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Parametric Instability of Surface Electron Cyclotron TM-Modes

Volodymyr O. Girka* and Vitalii V. Iarko

Abstract—Excitation of waves at harmonics of electron cyclotron frequency due to utilization of an
external alternating electric field is under the consideration. It is proved that they are eigen modes of
plasma-dielectric-metal structures in both long (as compared with electron Larmor radius) wavelength
range and short wavelength range if an external steady magnetic field is oriented perpendicularly to
the plasma interface. It is assumed that uniform external electric field operates at the frequency, which
belongs to the range of electron cyclotron frequencies. The problem is solved theoretically using kinetic
Vlasov-Boltzmann equation for description of the plasma particles motion and Maxwell equations for
description of TM-polarized field of these modes. Non-linear boundary condition for tangential magnetic
field of these TM-modes is formulated using conception of non-linear surface electric current. Infinite
set of equations for harmonics of their tangential electric field is derived due to this condition. This
set is solved using approach of the wave packet consisting of the basic harmonic and two nearest
satellite harmonics. Simple analytical expression for growth rate of surface electron cyclotron TM-
modes’ parametric instability is obtained and analyzed numerically.

1. INTRODUCTION

At present time, theory of bulk cyclotron waves is developed sufficiently well [see e.g., 1, 2], which is
represented in a wide utilization of bulk electron cyclotron waves in nuclear fusion investigations [3–5]
for additional plasma heating and plasma diagnostics. These waves are also applied to the development
of new high frequency and high power electronic devices [6, 7]. A utilization of restricted plasma
volumes for different practical purposes makes it possible to excite both bulk and surface types of
waves [8]. In our previous articles [9, 10], we have studied the cases of surface electron cyclotron
waves with extraordinary and ordinary polarization, correspondingly, and also their propagation under
conditions, when an external magnetic field was assumed to be oriented parallel to a plasma-dielectric
interface. Unlike these cases, here we study the case of perpendicular orientation of an external steady
magnetic field and do not restrict our consideration by the wavelength range located near a limit of
long wavelengths compared with Larmor radius of electron, as it has been done in [9, 10]. To derive
a set of equations describing parametric excitation of surface electron cyclotron TM-modes (SECTM-
modes) the non-linear boundary condition, which determines discontinuity of tangential magnetic field
of studied modes, is formulated as done in papers [9, 10]. This discontinuity is determined by surface
electric current, which is induced by external alternating electric field on the plasma interface.

Since cyclotron surface waves can be adequately analyzed only by kinetic approach and kinetic
approach is more difficult than fluid (hydro-dynamical) approximation, surface waves are studied not
as well as other waves described in fluid approximation, which can be studied with magneto-hydro-
dynamical approach. Results of the SWs parametric excitation studied in magneto-hydro-dynamical
approach are presented in, e.g., [11–13].

The goal of the present paper is to study parametric instability of surface electron cyclotron TM-
modes under the influence of alternating electric field and compare obtained results with previous one

Received 17 September 2013, Accepted 18 November 2013, Scheduled 25 November 2013
* Corresponding author: Volodymyr Oleksandrovych Girka (v.girka@gmail.com).
The authors are with the V.N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv 61022, Ukraine.



40 Girka and Iarko

devoted to studying cyclotron SW of other polarization. Thus it can be considered as the next step in
development of general theory of cyclotron SWs parametric instabilities.

SECTM-modes were found theoretically to propagate along plane plasma-dielectric interface, when
an external steady magnetic field is perpendicular to the plasma boundary, and penetration depth of
the modes into plasma is much larger than their wavelength. These features distinguish them from
surface cyclotron modes of other polarization (X- and O-modes). Eigen frequency of SECTM-modes
decreases with increase of their wave vector oriented along the plasma interface, and their damping is
determined by both collisional (interaction between plasma particles) and kinetic (interaction between
particles and plasma interface) mechanisms. We suppose that they can propagate in a divertor region
of fusion devices with magnetic confinement and can be applied as well for sustaining gas discharges of
magnetron type [14].

The paper is structured as follows. The basic equations including the nonlinear boundary condition
for the SECTM-modes magnetic field are presented in Section 2. Analytical expressions for growth rates
of their parametric instability are derived in Section 3. Influence of plasma parameters and amplitude of
the external alternating electric field on the SECTM-modes growth rates values is analyzed in Section 4.
The summary of the obtained results is represented in Section 5.

2. THE BASIC EQUATIONS

Let us consider uniform magneto-active plasma, which occupies area 0 ≤ z and is bounded by vacuum.
An external constant magnetic field ~B0 is oriented along axis ~z. Along ~z axis the spatial dispersion
of plasma is supposed to be weak k3υTα ¿ |ω − sωα|, where k3 is component of the SECTM-modes
oriented along ~z axis, υTα the thermal velocity of plasma particles, ω the modes frequency, s the series
number of cyclotron harmonic, and ωα the cyclotron frequency of α-type of plasma species (α = e
for electrons and α = i for ions). The plasma is also affected by an external alternating electric field
~E0 cos(ω0t), which is directed across axis ~z. Frequency of the external alternating electric field ω0 is
of the same order as electron cyclotron frequency ωe value. The alternating field ~E0 is assumed to be
uniform that can be realized in the case of small value of gas-kinetic pressure of plasma.

The plasma particles motion is described by Vlasov-Boltzmann kinetic equation with Maxwellian
non-perturbed plasma particles distribution function. Its solution for the indicated case of an external
magnetic field orientation in respect to plasma-vacuum interface is the same as that realized for
non-bounded plasma [15], if interaction between plasma particles and its surface is described by a
mirror model. A set of Maxwell equations for the studied modes can be solve by Fourier method ~E,
~H ∝ exp[i(k1x+k3z)−itω], then the complete set can be separated into two sets. One of them describes
just TM-mode with the following components [16] Ex, Hy, Ez.

Taking into account of the influence of an external alternating electric field E0 cos(ω0t), one can
solve the kinetic Vlasov-Boltzmann equation by the method of trajectories. Fourier coefficients of the
electric current density j1, j3 and electric field of the SECTM-modes (E1 and E3) are connected by the
following components of plasma conductivity tensor σjk calculated in the case of weak spatial dispersion
of the plasma along the direction, which is perpendicular to its surface:
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of summarizing over subscripts s, m, l in these expressions can be executed independently from each
other in the limits from −∞ to +∞, ωn+m = ω + (n + m)ω0. Since operating frequency of the applied
electric field is ω0 ∼ |ωe|, one can estimate ratio of the arguments of the Bessel functions of the first
kind in expressions for σik tensor: aE(α = e)/aE(α = i) ≈ mi/me À 1. Therefore, in this case, ion
terms can be neglected in the applied components of the plasma conductivity tensor σik.

Solving algebraic set of equations for Fourier coefficients of the SECTM-modes fields in
approximation of slow waves (it means that the wave phase velocity is much less than light velocity),
one can obtain expression for n-th harmonic E

(n)
1 of Fourier coefficient E1 =
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of the tangential electric field in the plasma region:
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subscript literal indexes {x, y, z} and subscript numerical indexes {1, 2, 3} relate to functions and
their Fourier coefficients, respectively. H

(n)
y (+0) is the meaning of the SECTM-mode tangential

magnetic field on the plasma interface. Presence of an addendum, which is proportional to H
(n)
y (+0)

in Equation (4), is connected with peculiarity of application the Fourier transform in the studied case
of semi-bounded plasma. Analyzing Maxwell equations for the SECTM-modes’ fields, one can make a
conclusion that they have different symmetries with respect to changing sign of the normal coordinate
z, namely E
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conducting Fourier transformation over z coordinate for the following derivative dH
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Then by the aid of reverse Fourier transform, one can derive equation for n-th harmonic of the
SECTM-modes tangential electric and magnetic fields on the plasma interface. This transform has been
carried out using Jordan’s lemma, which allows one to apply theory of residuals for calculation of these
integrals. There is one imaginary root of the denominator of the right-hand side of the expression (4)
that is located in the upper complex semi-plane of the k3, namely:

k3 = i |k2|
√
|ε11/(ε33 + A)|, (5)

here A ≈ −2Ω2
eIS(ye)/ [exp(ye)ω2h2], h = 1 − sωe/ω. According to the analysis made in [15, 16],

the absolute value of |ε11| is much less than that of denominator of the expression (5). Therefore, the
studied modes penetrate into plasma region sufficiently well, i.e., penetration depth is larger than these
TM-modes’ wavelength.

The value of magnetic field H
(n)
y (+0) on the plasma interface, which is presented in expression (4),

can be replaced by non-linear surface electric current using boundary conditions for tangential fields
of this mode. Thus let us consider the problem of boundary conditions for SECTM-modes affected
by an external electric field ~E0 cos (ω0t), which is oriented perpendicularly to magnetic field ~B0 in
details. There are two boundary conditions for the SECTM-modes fields on the plasma-vacuum (z = 0)
interface. The first one is a well-known linear condition for tangential electric field of the wave, which
means continuity of the SECTM-modes tangential electric field: E

(n)
x (z = +0) = E

(n)
x (z = −0). The

other boundary condition is a non-linear one, which describes the flowing of a surface electric current
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along the plasma boundary. This surface electric current is induced by the external alternating electric
field oriented across the utilized steady magnetic field:∣∣∣H(n)
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Application of these boundary conditions allows one to derive the infinite set of equations for n-
th harmonics of SECTM-modes tangential electric field on the plasma interface in the form, which is
analogous to those obtained in [9, 10]. Let us write it below:
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3. RESULTS OF ANALYTICAL RESEARCH

Structure of the infinite set of Equation (7) can be represented as equality to zero of the product
of the matrix, which is composed by diagonal Dn and non-diagonal Fn,l elements (from one side),
and corresponding harmonics of tangential electric field of the SECTM-modes on the plasma-vacuum
interface (from another one). Thus, the location of every element of this matrix is determined by a row
index, which is equal to superscript n, and a column index, which is equal to superscript n+l. To simplify
the consideration, one can assume that the main harmonic of the SECTM wave packet is the harmonic
with n = 0, then the equality Dn=0(ω, k2) = 0 is dispersion equation of these modes. Coefficients Fn,l

(non-diagonal elements of the indicated matrix) describe influence of an external alternating electric
field on these modes. Therefore, if a uniform set of Equation (7) has solution, then the determinant
composed by elements of the indicated matrix can be equal to zero.

As one can see from analysis of expressions (9), absolute values of coefficients nearby satellite
harmonics E

(n+l)
x (0) |n,l 6=0 decrease very quickly with increasing values |n| and |l| (in other words if

n → ±∞ and/or l → ±∞, then Fn,l → 0). Thus to obtain approximate analytical solution of the
set (7), one can take into account of only the main harmonic and two of the nearest satellite harmonics.
Then parametric excitation of the SECTM-modes can be described by the following reduced equation:∣∣∣∣∣
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Let us assume that for the main harmonic of these modes, the resonant condition ω = s|ωe|+∆T +
γ − nω0 is realized. Here the correction γ to the SECTM-modes frequency is supposed to be of small
value: |γ| ¿ s|ωe|, s is the series number of electron cyclotron harmonic (arbitrary natural number),
and ∆T = ∆T (s, ye) is their frequency shift in respect to the electron cyclotron frequency [15, 16]. In
the limiting case of weak amplitude of an external alternating electric field aE ¿ 1, one can derive the
following equation:
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Its analytical solution has the following approximate forms in different ranges of these modes’
wavelength. In the range of long wavelengths yi ¿ 1:
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If the range of intermediate wavelengths ye ¿ 1 ¿ yi is under consideration, then growth rate of the
SECTM-modes parametric excitation can also be described by formula (12). But in the range of short
wavelengths (ye À 1) it becomes larger than that in the previous case:

Imγ ≈ |∆T |
[√

2πa2
E

ω2
e

Ω2
e

]1/5√
ye. (13)

Analysis of these expressions testifies that the growth rates of the SECTM-modes parametric instabilities
Imγ are larger than analogous growth rates of the bulk quasi-potential electron cyclotron waves [18].
Values of the SECTM-modes growth rates increase with decrease of their wavelengths and series number
of cyclotron harmonic.

4. RESULT OF NUMERICAL RESEARCH

For completeness of analysis of the equations, which describe the initial stage of the SECTM parametric
excitation, Equation (10) is solved numerically. Results of the numerical analysis are represented in
Figs. 1–4, which demonstrate enough good coincidence with results of analytical investigation for the
SECTM-modes parametric excitation. Numerical investigation allows one to obtain some additional
information on the initial stage of their parametric instability.

Figure 1 is devoted to the illustration of dispersion properties of the SECTM-modes. One can
see that Re(ω/|ωe|) increases with increase of Z = Ω2

e/ω2
e . Also for Z = 1.5, 10 there are pronounced

maximums, and their positions shift to higher values of x = k1ρe with increasing cyclotron harmonics
number S and/or parameter Z value, but for Z = 100 a dispersion curve only becomes less steep without
changing the maximum value and its position. Parameter Z is proportional to the plasma density value;
that is why curves in Fig. 1 show influence of the plasma density on the form of their dispersion curves
and on the SECTM-modes frequency. Dependence of the modes’ dispersion properties upon relative
value of a plasma density is not unique feature of the studied SWs.

Comparison of the SECTM-modes dispersion curves with schematic dispersion curves, presented
in [1], allows one to conclude that they are similar to longitudinal (quasi-potential) bulk electron
cyclotron waves, which are described by dispersion equation ε11(ω, k1) = 0. One can see that increasing
these bulk cyclotron waves’ frequency divided on electron plasma frequency leads to deformation of their
dispersion curves from a step-like shape to the shape with a maximum of their frequency located in the
range of intermediate values of their wave vector k1 [1]. Appearance of the situation when SECTM-
modes frequency value corresponds to two different meanings of the parameter x = k1ρe can be explained

Figure 1. Eigen frequencies of the SECTM-
modes vs normalized wave number x = k1ρe;
bE = 0.5; ω0 = |ωe|/2. Solid, dashed, dot dashed
curves relate to Z = Ω2

eω
−2
e = 1.5, 10 and 100,

correspondingly.

Figure 2. Growth rate of the SECTM-modes vs
product k1ρe; bE = 0.5; ω0 = |ωe|/2. Solid and
dashed curves relate to Z = Ω2

eω
−2
e = 1.5 and

10, correspondingly. Numerals 1 and 2 denote
the series number of cyclotron harmonic s = 1,
3, correspondingly.
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Figure 3. Growth rate of the SECTM-mode
at the first frequency band 1 < ω/|ωe| < 2 vs
dimensionless amplitude of a pumping electric
field bE ; ω0 = |ωe|/2; k1ρe = 1. Solid and
dashed curves relate to Z = Ω2

eω
−2
e = 50 and 100,

correspondingly.

Figure 4. Growth rate of the SECTM-mode
at the second frequency band 2 < ω/|ωe| < 3
vs dimensionless amplitude of a pumping electric
field bE ; ω0 = |ωe|/2; k1ρe = 1. Solid and
dashed curves relate to Z = Ω2

eω
−2
e = 50 and 100,

correspondingly.

mathematically by their dispersion properties. Eigen frequencies of both bulk longitudinal electron
cyclotron waves and SECTM-modes are dependent on the product Is(ye) exp(−ye), here ye = x2/2. So
that in the range of long wave lengths the eigen frequency values of the studied surface modes increase
with increasing parameter x = k1ρe, and in the range of short wave lengths they decrease with increasing
x. But in spite of equality of the eigen frequency values, they are two different wave perturbations:
they have different meanings of wave vector k1 and different values of phase and group velocities. It
should be emphasized that the SECTM-modes power transfers in mutually opposite directions in the
ranges of short and long wave lengths. Similar situations are realized as well for bulk cyclotron modes
with ordinary and extraordinary polarizations [1], but their dispersion curves are characterized by the
presence of minimums in the range of intermediate values of x = k1ρe.

Analyzing dispersion curves presented in Fig. 1, one can see that decreasing the plasma density
(parameter Z) leads to decrease of the SECTM-modes eigen frequency’s shift in respect with
corresponding electron cyclotron harmonic (module of the parameter h turns to zero). As indicated
in [15, 16], this means that collisional damping δcol of these modes becomes stronger if the plasma
density becomes less, because δcol ∝ 1/|h|. Therefore, decreasing the plasma density makes conditions
of SECTM-modes’ existence worse from physical point of view. But for step-like form of dispersion
curves decreasing |h| for intermediate values of k1 is impossible, which is why these curves change their
forms as shown in Fig. 1. Such forms (with maximum of the frequency in the intermediate range of
wave lengths) of dispersion curves can describe strengthening the SECTM-modes damping in the whole
diapason of the possible values of the x = k1ρe.

Dependence of these modes’ growth rate Im(γ/|ωe|) upon the wave numbers value and values of
an external magnetic field (in other words, on dimensionless parameter Z = Ω2

e/ω2
e) is presented in

Fig. 2. In the tested cases, Im(γ/|ωe|) increases with increase of the product x = k1ρe, but after
x ≈ 5, this dependence becomes non-monotonous character. Decreasing Z value increases growth rate
values Im(γ/|ωe|). This result coincides with analogous result obtained for surface electron cyclotron
O-modes [10]. Increasing electron cyclotron harmonics number shifts curves Im(γ/|ωe|) as a whole to
the side of higher values of parameter x. In case of harmonics numbers S = 2 and 4, the difference of
the corresponding curves from the represented curves is very small, thus it will be difficult to distinguish
them from each other on the common plot, which is why in this figure, we have not drawn the curves
concerning the above cases.

Dependences of the SECTM growth rates parametric instability upon dimensionless amplitude of
an external alternating electric field bE are shown in Figs. 3 and 4 for the first and second electron
cyclotron harmonics, respectively. Regardless of the settings, Im(γ/|ωe|) increases with increase of
parameter bE . Also on both figures one can see that changing Z does not essentially influence the shape
of the curves. Unlike this changing electron cyclotron harmonic number S from 1 to 2 leads to decreasing
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absolute value of the parametric instability growth rates more than two times and to decreasing the
rate of enlarging of the Im(γ/|ωe|) curves generally.

5. CONCLUSIONS

In the present paper, the infinite set of equations for harmonics of SECTM-modes tangential electric
field propagating along the interface between uniform semi-bounded plasma and vacuum is derived.
Its solution describes an initial stage of SECTM-modes parametric instability. Analytical expressions
for SECTM-modes’ growth rate are obtained in the limiting case of a weak plasma spatial dispersion
along normal direction relative to the plasma interface. Unlike the results of our previous papers [9, 10],
the present results can be applied to arbitrary serial number of cyclotron harmonic and for the both
long and short wavelength’s ranges. It differs from expressions obtained for the bulk electron cyclotron
waves [18].

Amplitude of an external alternating electric field, wavelength of the studied modes and their series
numbers of electron cyclotron harmonics exert the main influence on the initial stage of this parametric
instability. Decreasing SECTM-modes wavelength and increasing amplitude of an external alternating
electric field lead to increasing values of growth rates of these modes.

The obtained results can be useful, first, for development of plasma technologies based on utilization
of surface electron cyclotron waves, because application of surface waves has many advantages compared
with the case of bulk waves application for sustaining gas discharges with large operating surface and
uniform plasma production [19]. Second, SECTM-mode’s application can be useful for diagnostics of
periphery of fusion plasma [20] and for searching possibility to decrease plasma periphery heating. Third,
surface waves are prospective for developing electronic devices based on application of new plasma-like
meta-materials, which allows one to construct miniaturized electronic devices [21, 22]. Fourth, they can
also be used in the development of electronic devices, which apply gaseous plasma [23].

And finally, one cannot miss a chance to point out a new field of applying theoretical knowledge
obtained in the branch of classical electrodynamics of a bounded plasma, and we mean plasmonics (see
[24] and references therein). This branch of physics studies collective motion of conductivity electrons in
a metal nano-structure excited by electromagnetic waves, whose wave length belongs to the visible light
spectrum. Due to this influence, these electrons can oscillate near the nano-structures’ interface, which
allows one to develop electromagnetic generators operating in THz frequency range and to construct
highly effective solar cells structures and even devices, which can be used for investigation of some
biological interaction and some biomaterials [25].
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