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Abstract—In this paper, the integrated formulas for the electro-
magnetic field in the planar boundary between isotropic and one-
dimensionally anisotropic media due to a horizontal electric dipole
situated on the interface are treated in detail, and the calculable field
components are given in terms of series that involve confluent hyperge-
ometric functions, namely, the Fresnel and exponential integrals. The
expressions are more complex than the isotropic case, and the exact
expressions and simplified formulas can be easily reduced to the corre-
sponding isotropic case. The results are useful to study the propaga-
tion of the electromagnetic waves on the boundary of one-dimensionally
anisotropic earth or sediments.

1. INTRODUCTION

The electromagnetic (EM) fields from a vertical electric dipole or
a horizontal electric dipole near the interface between two different
media, such as earth and air or sea water and rock, have been
known in terms of general integrals for many years [1-15]. Following
Sommerfeld [1], the EM fields were expressed in terms of the derivatives
of Hertz potential for sufficiently large distance between the dipole
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source and the observation point. Many investigators, especially,
Banos [2], Wait [3], and King [4,5], have re-visited these problems
aiming at the asymptotic evaluation on these integrals.

When studying the EM waves in stratified medium including the
earth, the earth is not an isotropic medium and can be approximated
by one-dimensionally anisotropic half space [4,12], the properties of
the EM field radiated by dipoles in this case have been investigated
by several investigators, especially Li [13] and Pan [14]. Pan [14] had
investigated the EM fields when the horizontal dipole and observation
point are both located in the isotropic medium. In 2001, Margetis
and Wu [15] examined the Sommerfeld integrals for EM fields in the
planar boundary between air and a homogeneous, isotropic medium
due to a horizontal electric dipole lying along the interface, and some
integrals of the EM fields are exactly evaluated by series that involve
the exponential and Fresnel integrals.

In the present study, the integrated formulas for the EM field
in the planar boundary between isotropic and one-dimensionally
anisotropic media due to a horizontal electric dipole situated on the
interface are treated in detail, and the calculable field components
are given in terms of series that involve hypergeometric functions,
and the expressions are more complex than the isotropic case. The
results can be reduced to the corresponding isotropic case and are
useful to study the propagation of the electromagnetic waves upon the
boundary of one-dimensionally anisotropic earth or sediments. The

time dependence e~ is used throughout the whole text.

2. EXACT FIELD COMPONENTS OF HORIZONTAL
ELECTRIC DIPOLE

2.1. Integrated Representations for the Field Components of
a Horizontal Electric Dipole

The relevant geometry and Cartesian coordinate system are illustrated
in Fig. 1, where a unit horizontal electric dipole in the Z direction
is located at (0,0,d). The upper half-space is Region 1 (2 > 0)
occupied with isotropic medium characterized by permittivity e; and
conductivity o1, the rest half-space is one-dimensionally anisotropic

medium (z < 0) with e, = ¢, = e, €, = ¢, and 0, = 0y =
or, 0, = o, which leads to the following representation for the
complex permittivity [5, 14]
e1+io1/w 0 0
g1 = 0 61+i01/w 0 (1)

0 0 €1+i0’1/w
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Cx
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Figure 1. The geometry and Cartesian coordinate system for a
unit horizontal dipole between the sea water and one-dimensionally
anisotropic rock.

er +iop/w 0 0
g9 = 0 er +iop/w 0 (2)
0 0 €L+iUL/u}

It is assumed that both Region 1 and Region 2 are nonmagnetic
so that p; = ps = uo.

When both the dipole source and the observation point approach
boundary (d — 0T, z — 07), the Fourier-Bessel representations for
the EM field in the cylindrical coordinates (p, ¢, z) with x = pcos ¢
and y = psing (0 < ¢ < 27) had been addressed in [5] and [14], they
are

; oo 1.2 2
B - iwpg cc2)s¢ k;'ye k‘:zpvl T(Ap)A2dA (3)
471']{31 0 ]{?1’}/@ + kT’Yl

w,u,gcosqb/oo 1
E, = ——1r— Jo(A Ja(A
= =8 [T On) + RO

Vel
—————5—[Jo(Ap) — J2(A AdA 4
Do) — R ()]} (@)

wppsing [ 1
Fiyp = —— Jo(Ap) — J2(A
o = 298 [T LT 1) - 2]

Ve V1
—— 1 [Jo(Ap) + J2(Ap)]  AdA 5
k%%Jrk%%[ 0(Ap) + Ja( p)]} (5)

iuosinqﬁ/oo 1 9
By, = J1(Ap)A“d 6
! 27 0o Yr+m 1) (©)
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B, = tosing Om{’wwoup) B

8 yr + 7
W[Jo(kp) + J2(Ap)] }/\dA (7)
Biy = _Hocos 9o COS¢ / {::i _T_ 11 o(Ap) + J2(Ap)]
_mmw A (5)

where
V4 =K% — X2 Im{yr} >0

k‘2
fyz = k—g (kL )\2) Im{~.} >0
L
7%=k =N, Im{y1} >0 (9)
N=kl+k]

]Cj = w\/,uo (6]' +iaj/w), j=1,T,L.

The above results can be reduced to the appropriate isotropic
results in [5] and [15] when k7 = kp = ko. It is interesting that the
integral expressions for the one-dimensionally anisotropic case are no
more complicated than the corresponding isotropic case. Next, the
integrals in Eq. (4)-Eq. (6) will be evaluated exactly in terms of series.

The first Riemann sheet is such that Im\/k%—)? > 0,

Imy/k? — X2 > 0, A > 0, with the branch-cut configuration similar

to [15], where | k1 |<| kr |, | k1 |<]| kr |. Note that the denominator
D(X) = k{e + kim (10)

has four simple zeros in the Riemann surface. These are located at

kikpy/k? — k2
A=tk =4 V1 T (11)
N

and are not present in the first Riemann sheet.
In order to carrying out the integrations of the above calculable
field components, consider the following replacements

=iqj, ki —=N =i /N +q, (j=1T,L) (12)

The Sommerfeld pole corresponds to s = —iks.
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2.2. The z-component of the Magnetic Field

Comparing the formula Eq. (6) here and Eq. (2.4) in [15], the result
for Bi, can be easily got

B, = —"——+—+— "1+ — — 5=
FT 2 (R - k) ' kip  kip?
3i

; 3
_ ikrp1.2 . .
e TPk (1 + Torp k%p2> ] sin ¢ (13)

2.3. The ¢-component of the Electric Field

With the definition ¢ = —iks, taking into account the following
decompositions
1 .\/)\24—(]%—\/)\24‘(]% (14)
= —
Yr +7 Q% - Q%
and
rem VA2t ai = arany /A +qf
__rfeld
K2y, + k2m af — ara;
qtqrqr 1 d-q

4t —a¢qr @ +aran ¢ —arar

arqr /A + @ — @GN+ @

e (15)

First, we examine the following integrals

B wwwvﬂ+ﬁ—ﬁvv+ﬁjA " y
o) = | e O)ax (16)
Following [15] and [16], the radical in the integral is given as follows

qrarv A+ qf — @i\ N +qf

N+ g

2 2
aqr a7 — 41, \/W q1/9s
= 0 )
M \/q% - q% Va?—1 r=qr/qs

Qqr\/ai —af  pa/es g(g2 1)1/
- 2_ 2 / A2 + i 1
[ - o q2

L/as
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then
_ q1qr (J% — q% q1/4s 1
- [ )
q% — q% qL/gs xs—1
* J (A
. %d/\ (18)
0 A2+ ¢a?
Finally, Eq. (5) can be re-written as follows
B - iwpo Sin @ 1 d [I.(qip) — I(qrp)
19 = — 2 ) 2 _ a2 dp 2
™ qy — g ap P
L1 1 [Q?Ie(q1p) - QTQLIe(QTP):|
4t —arai p p*
2 _ 2 3 2 @ — ¢?
q q q149749L 1 L
+——L — w(p) o (19)

1
(@ — arar)® (2 +arar)® Jq? - @ P

where

= / Va2 +a?i(z)de =a+e @ (20)
0

/e 1 *  Ji()
wp:/ d<>- AP gy 21
(p) " i) )y et (21)
The following integration is used as [17]
& Jl(/\p> \ = 1
0 VA4 q2x? qspT

w(p) can be divided as follows

(1 —e %) (22)

1 tg—q e —qrem P
w(p) =

QSP qs qs - pw<p):| (23)

The similar integral of Eq. (21) has been addressed in [15] for the
isotropic case. It is noted that, for the corresponding one-dimensionally
anisotropic case, ¢s is more complex, the result for w(p) can be written
readily.

e

ZU +quZV (24)

w(p) = ¢sK1(qsp)
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Then
ky—kp  kpetfre —kpettie g (1)
w(p) = —i 2 +1 2 +§H1 (ksp)
etkip X2 o
_ otkLp 9
where
1, m=20
Un(p) = 1 (26)
5 —k§p2 2m—1
(27)7177!1((2771 1)1) C?IZQm 1[ ( Z) Z*—Zk1p7 = ].,2,3
1
0 (D)t (k= k™2
Vinlp) = Vamim 2 2 (B
m =3
gm
(oo o)
dz 2=(kr—ks)p

In Eq. (26) and Eq. (27), E;(—2) is the exponential integral,
t = C(z) +1iS(z), C(z) and S(z) are the Fresnel
integrals as in [18]. Finally, the expression for Fy4 is
iwpo sin @ oikip 2 1 ik 1
27 k2 — k% p® k3 — k2 p?
. 3/2
B 1 ik (B k)Y 1]
Ry — KPR p° Ry — Rk (12, — 12)°7 PP

Eiy=—

, 1 2 ik : k2 k
ikrp A ikpp TVL
e k%—k%[ H*e K=K
MRS k2)%? ik 1

kTﬂ3 k:2 (k‘2 k%)S/Q k% _ k% p2

ihy 1 K—kek} i kikd (k—kp) (KDY i

i 74_ -
BR o KRR 2y (M- KERE) (12 —k2) 7P

Rk 2=k 0 Tin )
: 2 | T Ok,
Tk (KD (@#)3/2 P {2 (o)

et i Unn(p) — i€t ni:o Vm(p)] } (28)
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2.4. The p-component of the Electric Field

The integral for Ej, is evaluated via the interchange of 1/p and the
operator (d/dp) in Eq. (19). We can easily get

g, _wpocosd 1 1[l(qp) — Le(grp)
' 27 @ —qkp p?
L1 d [qffe(qm) - QTQLIe(QTP)]
¢t —¢242 dp p?

I Q% - Q% Q%Q%QL ﬂ d (p) (29)
2 2
(62 —arar)” (& + arar) m ap"

Following the same steps as in [15], the result of Fy, is given as

B _WHo cos ¢ 1 krk? — k3
o 2 kv 4+ kr kY — k2K
Rk (k= ko) (K~ #9)™°] 1
ki (ki — kkT) (k2. — k2)%2 | P?
1 i 1 2ik? k3
ey e\ P 2
2\3/2 .
klkT( k) (ki — ki) i _ ik etk1p
kg (k- k:gk:Q) (k2 — )3/2 P2 p
k:QkT (k2 — k2)*” 1
+ 2\3/2 T2
L (ki — ki) P
ik i ik
+kr < >] k:2 K2 el — (k2 — kQ)e "
_ klkag (kL - k%) i (1)’<k 0)
ki (ki = k7k2) (k2 — kg)w )
+eM10 N " Unnlp) — %0~ Vin(p) } (30)
m=0 m=0
where
o ) R
Up(p) = ~22mtd [€*Ei(—2))e iy, m=0,1,2...

2m)!(m + 1)1  dz?m
(31)
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1 it
Vin(p) = \/%im(Q)m m? +3/4 <kL—ks> +

m! (m—1/2)(m —3/2) 2k
. {e—izjzm [z—l/2F0(z)} }Z:a%_ks)p (32)

3. SIMPLIFIED FORMULAS UNDER THE SPECIAL
CONDITIONS

When |ki| < |kr], |ki1| < |kr| and |k‘jp| > 1, 5 =1,L,T, with the
similar approximations and replacements as Appendix C in [15], the
asymptotic results can be got and written as

ik p MO ko pt
By, ~ € Tp27rk2”7rkTp/ V2te *TPtdt sin ¢

2
_ ikpplo kT
= ¢ Tp%k‘%pQ sin ¢ (33)
wpo [4ik2 ekre / hrpt krk?
E ~ te "TPdt + 2
2™~ [k;fp e Vie T
eik‘Lp 00 \/.E

—kLpt gy
ke Jo it (/2R }d’

2 1.2
N z‘k;prﬂokaL m . —1/2
e PRTE: Fip [F(p) i(27p) } cos ¢ (34)
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kpk2p
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po [ 2k} etre / krpt
Biys~ 2| - 2L ot g
1p.2 27T|: k1 TI'kT \/6
ikaL €ikL'o > \/Z

o
Fip Vrkip Jo it + (1/2)k3/KEC ne

= 081 Fetor ek (F) i)~ 1ok (39

po krk? etkre o Vi —kppt
B ~ —— Lp dt -
12 o Tk ke Jo it + (1/2)k2JK2C cos
ok MOk kL . —1/2
— et tglgl [ P — item) 2 coso (39)

4. DISCUSSION AND CONCLUSION

The exact expressions can be reduced to the corresponding isotropic
results. As an example, let k;, = kpr = ko and with cancelations made,
Eq. (30) is simplified and written as

w o COS¢ { [ 1 k;’ - k% klkg (lﬁ - kg):|
2 k1 + ko kil — k% ko (kil — k‘%)

1 1 1 2ik? k3
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2
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It is seen that the reduced result for Ej, is identical to the
corresponding isotropic result Eq. (3.49) in [15]. With a similar
progress,the simplified formulas in this paper can also be reduced to
the corresponding isotropic results. The expressions for EM fields in
the one-dimensionally anisotropic medium are much more complicated
than the corresponding isotropic case. The results in this paper are
useful to study the propagation of the EM waves on the boundary of
one-dimensionally anisotropic earth or sediments.
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