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TECHNIQUE FOR INHOMOGENEOUS PROFILES IN
THE CROSS-SECTION OF THE HELICAL RECTANGU-
LAR WAVEGUIDE

Zion Menachem* and Saad Tapuchi

Department of Electrical Engineering, Sami Shamoon College of
Engineering, Israel

Abstract—This paper presents the technique to solve inhomogeneous
profiles in the cross section of the helical rectangular waveguide. We
present the technique to solve inhomogeneous dielectric profiles and
the relation to the method of the propagation of electromagnetic
fields along a helical waveguide with a rectangular cross section. The
inhomogeneous examples will introduce for a dielectric slab, for a
rectangular dielectric profile, and for a circular dielectric profile, in
a rectangular metallic waveguide, in the cross section of the helical
waveguide. This model is useful to improve the output results of the
output power transmission in the cases of space helical waveguides,
by increasing the step’s angle or the radius of the cylinder. The
application is useful for space helical waveguides in the microwave and
the millimeter-wave regimes.

1. INTRODUCTION

The methods of curved waveguides have been proposed in the
literature. The propagation in curved rectangular waveguide of
general-order modes were proposed by using asymptotic expansion
method [1]. An approximate method for propagation in a curved
dielectric waveguide with rectangular cross section was described [2].
The method is based on Airy function and Hankel function of the
second kind.

Other methods for the propagation were developed in the case of
empty curved waveguide. The numerical and analytical methods were
proposed for curved waveguide with a rectangular cross section [3].
Equivalent circuit for circular E-plane bends in rectangular waveguide
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was proposed by Carle [4]. The E-plane bend is suitable for satellite
beamforming network applications because it shows minimum input
reflection and minimum size. The method of moments solution
together with a mode-matching technique for curved waveguide was
proposed for a rectangular waveguide [5]. The method is applied to
study the transmission characteristics of single and cascaded curved E-
plane bend and H-plane bend in a rectangular waveguide. The effect
of the orientation of cascaded bends on the transmission properties can
be significant, and examples to demonstrate this effect are included. A
differential method for wave propagation in curved waveguides with a
rectangular cross section was presented by Cornet [6].

The method of the conformal transformation for the waveguide
bends was proposed by Heiblum and Harris [7]. Equivalent structures
are obtained that permit solution by traditional methods of optical
waveguide analysis. This method is based on the first-order
approximations, expressions for the attenuation along a bend, the
displacement of the wave from its position in straight waveguide,
the change in the propagation constant due to the bending of the
waveguide, and the transmission loss in a practical bend. Bending
losses of dielectric slab optical waveguide with double or multiple
claddings were proposed by Kawakami et al. [8]. The general method
for calculating the change of the propagation constant of a surface-
wave mode on a curved open waveguide of arbitrary cross section
was proposed [9]. The resulting formulas require knowledge only
of the fields and propagation constant of the corresponding straight
waveguide mode, and the value of the radius of curvature of the
waveguide axis. Hollow metallic and dielectric waveguides for long
distance optical transmission and lasers were investigated by Marcatily
and Schmeltzer [10]. Propagation in curved rectangular waveguides
based on the perturbation techniques was published in the book of the
electromagnetic waves and curved structures [11].

Fast-wave analysis of an inhomogeneously-loaded helix enclosed
in a cylindrical waveguide has been published by Ghosh et al. [12].
The characteristics of the propagation of an elliptical step-index fiber
with a conducting helical winding on the core-cladding boundary are
investigated analytically [13]. The core and the cladding regions are
assumed to have constant real refractive indices n1 and n2, where
n1 > n2.

Calculation of the real and imaginary parts of the change in
propagation constant of a surface-wave mode on a curved open
waveguide of general cross section was proposed [14] in order to
determine the quantities for TE mode of asymmetric slab waveguide,
and for all the modes of an optical fiber.
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Propagation in a curved rectangular waveguide with imperfect
but smooth walls was proposed [15]. The lowest-order mode has a
whispering gallery character, and the attenuation rate is increased
significantly by the curvature. The computations of the modal
characteristics are based on the Airy function approximation of the
rigorous cylindrical wave functions.

The rectangular dielectric waveguide technique was proposed in
order to determine the complex permittivity of a wide class of dielectric
materials of various thicknesses and cross sections [16]. The technique
enables to determine the dielectric constant of materials. The results
indicate that the dielectric constant of samples of both small and large
transverse dimensions can be determined with excellent accuracy by
using the technique of the rectangular dielectric waveguide. A method
to determine the complex permittivity and permeability of a material
sample loaded in two rectangular waveguides was proposed [17]. The
first waveguide terminated in a short and the second terminated in an
open. A sample of the same cross section is placed in a short-circuit and
an open-circuit position in two sections of the rectangular waveguide.
The scattering parameters are measured for each case, and are used
in order to determine the impedance at the face of the sample. These
values of the impedance are used in an iterative method to solve for ε
and µ.

The finite-element method based on whispering gallery modes in
curved optical waveguides was proposed [18]. Numerical examples on
the whispering gallery modes were given in a dielectric disk with rough
boundaries. An approximate scalar finite-element method was applied
for the analysis of whispering gallery modes. Rough boundaries of
the disk have different effects on the angular propagation constant
according to the position where the roughness exists. By increasing
the width of the waveguide, the normal guided mode of the curved
rectangular waveguide approaches to the whispering gallery modes in
the disk waveguide. The minimum width of the curved rectangular
waveguide increases with an increase of the curvature radius.

This paper presents the technique to solve inhomogeneous profiles
in the cross section of the helical rectangular waveguide. The
inhomogeneous examples will introduce for a dielectric slab, for a
rectangular dielectric profile, and for a circular dielectric profile, in
a rectangular metallic waveguide, in the cross section of the helical
waveguide. The main steps of the derivation for the propagation
along curved and helical waveguides are given in detail [19–21]. Thus
we will introduce the main steps of the derivation in brief. The
technique to solve inhomogeneous profiles will introduce in more detail.
This proposed model is useful to improve the output results of the
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output power transmission in the cases of space helical waveguides, by
increasing the step’s angle or the radius of the cylinder.

2. THE DERIVATION

Let us introduce the main steps of the derivation of the method of the
propagation along a helical waveguide, in brief. The technique to solve
inhomogeneous profiles in the cross section of the helical rectangular
waveguide will be given after the derivation, in detail.

The helical and toroidal waveguides with a rectangular cross
section are shown in Figs. 1(a) and 1(b), respectively. A general scheme
of the curved coordinate system (x, y, ζ) is shown in Fig. 1(b), with
the parameters R and δp ¿ 1, where R is the radius of the curvature
of the toroidal waveguide and δp is the step’s angle.

The metric coefficients in the case of the helical waveguide are:

hx = 1, (1a)
hy = 1, (1b)

hζ =

√(
1 +

x

R

)2
cos2(δp) + sin2(δp)

(
1 +

y2

R2
cos2(δp)

)

=

√
1 +

2x

R
cos2(δp) +

x2

R2
cos2(δp) +

y2

R2
cos2(δp)sin2(δp)

' 1 +
x

R
cos2(δp), (1c)

(a) (b)

Figure 1. (a) The rectangular helical waveguide. (b) A general scheme
of the curved coordinate system (x, y, ζ).
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where R and δp are the radius of the cylinder and the step’s angle of the
helical waveguide, respectively. Note that the radius of the curvature
of the toroidal waveguide (Fig. 1(b)) is generalized to the radius of the
cylinder (R) of the helical waveguide (Fig. 1(a)). The first parameter of
the helical waveguide relates to the radius of the cylinder (R), and the
second parameter relates to the step’s angle (δp), where the relevant
values will be demonstrated in the output results for 0 ≤ δp ≤ 1.

The wave equations for the components of the electric and
magnetic field are given by

∇2E + ω2µεE +∇
(
E · ∇ε

ε

)
= 0, (2a)

and

∇2H + ω2µεH +
∇ε

ε
× (∇×H) = 0, (2b)

where ε(x, y) = ε0(1 + χ0g(x, y)), ε0 is the vacuum dielectric constant,
and χ0 is the susceptibility.

The components of ∇2E are given by

(∇2E)x = ∇2Ex − 1
R2h2

ζ

cos2(δp)Ex − 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Eζ , (3a)

(∇2E)y = ∇2Ey, (3b)

(∇2E)ζ = ∇2Eζ − 1
R2h2

ζ

cos2(δp)Eζ + 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Ex, (3c)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

1
h2

ζ

∂2

∂ζ2
+

1
Rhζ

cos2(δp)
∂

∂x
. (4)

The wave Eqs. (2a) and (2b) are given by(∇2E
)
i
+ k2Ei + ∂i(Exgx + Eygy) = 0, (5a)(∇2H

)
i
+ k2Hi + ∂i(Hxgx + Hygy) = 0, (5b)

where i = x, y, ζ, k = ω
√

µε(x, y) = k0

√
1 + χ0g(x, y), and k0 =

ω
√

µ0ε0.
The transverse Laplacian operator is defined as ∇2

⊥ =
(1/h2

ζ)(∂
2/∂ζ2). The wave equations (Eqs. (2a)) are described in the

Laplace transform as follows

h2
ζ

(
∇2
⊥+

s2

h2
ζ

+k2

)
Ẽx+h2

ζ∂x

(
Ẽxgx+Ẽygy

)
+hζ

1
R

cos2(δp)∂x

(
Ẽx

)

− 2
R

cos2(δp)sẼζ =
(
sEx0 +E′

x0

)− 2
R

cos2(δp)Eζ0 , (6)
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and similarly, the other equations are given, where Ex0 = Ex(x, y, ζ =
0) and E′

x0
= ∂

∂ζ Ex(x, y, ζ)|ζ=0. The differential equations are

rewritten in a matrix form, where Êx0 = (sĒx0 + Ē′
x0

)/2s, Êy0 =
(sĒy0 + Ē′

y0
)/2s, and Êζ0 = (sĒζ0 + Ē′

ζ0
)/2s.

A Fourier transform is given by

ḡ(kx, ky) = F{g(x, y)} =
∫

x

∫

y
g(x, y)e−jkxx−jkyydxdy, (7)

and the values P(0) and Q(0) are given as:

p̄ζ
(o)
(n,m) =

1
4ab

∫ a

−a

∫ b

−b
pζ(x)e−j(n π

a
x+m π

b
y)dxdy, (8a)

q̄ζ
(o)
(n,m) =

1
4ab

∫ a

−a

∫ b

−b
qζ(x)e−j(n π

a
x+m π

b
y)dxdy, (8b)

where

P(1) =
(
I + P(0)

)
, (8c)

Q(1) =
(
I + Q(0)

)
, (8d)

and where I is the unity matrix.
The modified wave-number matrices are given by

Dx ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

jkox

2s
Q(1)NGx

+
1

2sR
cos2(δp)jkoxP(1)N, (9a)

Dy ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

1
2sR

cos2(δp)jkoxP(1)N

+
jkoy

2s
Q(1)MGy, (9b)

Dζ ≡ K(0)+Q(0)K1(0)+
k2

oχ0

2s
Q(1)G+

1
2sR

cos2(δp)jkoxP(1)N,(9c)

where the values of the diagonal matrices K(0), M, N and K(1) are
given by

K(0)
(n,m)(n′,m′)=

{[
k2

o−(nπ/a)2−(mπ/b)2+s2
]
/2s

}
δnn′δmm′ , (10a)

M(n,m)(n′,m′)=mδnn′δmm′ , (10b)
N(n,m)(n′,m′)=nδnn′δmm′ , (10c)

K(1)
(n,m)(n′,m′)=

{[
k2

o − (nπ/a)2 − (mπ/b)2
]
/2s

}
δnn′δmm′ . (10d)
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The components of the electric field are given by

Ex =
{
Dx + α1Q(1)M1Q(1)M2 +

1
R

cos2(δp)Dζ
−1

(
−1

2
Q(1)Gx

+
1
2
α2Q(1)M3Q(1)M2− 1

R
cos2(δp)I

)}−1(
Êx0−

1
sR

cos2(δp)Eζ0

−α3Q(1)M1Êy0 +
1
R

cos2(δp)Dζ
−1

(
Êζ0 +

1
sR

cos2(δp)Ex0

+
1
2s

Q(1)(GxEx0 + GyEy0)−
1
2
Q(1)M3Êy0

))
, (11a)

Ey = Dy
−1

(
Êy0 −

jkoy

2s
Q(1)MGxEx

)
, (11b)

Eζ = Dζ
−1

{
Êζ0 +

1
2s

Q(1)(GxEx0 + GyEy0)−
1
2
Q(1)(GxEx

+GyEy)− 1
R

cos2(δp)Ex +
1

sR
cos2(δp)Ex0

}
, (11c)

where:

α1 =
koxkoy

4s2
, α2 =

jkoy

2s
, α3 =

jkox

2s
, M1 = NGyDy

−1,

M2 = MGx, M3 = GyDy
−1.

Similarly, the other components of the magnetic field are obtained.
The output transverse field profiles are given by the inverse Laplace
and Fourier transforms, as follows

Ey(x, y, ζ) =
∑

n

∑
m

∫ σ+j∞

σ−j∞
Ey(n,m, s)ejnkoxx+jmkoyy+sζds. (12)

the inverse Laplace transforms is calculated according to the Salzer
method [22, 23].

The ζ component of the average-power density is given by

Sav =
1
2
Re {ExHy

∗ −EyHx
∗} . (13)

A Fortran code is developed using NAG subroutines (The Numeri-
cal Algorithms Group (NAG)). Several inhomogeneous examples com-
puted on a Unix system are presented in the next section.

3. NUMERICAL RESULTS

Several examples are demonstrated in this section. This paper presents
the technique to solve inhomogeneous profiles in the cross section
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of the helical rectangular waveguide. In this study, we find the
inhomogeneous dielectric profiles in the cross section of importance
examples and show the relation to the proposed method of the
propagation of the electromagnetic fields along a helical waveguide
with a rectangular cross section.

Two kinds of examples are demonstrated in this section, in
order to understand the technique to solve inhomogeneous profiles
in the helical metallic waveguide. The first example is given for a
rectangular dielectric profile in the rectangular cross section of the
helical waveguide. The second example is given for a circular dielectric
profile in the rectangular cross section of the helical waveguide. Three
kinds of interesting cases for inhomogeneous dielectric profiles in the
cross section along the helical rectangular waveguide are shown in
Figs. 2(a)–2(c). Fig. 2(a) shows a dielectric slab profile in a rectangular
metallic waveguide. Fig. 2(b) shows a rectangular dielectric profile
loaded in the rectangular metallic waveguide. Fig. 2(c) shows a circular
dielectric profile in the rectangular waveguide.

(a) (b) (c)

Figure 2. (a) A dielectric slab profile in a rectangular metallic
waveguide. (b) A rectangular dielectric profile in a rectangular metallic
waveguide. (c) A circular dielectric profile in a rectangular metallic
waveguide.

3.1. Example 1: A Rectangular Dielectric Profile

Three interesting examples are demonstrated in Figs. 2(a)–2(c), in
order understand the proposed technique to solve inhomogeneous
dielectric profiles in the cross section of the rectangular cross section
of the helical waveguide.

The ωε function [24] is used in order to solve discontinuous
problems in the cross section of the helical waveguide. The ωε function
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(Fig. 3(a)) is defined as

ωε(r) =

{
Cεe

− ε2

ε2−|r|2 |r| ≤ ε
0 |r| > ε

, (14)

where Cε is a constant, and
∫

ωε(r)dr = 1.
In the limit ε −→ 0, the ωε function (Eq. (14)) is shown in

Fig. 3(b). Fig. 4 shows an example of the inhomogeneous profile in
the rectangular cross section of the helical waveguide for g(x) function.
In order to solve inhomogeneous dielectric profiles we use with ωε

function, with the parameters ε1 and ε2.
In order to solve inhomogeneous dielectric profiles (e.g., in

Figs. 2(a)–2(c)) in the cross section of the helical waveguide, the
parameters ε1 and ε2 are used according to the ωε function (Figs. 3(a)
and 3(b)), where ε1 −→ 0 and ε2 −→ 0. The dielectric profiles for a
rectangular dielectric profile in the rectangular cross section (Fig. 2(b))
are given by

g(x)=





0 0 ≤ x < (a− d− ε1)/2

g0 exp


1− ε1

2

ε2
1−[x−(a
−d+ε1)/2]2


 (a−d−ε1)/2≤x <(a−d+ε1)/2

g0 (a−d+ε1)/2<x<(a+d−ε2)/2

g0 exp


1− ε2

2

ε2
2−[x−(a

+d− ε2)/2]2


 (a+d−ε2)/2≤x<(a+d+ε2)/2

0 (a + d + ε2)/2 < x ≤ a

,

(15a)

    

 

 
  

 

−ε −ε/2 ε/2 ε

ω  (r)ε

−ε−ε/2
o r

    ω  (r)ε

lim
ε o

r

=

(a) (b)

r

Figure 3. (a) The ωε function. (b) The ωε function in the limit ε → 0.



266 Menachem and Tapuchi

and

g(y)=





0 0 ≤ y < (b− c− ε1)/2

g0 exp


1− ε1

2

ε1
2−[y−(b

−c+ε1)/2]2


 (b−c−ε1)/2≤y<(b−c+ε1)/2

g0 (b−c+ε1)/2<y<(b+c−ε2)/2

g0 exp


1− ε2

2

ε2
2−[y−(b

+c−ε2)/2]2


 (b+c−ε2)/2≤y<(b+c+ε2)/2

0 (b + c + ε2)/2 < y ≤ b

.

(15b)
The elements of the matrix g(n, m) are given according to

Fig. 2(b), in the case of b 6= c by

g(n,m)=
g0

ab

{∫ (a−d+ε1)/2

(a−d−ε1)/2
exp

[
1− ε1

2

ε1
2−[x−(a−d+ε1)/2]2

]
cos

(
nπx

a

)
dx

+
∫ (a+d−ε2)/2

(a−d+ε1)/2
cos

(
nπx

a

)
dx +

∫ (a+d+ε2)/2

(a+d−ε2)/2

exp

[
1− ε2

2

ε2
2 − [x− (a + d− ε2)/2]2

]
cos

(
nπx

a

)
dx

}

{ ∫ (b−c+ε1)/2

(b−c−ε1)/2
exp

[
1− ε1

2

ε1
2−[y−(b−c+ε1)/2)]2

]
cos

(
mπy

b

)
dy

+
∫ (b+c−ε2)/2

(b−c+ε1)/2
cos

(
mπy

b

)
dy +

∫ (b+c+ε2)/2

(b+c−ε2)/2

exp

[
1− ε2

2

ε2
2 − [y − (b + c− ε2)/2)]2

]
cos

(
mπy

b

)
dy

}
. (16)

The elements of the matrix g(n, m) (Eq. (16)) are given according
to Fig. 2(a), in the case of b = c by

g(n,m)=
g0

ab

{∫ (a−d+ε1)/2

(a−d−ε1)/2
exp

[
1− ε1

2

ε1
2−[x−(a−d+ε1)/2]2

]
cos

(
nπx

a

)
dx
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+
∫ (a+d−ε2)/2

(a−d+ε1)/2
cos

(
nπx

a

)
dx+

∫ (a+d+ε2)/2

(a+d−ε2)/2

exp

[
1− ε2

2

ε2
2−[x−(a+d−ε2)/2]2

]
cos

(
nπx

a

)
dx

}{∫ b

0
cos

(
mπy

b

)
dy

}
.

The derivatives of the dielectric profile are given by

gx ≡ 1
ε(x, y)

∂ε(x, y)
∂x

=
∂[ln(1 + g(x, y))]

∂x
, (17a)

gy ≡ 1
ε(x, y)

∂ε(x, y)
∂y

=
∂[ln(1 + g(x, y))]

∂y
. (17b)

Figure 4. An example of the inhomogeneous profile in the rectangular
cross section for g(x) function with the parameters ε1 and ε2.
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Thus,

gx =





0 0≤x<(a−d−ε1)/2

d

dx





ln


1+g0 exp


1− ε1

2

ε1
2−[x−(a

− d+ε1)/2]2











(a−d−ε1)/2≤x

<(a−d+ε1)/2

0
(a−d+ε1)/2<x

<(a+d−ε2)/2

d

dx





ln


1+g0 exp


1− ε2

2

ε2
2−[x−(a

+ d−ε2)/2]2











(a+d−ε2)/2≤x

<(a+d+ε2)/2

0 (a+d+ε2)/2<x≤a

, (18a)

gy =





0 0≤y<(b−c−ε1)/2

d

dx





ln


1+g0exp


1− ε1

2

ε1
2−[y−(b

− c+ε1)/2]2











(b− c− ε1)/2≤y

< (b−c+ε1)/2

0
(b−c+ε1)/2 < y

< (b+c−ε2)/2

d

dx





ln


1+g0 exp


1− ε2

2

ε2
2−[y−(b

+ c−ε2)/2]2











(b + c− ε2)/2≤x

< (b+c+ε2)/2

0 (b+c+ε2)/2<y≤b

.(18b)

The results of output power transmission as function of 1/R and
δp = (0.0, 0.4, 0.7, 0.8, 0.9, 1.0) are demonstrated in Fig. 5, where
ζ = 15 cm, a = 2 cm, b = c = 2 cm, d = 1.6 cm, λ = 3.75 cm, and
εr = 1.5, in the practical case of the slab dielectric profile (Fig. 2(a)).
By increasing the parameters of the helical waveguide (δp and R), the
results of the output power transmission are improved. Thus, this
model is useful to improve the output results in the cases of space
curved waveguides.

The result of the output power density (Sav) as function of εr is
shown in Fig. 6(a) in the case of the slab dielectric profile (a = 20 mm,
b = c = 20mm, and d = 16mm), where εr = 1.5. The result
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Figure 6. (a) The output power density as function of εr in the case of
the slab dielectric profile (a = 20mm, b = c = 20 mm, and d = 16 mm),
where εr = 1.5. (b) The result of the rectangular dielectric profile in
the rectangular cross section (a = b = 20 mm, and c = d = 16 mm),
where εr = 2.0. The other parameters are λ = 3.75 cm, δp = 1,
R = 0.26 m, and ζ = 15 cm.

of the output power density as function of εr is shown in Fig. 6(b)
for the rectangular dielectric profile in the rectangular cross section,
where a = b = 20 mm, c = d = 16 mm, and εr = 2.0. The other
parameters are given for δp = 1, and R = 0.26m, where ζ = 15 cm,
and λ = 3.75 cm. The result in Fig. 6(b) is shown for TE10 mode and
the rectangular dielectric profile in the rectangular metallic waveguide
(Fig. 2(b)).

The amplitude of the output power density and the output profile
shape for four values of εr = 1.5, 1.6, 1.75, and 2.0, respectively, are
shown in Fig. 7(a). The output profile is shown in the same cross
section of output transverse profile of Fig. 6(a), where y = b/2 =
10mm. An example for the output profiles for N = 1, 3, 5 and 7,
is shown in Fig. 7(b), where εr = 1.5. The output power density
approaches to the final output power density, by increasing only the
parameter of the order N .

3.2. Example 2: A Circular Dielectric Profile

An example of the cross section of a circular dielectric profile in the
metallic waveguide is demonstrated in Fig. 2(c) for an inhomogeneous
dielectric profile, where r1 is the radius of the circle, and a and b are the
dimensions of the cross-section. The refractive index of the cladding
(air) is smaller than that of the core (dielectric profile). The center
of the circle (Fig. 2(c)) located at the point (a/2, b/2). The dielectric
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Figure 7. (a) The output power density in the same cross section of
Fig. 6(a) where y = b/2 = 10 mm, in the case of the slab dielectric
profile (a = 20 mm, b = c = 20 mm, and d = 16mm), for δp = 1,
R = 0.26m, and for some values of εr. (b) The output profile for
N = 1, 3, 5, and 7, where εr = 1.5.

profile is given by

g(x, y)=





g0 0 ≤ r < r1 − ε1/2
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1− ε1

2
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−ε1/2)]2

]
r1−ε1/2≤r<r1+ε1/2

0 else

, (19)

where r =
√

(x− a/2)2 + (y − b/2)2.
Thus, the derivatives are given by

gx =



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]2
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< r1+ε1/2

0 else

,

(20a)



Progress In Electromagnetics Research B, Vol. 55, 2013 271

gy =


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. (20b)

The elements of the matrices in the limit ε1 = ε → 0 are given by

g(n,m) =
g0
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{∫ 2π

0

∫ r1−ε/2

0
cos

[
nπ

a

(
r cos θ+

a

2

)]
cos

[
mπ

b

(
r sin θ+

b

2

)]

+
∫ 2π

0

∫ r1+ε/2

r1−ε/2
cos

[
nπ

a

(
r cos θ+

a

2

)]
cos

[
mπ

b

(
r sin θ+

b

2
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gx(n,m) =−2g0
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gy(n,m) =−2g0
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where r =
√

(x− a/2)2 + (y − b/2)2.
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The results of the output power transmission as functions of 1/R
and δp = (0.0, 0.4, 0.7, 0.8, 0.9, 1.0) are demonstrated in Fig. 8, where
ζ = 15 cm, a = b = 2 cm, r1 = 0.5mm, λ = 3.75 cm, and εr = 10.
These output results are dependent on the TE10 mode (the input wave
profile) and the circular dielectric profile in the metallic waveguide
(Fig. 2(c)). By increasing the parameters of the helical waveguide (δp

and R), the results of the output power transmission are improved.
Thus, this model is useful to improve the output results in the cases
of space curved waveguides.

The results of the output power density for δp = 1 and R = 0.5 m
are shown in Figs. 9(a)–(b), where ζ = 15 cm, a = b = 2 cm,
r1 = 0.5mm, and λ = 3.75 cm. The amplitude of the output power
density and the Gaussian shape in the same cross section of Figs. 9(a)–
(b) are shown in Fig. 10(a), where y = b/2 = 1 cm, and for εr = 2,
5, 6, 8, and 10. By increasing only the parameter εr (Fig. 10(a)),
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Figure 8. The output power transmission as a function of 1/R and
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0.02
0.015

0.01
0.005

x [m] 

0.02
0.015

0.01
0.005

y [m] 

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

|Sav | [W/m2]

0.02
0.015

0.01
0.005

x [m] 

0.02
0.015

0.01
0.005

y [m] 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

|Sav | [W/m2 ]

(a) (b)

Figure 9. The output power density for δp = 1, and R = 0.5 m.
(a) εr = 5. (b) εr = 10.
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Figure 10. (a) The output power density in the same cross section
of Figs. 9(a)–(b) for δp = 1 and R = 0.5 m, and for some values of εr.
(b) The output profile for N = 1, 3, 5, 7 and 9, where εr = 10.

the output power density shows a Gaussian shape and the amplitude
decreases. The dielectric profile for an inhomogeneous cross section is
demonstrated in these examples for arbitrary values of δp and R of the
helical waveguide.

An example for the output profiles with εr = 10 is shown in
Fig. 10(b) for the same other parameters of Figs. 9(a)–(b) and 10(a)
and for every order (N = 1, 3, 5, 7, and 9). The output power density
approaches to the final output power density, by increasing only the
parameter of the order N .

4. CONCLUSIONS

The objective of this paper was to present the technique to solve
inhomogeneous profiles (Figs. (2a)–2(c)) in the cross section of the
helical rectangular waveguide. The inhomogeneous examples were
introduced for a dielectric slab, for a rectangular dielectric profile, and
for a circular dielectric profile, in a rectangular metallic waveguide,
in the cross section of the helical waveguide. In order to solve
inhomogeneous problems, the ωε function (Eq. (14)) is used.

The output power transmission as function of 1/R and δp is
demonstrated in Figs. 5 and 8. By increasing the parameters of
the helical waveguide (δp and R), the results of the output power
transmission are improved. Thus, this model is useful to improve the
output results in the cases of space curved waveguides.

Two examples are demonstrated to understand the technique to
solve inhomogeneous profiles in the cross section along the helical
waveguide. Fig. 2(a) shows a dielectric slab profile in a rectangular
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metallic waveguide. Fig. 2(b) shows a rectangular dielectric profile
loaded in the rectangular metallic waveguide. Fig. 2(c) shows a circular
dielectric profile in the rectangular metallic waveguide.

Figure 6(a) shows the result of the output power density as
function of εr in the case of the slab dielectric profile (Fig. 2(a)).
Fig. 6(b) shows the result of the output power density as function
of εr in the case of the rectangular dielectric profile in the rectangular
metallic waveguide.

The output amplitude and the output profile shape of the output
power density are shown in Fig. 7(a) for four values of εr = 1.5, 1.6,
1.75, and 2.0, respectively. An example for the output profiles for
N = 1, 3, 5 and 7 is shown in Fig. 7(b), where εr = 1.5.

The results of the output power density for δp = 1 and R = 0.5 m
are shown in Figs. 9(a)–(b). The results of the output fields are
shown for TE10 mode and for the rectangular dielectric profile in
the rectangular metallic waveguide (Fig. 2(c)). The amplitude of the
output power density and the Gaussian shape of the central peak
in the same cross section of Figs. 9(a)–(b) are shown in Fig. 10(a)
for some values of εr. The output power density shows a Gaussian
shape, by increasing only the parameter εr. The dielectric profile for
an inhomogeneous cross section is demonstrated in these examples for
arbitrary values of δp and R. The examples of the output power density
for δp = 1 and R = 0.5 m are shown for some values of εr (Fig. 10(a))
and for some values of N (Fig. 10(b)).

This model is useful for helical rectangular waveguide with
inhomogeneous dielectric profiles in the cross section. This model is
used to find the parameters (δp and R) in order to improve the results
of the output power transmission of the curved and helical waveguides.
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