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Abstract—The development of anatomically and dielectrically
representative tissue models is key to the design and refinement of
electromagnetic based diagnostic and therapeutic technologies. An
important component of any such model are accurate and efficient
Debye models which allow for the incorporation of the frequency
dependent properties of biological tissues. The establishment of
multi-pole Debye models is often a compromise between accuracy
and computational cost. Furthermore, some finite difference time
domain schemes impose constraints on the minimum Debye pole time-
constant. In this study, the authors have developed an optimised
genetic algorithm to establish Debye coefficients with minimal yet
sufficient Debye poles for several different biological tissues. These
Debye coefficients are fitted to existing Cole-Cole models and their
accuracy is compared to previously fitted Debye models.

1. INTRODUCTION

Electromagnetic modelling of biological tissues must incorporate the
frequency dependent nature of the dielectric properties.  These
properties consist of the permittivity and conductivity. FExtensive
studies have been completed to determine these properties for a variety
of tissues across a wide frequency-range [1].

The Finite Difference Time Domain (FDTD) method is a
powerful electromagnetic simulation tool to model the propagation
of electromagnetic signals. Frequency Dependent FDTD (FD?TD)
methods have also been developed [2-5] to allow for the inclusion of
frequency dependent dielectric properties using Cole-Cole, Lorentz or
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Debye models. The Debye model in particular can be easily expressed
both in the frequency and time domain [2], and is the most widely used
of the parametric dielectric models.

A comparison between various FD?TD schemes [2] has shown that
the choice of parameters in a multi-pole Debye model can impact the
simulation in numerous ways:

e Choosing a Debye pole time-constant too low can make Auxiliary
Differential Equation (ADE-2) [5] simulations unstable;

e Choosing a Debye pole time-constant too low will give inaccurate
simulation results using the ADE-2 and Laplace Transform
Piecewise Constant Recursive Convolution (LT-PCRC) [2,6]
methods;

e Increasing the number of Debye poles will increase the
computation time required for all FD?>TD schemes.

However, accurately fitting Debye coefficients to a set of dielectric
measurements across a very large frequency-range is problematic.
Various fitting methods have been investigated previously including:

Genetic algorithms (GA) [7];
Particle-swarm least squares optimization [8];

Iterative elimination and back-substitution [9];
Weighted least squares fitting method [10];
Debye properties estimation using a filter design process [11].

While previous studies investigated the trade-off between the
accuracy of Debye models and the number of poles employed, the
compromise between the accuracy of Debye models and the minimum
Debye pole time-constant has not been investigated. Despite the
fact that a limitation on time-constants can be easily implemented
in most fitting methods, it is important to examine the effect of
such a limitation on the resulting model accuracy. This becomes
particularly critical when using FDTD schemes which place strict
limits on the allowed Debye pole time-constants such as the Auxiliary
Differential Equation method 2 (ADE-2) [5]. The ADE-2 method
requires time-constants above a certain threshold in order to be stable
and accurate for any given simulation time-step [2]. When designing
such simulations this limitation must be taken into account during
the Debye model fitting process. Therefore, in this paper the authors
present an improved GA to find minimal yet highly accurate sets of
Debye poles for muscle, fat and cortical bone across a broad frequency-
range (10Hz to 100 GHz). Significantly, the presented algorithm is
the first to apply a limitation on Debye pole time-constants for more
efficient ADE-2 FD?TD simulations. Additionally this algorithm is
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the first to apply a two-stage GA to the problem of fitting Debye
models. The resulting Debye models are shown to be more accurate
than previously reported results.

The remainder of the paper is organised as follows: Section 2
introduces the multi-pole Debye model and describes some potential
problems when incorporating these models into FD?TD schemes;
Section 3 proposes an improved GA to find models with minimal Debye
poles; Section 4 presents the performance of the resulting Debye models
and illustrates the relationship between minimum Debye pole time-
constants and dielectric model accuracy; finally Section 5 discusses the
outcomes of this study.

2. MULTI-POLE DEBYE MODELS FOR FDTD
SIMULATIONS

The complex permittivity of a material € consists of the relative
permittivity € and conductivity o, which both vary significantly with
frequency. Measurements of tissue dielectrics at different frequencies
were made by Gabriel etal. [1] and parametric Cole-Cole models [12]
were fitted to these measurements. However, since Cole-Cole models
cannot be easily expressed in the time domain [8], Debye models are
often used instead in FD?TD simulations.
The multi-pole Debye model is defined as:
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where €4 is the permittivity at very high frequencies, o, is the static
ionic conductivity and €y is the permittivity of free space. Ag; is the
change in permittivity and 7; is the time-constant of the ¢th dispersion.

Various methods have been proposed to integrate multi-pole
Debye models into FDTD simulations. Recently a subset of the newest
methods have been analysed in terms of their stability, accuracy and
computational complexity [2]. These include:

o Kelley-Luebbers Piecewise Linear Recursive Convolution (KL-
PLRC) method [3];

e Laplace Transform Piecewise Constant Recursive Convolution
(LT-PCRC) method [2, 6];

e Laplace Transform Piecewise Linear Recursive Convolution (LT-
PLRC) [2];

. Auf{i]liary Differential Equation methods (ADE-1) [4] and (ADE-
2) [5];
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e A convolution-less method based on the analogy of a resistive-
capacitive circuit termed the CIRC method [2].

Importantly, Feliziani et al. [2] also showed that the ADE-2 and
LT-PCRC are the most computationally efficient FDTD methods.
Feliziani also detailed multiple constraints on the relationship between
the simulation time-step At and the lowest Debye pole time-constant
7o used in the simulation for the ADE-2 method. The ratio 22 must

At
be greater than 0.5 for ADE-2 to be stable, and &7 must be greater

than 5 for ADE-2 to be as accurate as the other FD?TD methods for
1D problems.

The Courant-Friedrichs-Lewy (CFL) stability condition is an
additional constraint which limits the value of the time-step in the
FDTD method: At

U

k= Ay 1 (2)
where Ax is the space interval and At is the time-step and w is the
speed of light. This limits the value of the time-step depending on
the desired spatial resolution of the FDTD simulation. The limitation
on the value of At further limits the value of the smallest Debye pole

time-constant 7.
Overall, a usable Debye model must have the following properties:

e Stable and accurate with an FDTD time-step defined by the
Courant-Friedrichs-Lewy (CFL) condition;

e Computationally efficient;

e Accurate in terms of modelling the frequency dependent nature of
the tissue.

The Debye model should have as many poles as is required to be
accurate, while also having as few poles as possible for improved
computationally efficiency. Additionally, the minimum Debye pole
time-constant should be as large as possible to allow for the FDTD
time-step to also be as large as possible, shortening the FDTD
computation time.

Therefore, the novel GA presented in this study aims to use the
minimum number of Debye poles required and the maximum possible
minimum pole time-constant to find highly accurate multi-pole Debye
models for fat, muscle and cortical bone tissue.

3. IMPROVED TWO STAGE GENETIC ALGORITHM
FOR DEBYE POLE FITTING

Genetic Algorithms (GAs) are a search heuristic which are commonly
used to search for parameters in a large solution space [13]. GAs first
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evaluate each set of parameters using a user specified cost function
and then apply selection, crossover and mutation operations on the
individual sets of parameters in a population. In this study a GA
is used to select the best multi-pole Debye model parameters to fit
the Cole-Cole models developed by Gabriel et al. for muscle, fat and
cortical bone [14].

The parameters to be evolved by the GA include log;y(€x),
logo(0s), and for each Debye pole log; (A¢;) and logo(7), as
previously used by Clegg and Robinson [7]. Using the logarithm
of the parameters reduces the otherwise huge search space, as each
parameter can vary by many magnitudes between different tissues. The
population is made up of 1,000 individuals as per the GA developed
by Clegg and Robinson.

Significantly, the authors have developed a two-stage GA using
two distinct cost functions. First a logarithmic cost function 3 is used
until the GA fails to decrease the cost function output by more than
0.1% in the previous 100 generations.

f=10x233
Caa= Z (IOglo(Cr(f))—10g10(dr(f)))2+(10g10(‘3i(f)) — logy (dl(f)))Q (3)
f=10x20
where d;(f) and d,(f) are the imaginary and real parts of the Debye
model at frequency f, and ¢;(f) and ¢, (f) are the imaginary and real
parts of the Cole-Cole model at frequency f. The logarithm is taken of
each imaginary and real point corresponding to the conductivity and
permittivity respectively at each frequency. This sets both values on
a similar magnitude scale, resulting in a cost function that reflects the
accuracy of current Debye model equally in terms of both permittivity
and conductivity. Note: the cost function presented in Eq. (3) uses
34 logarithmically spaced points, used here to allow for a direct
comparison to the GA previously developed by Clegg and Robinson
which used the same logarithmic cost function [7].

Once the error fails to further decrease (as defined previously),
a linear cost function is used as described in Eq. (4). This approach
is based on the assumption that the permittivity and conductivity
are now in the correct range, such that a linear function may further
decrease the error on both the conductivity and permittivity equally.
This linear cost function cannot be used as the initial cost function
as the permittivity is often magnitudes higher than the conductivity
over the first 10 decades, which would result in the GA fitting the
permittivity while neglecting to equally fit the conductivity.

f=10x233
_ o(f) —d(f)] | |a(f) —di(f)
Car= 2 |77 e

f=10x20

(4)
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This two-stage GA is compared to a one-stage GA as used by
Clegg and Robinson [7]. To allow for a fair comparison, both GAs are
run for 4,000 generations after the logarithmic cost function fails to
decrease the error by the above criteria. Across all tissues and number
of poles, the number of generations required to reach this point varied
between 300 and 15,000.

The cost function is evaluated at 34 frequency points over the full
range of the Cole-Cole models [14]. Since the employed GA uses a
random starting population and random mutation at each generation,
the GA does not always the same minimal cost value. Therefore each
GA run is repeated 10 times and the lowest final cost function is chosen
as the best model.

The GA was used to find the optimal multi-pole Debye model
with the minimum allowed Debye pole time-constant constrained. The
upper limit of the parameter log;,(7;) was kept constant at —1 while
the lower limit was varied from —12.5 to —10.5 in steps of 0.1. The
resulting improved Debye models and their accuracies are reported in
the next section.

4. PERFORMANCE METRICS AND RESULTS

The two-stage GA was used to fit multi-pole Debye models to the
Cole-Cole models of muscle, fat and cortical bone, as established by
Gabriel et al. [14]. All results were directly compared to the one-stage
GA [7]. Evolved Debye models were compared to the Cole-Cole models
using the average fractional error calculated as follows:

F=10%233 cT(f)z}i)r(f)‘ 4 q(f)z;z)i(f)’

E _ Cr c;

TTOT qug Z ) (5)
f=10x20

Figure 1 very clearly illustrates that adding a fractional cost
function after the logarithmic function reduces the final fractional error
in almost all cases. This results in a more accurate Debye model
compared to models developed using the GA proposed by Clegg and
Robinson.

Furthermore, Figure 1 shows that, across all tissues, the error
decreased monotonically as the number of poles increased to 12. Also,
a decrease in the error could be seen as the number of poles increased to
18 for muscle and cortical bone. This is in contrast to previous studies
which suggested that using more than 10 Debye poles did not result in a
decreased error [7]. This discrepancy could be attributed to the larger
number of GA generations used in this study compared to previous
investigations. To further illustrate this point, the error function in
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Figure 1. Average fractional error of one-stage and two-stage multi-
pole Debye models for (a) muscle, (b) fat, and (c) cortical bone.

Figure 2 continues to decrease after more than 2,000 generations when
using 11 poles.

Direct comparisons of the proposed GA to alternative fitting
algorithms are difficult, as the accuracy of one method can be specific
to the problem under consideration, including the tissue type and the
frequency range being approximated. A comparison of the proposed
GA to the GA by Robinson and Clegg was completed and results
demonstrated that the error can be decreased by using the proposed
GA even over a large number of generations. Another highly accurate
method is the PSO-LS method developed by Kelley et al. [8] which
yielded errors of only a few percent using 5 Debye poles over a smaller
frequency range of 10 MHz to 100 GHz (4 decades). One advantage of
the GA approach over the PSO-LS method is that it optimizes both the
real and imaginary parts of the Debye model while the PSO-LS method
only optimizes the real part which results in slightly higher errors in
the imaginary part. Other methods include the weighted least squares
fitting method [10] which achieved RMS errors of 1.9% for Fat, 3%
for Bone and 2.8% for Muscle with 3 pole models over the frequency
ranges of 100kHz to 10 GHz (5 decades). The weighted least squares
fitting method requires a manual starting point for the optimization
procedure, which is not required for the proposed GA solution.

Finally, the two-stage GA was also run using different values
for the minimum Debye pole time-constant, in order to find the
maximum possible lower limit of the time-constant that resulted in an
accurate Debye model over the frequency-range of 10 Hz to 100 GHz.
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Figure 3 shows that the muscle and cortical bone tissue dielectrics
are modelled most efficiently with a minimum time-constant of —11.3,
while fat requires a minimum time-constant of approximately —11.5 in
logarithmic terms. This corresponds to an upper limit on the FDTD
time-step used for ADE-2 methods to approximately 1ps and 0.6 ps
respectively. If the lower limit on the Debye pole time-constant was
not constrained, this would result in a much lower permitted FDTD
time-step, and therefore a much longer computation time for ADE-
2. Therefore, the benefit of the additional constraint imposed on the

Table 1. Table of parameters of 12 pole Debye models for muscle, fat
and cortical bone.

Muscle Fat Bone
€oo 5.9218 2.6182 2.8841
Os 0.20001 0.010029 0.02
Aer 26157 9770400 268.31
T 0.000027651 0.0078503 0.00001194
Aeo 41.595 0.61324 17.853
T2 4.8239E-09 7.76E-10 1.1764E-08
Aes 5632.6 64750 97650
T3 4.6119E-06 0.0015704 0.015439
Aey 5405.3 615.18 3.6385
T4 4.7578E-07  0.000015513  5.0785E-12
Aes 2015.8 1.6207 2645.3
Ts 1.6424E-07 4.32E-12 0.00025856
Aeg 219.56 43.651 1.4712
T6 3.0945E-08 9.19E-07 1.6751E-10
Aer 853670 7897.8 1675.1
T7 0.00030525  0.000078725  0.000067761
Aesg 25159000 10.179 65.363
Ts 0.0022595 1.10E-07 1.6122E-06
Aeg 132130 1.1901 75.92
To 0.00010931 2.10E-11 4.847E-08
JANGT! 6.5738 147.12 80.664
T10 4.7144E-10  0.000004131  1.6365E-07
A€ 33.186 13.055 5.2283
T11 5.4054E-12 1.28E-08 2.1138E-11
A€ 15.141 30416 4.0471

T12 1.7889E-11 0.00019463 1.8641E-09
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Figure 2. Two-stage GA cost function over the evolution of an 11 pole
Debye model for muscle dielectric properties.
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Figure 3. Two-stage GA average fractional error for 12 pole Debye
models. The minimum time-constant 7; was varied in each evolution
run. All evolutions were repeated 10 times and the best is shown.

two-stage GA presented in this paper is quite clear.
The resulting best fit Debye model parameters using 12 poles for
muscle, fat and cortical bone tissues are presented in Table 1.

5. CONCLUSIONS AND FUTURE WORK

The authors have developed an improved two-stage GA to find multi-
pole Debye models for tissue dielectrics. This algorithm was used to
find the most accurate multi-pole Debye models for muscle, fat and
cortical bone tissue dielectrics.

Furthermore, the authors have shown that adding an extra GA
constraint on the lower limit on the Debye pole time-constant can result
in more computationally efficient Debye models for ADE-2 FDTD
simulations.

Counter-intuitively, in a previous study by Clegg and Robinson,
their GA failed to produce an improvement in accuracy with an
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increasing number of Debye poles. However, in this study, the two-
stage GA did in fact provide an improvement in accuracy with an
increased number of poles, as would be expected.

The proposed method has the advantage that it can also be applied
to the fitting of Cole-Cole models to measured data and also to fit
Lorentz models to Cole-Cole models or to measured data. The GA cost
functions do not depend on the model used, only on the approximation
the model produces.

Finally, it could be argued that the improved accuracy gained by
using the presented method could be more than counteracted by the
inaccuracy of measured data and by dispersion and dissipation errors
introduced by the discretization of time and space in FDTD schemes.
However, this method will offer greater benefits where more accurate
dielectric datasets exist, such as those established by Lazebnik et
al. [15] and by Halter et al. [16]. Future work will focus on applying
this method to such datasets and also on quantifying the errors caused
by dispersion and dissipation errors.
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