.

The observation antennas are located on the plane z = 0, while
an extended source is located on plane z = Z0. The visibility function



Progress In Electromagnetics Research C, Vol. 45, 2013 59

0 0 0( , , )X Y Z •

( , ,0)
k k
x y ( , ,j jx y

θ 0R

kr jr

kd jd

o

y

x

z

ds
φ X

Y

kA jA

h
kθ

jθ

0)

Figure 1. Near-field geometry diagram of 2-D SAIR measurement.

for any two antennas labeled k and j can be expressed as [14]

V N
kj =

1√
ΩkΩj

∫∫

source

T (θ, φ)
rkrj

Fnk(θk, φk)

·F ∗
nj(θj , φj)r̃kj

(
rk − rj

c

)
ejk0(rk−rj)ds (1)

where the integral is extended over the source surface, T the brightness
temperature of the target, and k0 the wave number. Ωk,j are the
antennas equivalent solid angles, rk,j the distances between the source
and observation elements, and Fnk,j the normalized radiation voltage
patterns of the antennas, which observe the image from their own
coordinate system. r̃ij(τ) is the fringe washing function (FWF),
which accounts for spatial decorrelation effects. For ideal narrow-band
imaging, the FWF can be neglected. The visibility function mainly
depends on the path length difference ∆r = rk − rj . According to the
Figure 1, the distance rk can be expressed as

rk =
√

(xk −X0)2 + (yk − Y0)2 + Z2
0 (2)

When R0 À dk,j , a linear Taylor approximation can be done and yields

rk = R0 +
d2

k

2R0
− (ξxk + ηyk) (3)
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where ξ = X0/R0 and η = Y0/R0 are the direction cosines. Using the
same equation for rj , the phase difference k0∆r can be written as

k0∆r = rk − rj = ϕ(u, v)− 2π (uξ + vη) (4)

where ϕ(u, v) = π(d2
k − d2

j )
/

R0, and u = (xk − xj)/λ and v =
(yk − yj)/λ are called the baseline. In the case of far-field observation,
the approximations, θk ≈ θj ≈ θ, rk ≈ rj ≈ r, ϕk,j ≈ 0 can be applied.
In the case, the far-field visibility function can be expressed as

V F
kj (u, v) =

∫∫

ξ2+η2≤1

TM (ξ, η)e−j2π(uξ+vη)dξdη (5)

where

TM (ξ, η) =
TB(ξ, η)Fnk(ξ, η)F ∗

nj(ξ, η)√
1− ξ2 − η2

√
ΩkΩj

(6)

is the modified brightness temperature. It can be seen that the far-
field visibility function is the inverse Fourier transforms of modified
brightness temperature.

For near-field application, the linear Taylor approximation of
Equation (3) will result in large approximation errors that indicate
the direct Fourier theory is not suited for. To solve the problem, the
corrected Fourier method can be employed to correct the near-field
visibility measurement of Equation (1) by subtracting the near-field
phase and adding the far-field phase [9]

V F
kj = V N

kj e−jk0(rk−ri)e−j2π(uξ+vη) (7)

The method is fitted for the point source target, while the
integration of Equation (1) is removed. However, for an extended
source target, the near-field visibility function is not only determined
by the different baseline, but also depended on the different location of
the pixel point. In this case, the near-field visibility function just can
be partially corrected by focusing the near-field visibility to one pixel in
the FOV. The residual near-field model error cannot be avoided when
the large FOV is required. Moreover, the spatial misalignments due to
non-ideal installation of antennas are not considered in the method.

2.2. The Proposed Imaging Method

As analyzed in the previous section, it is impossible to correct the
near-field visibility function to the far-field case. Considering the
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finite resolution of the reconstructed image, the visibility function
integral (1) can be discretized into a linear system of matrix equations

Vkj =
∑

p

∑
q

T (θpq, φpq)
rk,pqrj,pq

√
ΩkΩj

Fnk(θpq, φpq)

·F ∗
nj(θpq, φpq)r̃kj

(
∆rkj,pq

c

)
ejkB∆rkj∆s (8)

Here numerical quadrature is used to represent integral
Equation (1) as a summation over p×q integrand samples. By mapping
(k, j) into single ones M and mapping (p, q) into single ones P , all of
visibility samples can be written simultaneously as

VM×1 = GM×P · TP×1 (9)

where VM×1 is the measured near-field visibility samples, TP×1 the
temperature matrix, GM×P the system response matrix, and M the
number of visibility samples including redundant ones. Since the
redundant pairs of antennas in far field may lead to the different
visibility samples in near field. P is the number of pixels in the
brightness temperature distribution. In this case, the near-field
image can be accurately reconstructed by means of numerical solution
method.

For BHU-2D-U, the background cancelation technique has been
used to reduce the influences of aliasing error and system offset [5, 6].
Thus the visibility function samples need to be pre- processed before
image reconstruction

V ′ = Vt+b0 − Vb+b0 = G [Tt+t0 − Tb+b0 ] = GT ′ (10)

where Vt+b0 is the visibility sample of the target Tt+b0 , Vb+b0 the
visibility sample of background Tb+b0 without the target, and T ′
describes the differential temperature distribution of the target. For
BHU-2D-U, 4608 pixels (P = 96 × 48) are used to satisfy the
Nyquist sampling criteria and to make the numerical quadrature
sufficiently accurate, while the number of complex visibility samples
is M = 48 · (48 − 1)/2 = 1128. Hence the matrix Equation (10)
is underdetermined and the inverse problem does not usually have a
straightforward solution. For ideal SAIR with a small array, the matrix
G is generally well conditioned, and the Moore-Penrose pseudo inverse
method can be used to get a stable solution [10]

T ′ = GT
(
GGT

)−1
V ′ (11)

where T denotes conjugate transpose operation, However, the large
antenna array in BHU-2D-U results in the ill condition of matrix G.
Moreover, considering the measurement noise and focusing error in
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measured visibility samples, the direct problem of Equation (10) can
be formulated as

V ′ + ∆V ′ = (G + ∆G) · (T ′ + ∆T ′
)

(12)

Under this condition, the solution will be potentially very sensitive
to the inevitable measurement errors in the visibility samples.

‖∆T ′‖
‖T ′‖ ≤ c(G)

1− c(G)‖∆G‖
‖G‖

(‖∆G‖
‖G‖ +

‖∆V ′‖
‖V ′‖

)
(13)

where c(G) is the condition number of G, which characterizes the
posedness of the matrix equation. It has been found that the condition
number of G increases with larger FOV and increasing number of
antennas. Therefore, the inverse problem of BHU-2D-U is not well-
posed. In this case, it is necessary to add prior information about the
desired solution in order to suppress the propagation of errors from
measured visibility samples to brightness temperature distribution and
single out a useful and stable solution.

In order to incorporate the further information about the desired
solution, the physical property of the expected brightness temperature
is taken into account. Firstly, the object workspace E′ is defined as the
space of the whole FOV, while the workspace E′′ is the space of the
target region D(t) inside FOV (a subspace of E′). From Equation (10),
the desired brightness temperature T ′ is equal to 0 outside the target
region. Thus an operator R can be defined as

R : E′. → E′′

T ′. → RT ′ = T ′′

With ∀T ′ ∈ E′

T ′′ =
{

T ′, (θ, φ) ∈ D(t)
0, otherwise

(14)

where R is a Q×P matrix. Q is the number of pixels within the target
region, while P is the number of pixels in the whole FOV. By the action
of the operator, the dimension of desired solution T ′′ is reduced. The
location and lineament of target region can be roughly estimated by
the corrected Fourier reconstructed image. In this way, the solution
can be defined as the function minimizing the discrepancy functional

min
T ′∈E′

∥∥GT ′ − V ′∥∥2 (15)

Subject to the constraint

(I −RH)T ′ = 0 (16)
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where RH = RT R is the projection operator onto the subspace E′′ of
the E′ object space. The constraint of Equation (16) can be written
T ′ = RT T ′′. By Equation (16), Equation (15) can be rewritten as

min
T ′′∈E′′

∥∥Y T ′′ − V ′∥∥2 (17)

where Y = GRT . The dimensions of system response matrix are
reduced from G(M × P ) to Y (M × Q), indicating that the condition
number of system response matrix can be reduced in the numerical
analysis point of view. Moreover, with the aid of regularization
method [15], the desired solution can be expressed as the minimization
of the following weighted sum of the residual norm and the side
constraint

min
T ′′∈E′′

J(T ′′) =
∥∥Y T ′′ − V ′∥∥2 + µ

∥∥LT ′′
∥∥2 (18)

where L is the regularization matrix, which controls the smoothness
of the desired solution. In order to preserve the reconstructed
image edges, the derivative operator is chosen in this paper. The
regularization parameter µ ≥ 0 controls the weight given to
minimization of the side constraint relative to minimization of the
residual norm. It controls the sensitivity of the regularized solution
to the measurement errors in G and V . Thus the regularization
parameter is very crucial and should be chosen with care. There
are numerous optimization methods to compute the optimal µ. In
this paper, the Generalized Cross-Validation (GCV) method is used to
ensure sufficient reconstruction accuracy [16].

3. SIMULATION AND ANALYSIS

Numerical simulations have been performed to validate the feasibility
of the proposed image reconstruction algorithm. A simulation model
based on the BHU-2D-U has been established. As is shown in Figure 2,
the BHU-2D-U consists of 48 receiving antennas/elements and they
are installed on a plane in U-shaped geometry. There are three arms
in the array, including two horizontal arms and one vertical arm. The
horizontal arm contains 12 receiving antennas and the spacing between
antennas is 2.62λ (λ = 8.824 mm), while the vertical arm contains
24 receiving antennas and the spacing between adjacent antennas is
1.46λ. The sampling spacing does not meet the Nyquist Theorem,
aliasing error will be introduced in the BHU-2D-U. Thus, background
cancelation technique is used to reduce the influence of aliasing error.
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Figure 2. Antenna array of BHU-2D-U.

Referring to the definition of far- and near-fields of antenna
array [7]. 




Rf1 ≥ 2
D2

λ
general far-field

Rf2 ≥ 20
D2

λ
absolute far-field

(19)

where D denotes the dimension of antenna array. The general far-field
of BHU-2D is 39.1 m, which is far beyond the actual imaging distance.

The original scene brightness temperature distribution is shown
in Figure 3. The brightness temperature is 280 K for human body, 0 K
for the background and 150 K for the weapon. The imaging distance
is set as 3 m and the FOV is 1 m× 2m.

Assuming the rectangular pre-detection filters are used prior to
correlation, the measurement noise ∆V due to the limited integration
time can be expressed as [17]

σ2
r,i =

1
2Bτeff

{
(TA + TR)2

[
1 + Λ

(
2∆f

B

)]

+V 2
r,i(u, v)

[
1+Λ

(
2∆f

B

)]
−V 2

i,r(u, v)
[
1−Λ

(
2∆f

B

)]}
(20)

where Λ(x) = 1− |x| for |x| ≤ 1 and 0 elsewhere, TA is the brightness
temperature of the scene, TR the receiver noise temperature, τ the
equivalent integration time, ∆f = fo − fLO the difference between
the filter’s central frequency and local oscillator’s frequency, and B
the noise bandwidth. In this model, the simulation parameters based
on BHU-2D-U are set as: B = 400 MHz and Λ(2∆f/B) = 0 since the
double side band receiver is employed. When the integration time is set
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Figure 3. Original scene of simulation.

as 0.5 second, the signal to noise ratio of measured visibility function is
about 34.1 dB. Under this condition, the images are reconstructed by
the direct Fourier method, corrected Fourier method, Moore-Penrose
pseudo inverse method. The corresponding simulation results are
shown in Figures 4(a)–(c). For the proposed method, the information
of target is approximated by the image reconstructed by corrected
Fourier method, as shown in Figure 4(e). By employing the R operator,
the dimension of unknown solutions is remarkably reduce from 4608 to
2214. In this way, the image result by proposed regularization method
is shown in Figure 4(d). The cross-sections of these reconstructed
images at the plane (y = −0.14 m) are illustrated in Figure 5.

To compare the results of these imaging methods objectively, their
root-mean square error (RMSE) can be calculated as

RMSE(X1, X0) =
√∑

p

∑
q

|X1 −X0|2
/√∑

p

∑
q

|X0|2 (21)

where X0 is the original image and X1 the reconstructed image.
The RMSE for different reconstructed images are given as: 0.56 for
direct Fourier method, 0.27 for corrected Fourier method, 0.29 for
Moore-Penrose pseudo method and 0.16 for the proposed regularization
method. It reveals that the direct Fourier method is invalided in the
near-field case. The corrected Fourier method has a better performance
than the direct method, but still produces unacceptable errors. In this
simulation, the condition number of G is c(G) ≈ 2×103 that indicates
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highly ill condition problem. Hence, the Moore-Penrose pseudo method
is sensitive to the measurement errors. In the proposed regularization
method, the dimensions of matrix Y are reduced to 1128×2214, and the
condition number of Y is significantly reduced to c(Y ) ≈ 800. Thus,
the image reconstructed by the proposed method is more accurate
than the results of the other methods. The regularization parameter
computed by the GCV method is about 4.9.

In the above analysis, the targets temperature distribution is
accurately approximated by a focal plane with imaging distance.
However, the focusing approximation errors are inevitable in the
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Figure 4. Images reconstructed by (a) direct Fourier method,
(b) corrected Fourier method, (c) Moore-Penrose pseudo inverse
method, (d) the proposed regularization method, (e) the lineament
of the target.
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practical imaging system. In order to analyze the influence of the
focusing error on the reconstructed image, numerical simulations are
performed. Supposed the focusing distance changing from 2.5 m to
3.5m and the focusing error ∆h [−0.5m, 0.5m], the simulation results
of the RMSE are shown in Figure 6.
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From Figure 6, we can see that the image error reconstructed
by the regularization method is well below to the corrected Fourier
method and the reconstruction error is proportional to the focusing
error. Since the Moore-Penrose pseudo method is extremely sensitive
to focusing error, the RMSE is too high to be shown in the same
figure. Moreover, the simulation results indicate that the proposed
regularization method is insensitive to the focusing error.

4. EXPERIMENTAL RESULTS

In order to demonstrate the proposed image reconstruction algorithm,
near-field imaging experiments on a person are carried out with the
BHU-2D-U instrument. Before the imaging experiment, the system
response G matrix of BHU-2D-U is measured. Each column of G can
be approximated by the corresponding one of point spread functions
(PSFs) within the FOV [10].

GM×i = V ′
M×1 = GM×P · T ′i (22)

where T ′i denotes that the point source is located at the (i)-th pixel in
the FOV with specific focusing distance, GM×i is the corresponding
measured PSF. In the experiments, the point source consists of
a noise diode, an amplifier and a pyramid horn antenna. It is
installed on a mechanical scanner. All of the PSFs within the whole
FOV can be measured with the aid of the mechanical scanner. It
should be ensured that the point source is stable throughout the
measurements. The point source is also switched off at each point to
provide a measure of background and systematic bias, which are used
to reduce the influences of aliasing error and system offset according to
Equation (10). In the measurements, limited by the size of mechanical
scanner, the focusing distance is set as 2.5 m, the sizes of scanning FOV
are 70 cm×80 cm and the number of scanning points is 52×41. Hence
the dimensions of measured G matrix are 1128×2132. The integration
time in experiment is 0.5 s. In the case, The measured results shown
that the condition number of G is c(G) ≈ 3.22× 104.

Imaging experiments on a person with concealed weapon are
carried out. In order to form a uniform background, a metal plane
with 45◦ incline to the ground is fixed behind the target. The plane can
reflect the spontaneous radiation from the sky and form a uniform cold
background. The integration time in the experiment is also set to 0.5 s.
In order to further investigate the posedness of the measured near-field
visibility equations, the Picard’s rule is applied [18]. Using the SVD,
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it is easy to show the solution of Equation (10) can be obtained

T ′ =
n∑

i=1

uT
i V ′

σi
vi (23)

where ui, vi and σi are the UV decomposition vectors and singular
value of G. According to the Picard’s rule, when the descending speed
of the Fourier coefficients uT

i V ′ is faster than the singular value σi,
it is a well-posed problem and the solution will be convergent. On
the contrary, when the descending speeds of uT

i V ′ is lower than σi,
the problem is ill-posed and the solution appears completely random.
Based on the imaging experiment on a human body, the Picard
condition of near-field visibility equations is shown in Figure 7. We
can see that the Picard condition is untenable and the inverse problem
is indeed not well-posed for the near-field imaging in BHU-2D-U.
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Figure 7. Picard diagram of near-field visibility equations.

In this case, the problem must be regularized in order to provide
a unique and stable solution. Based on the proposed regularization
method, the dimensions of Y is reduced to 1128× 1261 from G(1128×
3456), with c(Y ) ≈ 3 × 103. The imaging result is shown in
Figure 8(a). Figure 8(c) illustrates the corresponding photograph
captured by an optical camera, in which a small metal plate is held in
the person’s hand. The metal plate can be recognized clearly from
the mmW image, although it is concealed under his shirt. Here,
the optimal regularization parameter is about 122 by means of GCV
method To compare the performance of the imaging algorithms, the
imaging result based on the corrected Fourier method is shown in
Figure 8(b). Clearly, we can see that the image reconstructed by the
proposed regularization method is better than the corrected Fourier
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Figure 8. (a) Imaging result of proposed regularization method,
(b) imaging result of corrected Fourier method, (c) photogragh of a
person with concealed metal plate.

method. The perturbations are significantly suppressed and the image
of concealed metal plate is more clearly than the corrected Fourier
method.

5. CONCLUSION

In this paper, the near-field imaging problem for millimeter-wave SAIR
has been analyzed. For accurate image reconstruction, a numerical
image reconstruction algorithm has been proposed. The method is
more suitable for the case, when large number of antenna arrays
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and large FOV are applied. By employing this proposed numerical
method, the accuracy and stability of the reconstructed image can
be significantly improved in the presence of measurement noise and
focusing error. Numerical simulations have been performed to validate
the proposed numerical algorithm. The simulation results demonstrate
the advantages of this regularization method over existing corrected
Fourier method and Moore-Penrose pseudo inverse method. Finally,
the imaging experiments on a person are conducted for BHU-2D-
U. The results show that the feasibility of the proposed method in
practical millimeter-wave SAIR.

REFERENCES

1. Wikner, D. A., “Progress in millimeter-wave imaging,” Proc.
SPIE, Vol. 7936, 79360D, Feb. 10, 2011.

2. Kolinko, V. G., S. Lin, A. Shek, W. Manning, C. Martin, M. Hall,
O. Kirsten, J. Moore, and D. A. Wikner, “A passive millimeter-
wave imaging system for concealed weapons and explosives
detection,” Proc. SPIE, Vol. 5781, 85–92, May 19, 2005.

3. Lovberg, J. A., C. Martin, and V. G. Kolinko, “Video-rate passive
millimeter-wave imaging using phased arrays,” Proc. MWSYM,
1689–1692, Honolulu, HI, Jun. 3–8, 2007.

4. Huang, J. and T. Gan, “A novel millimeter wave synthetic
aperture radiometer passive imaging system,” Proc. ICMMT, 414–
417, Aug. 18–21, 2004.

5. Zheng, C., X. Yao, A. Hu, and J. Miao, “A passive millimeter-
wave imager used for concealed weapon detection,” Progress In
Electromagnetics Research B, Vol. 46, 379–397, 2013.

6. Zheng, C., X. Yao, A. Hu, and J. Miao, “Initial results of
a passive millimeter-wave imager used for concealed weapon
detection BHU-2D-U,” Progress In Electromagnetics Research C,
Vol. 43, 151–163, 2013.

7. Laursen, B. and N. Skou, “Synthetic aperture radiometry
evaluated by a two-channel demonstration model,” IEEE Trans.
Geosci. Remote Sens., Vol. 36, No. 3, 822–832, May 1998.

8. Duffo, N., I. Corbella, and F. Torres, “Advantages and
drawbacks of near field characterization of large aperture synthesis
radiometers,” Proc IEEE Microrad, Rome, Italy, 2004.

9. Tanner, A. B., B. H. Lambrigsten, T. M. Gaier, and F. Torres,
“Near field characterization of the GeoSTAR demonstrator,” Proc.
IGARSS, 2529–2532, Jul. 31, 2006.

10. Tanner, A. B. and C. T. Swift, “Calibration of a synthetic aperture



72 Yao et al.

radiometer,” IEEE Trans. Geosci. Remote Sens., Vol. 31, 257–267,
1993.

11. Zhang, C., J. Wu, H. Liu, and J. Yan, “Imaging algorithm
for synthetic aperture interferometric radiometer in near field,”
Science China Technological Sciences, Vol. 54, 2224–2231, 2011.

12. Anterrieu, E., “A resolving matrix approach for synthetic aperture
imaging radiometers,” IEEE Trans. Geosci. Remote Sens., Vol. 42,
No. 8, 1649–1656, Aug. 2004.

13. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in
Imaging, Instit. Phys., London, UK, 1998.

14. Peichel, M., H. Suess, and M. Suess, “Microwave imaging of the
brightness temperature distribution of extended areas in the near
and far field using two-dimensional aperture synthesis with high
spatial resolution,” Radio Science, Vol. 33, No. 3, 781–801, 1998.

15. Tikhonov, A. and V. Y. Arseninn, Solution of Ill-posed Problems,
John Wiley & Sons, New York, 1977.

16. Golub, G. H., M. Heath, and G. Wahba, “Generalized cross
validation as a method for choosing a good ridge parameter,”
Technometrics, Vol. 21, 215–223, 1979.

17. Ruf, C. S., C. T. Swift, A. B. Tanner, and D. M. Le Vine,
“Interferometric synthetic aperture microwave radiometry for the
remote sensing of the earth,” IEEE Trans. Geosci. Remote Sens.,
Vol. 26, 597–611, 1988.

18. Hansen, C., “The discrete Picard condition for discrete ill-posed
problems,” BIT Numerical Mathematics, Vol. 30, No. 4, 658–672,
1990.


