
Progress In Electromagnetics Research B, Vol. 57, 87–104, 2014

Large-signal Field Analysis of a Linear Beam Traveling Wave
Amplifier for a Sheath-helix Model of the Slow-wave Structure

Supported by Dielectric Rods. Part 1: Theory

Natarajan Kalyanasundaram* and Amita Agnihotri

Abstract—A rigorous field-theoretic method of analyzing the large-signal behavior of a linear beam
traveling wave tube amplifier (TWTA) with slow-wave structure modeled to be a dielectric-loaded sheath
helix is presented. The key step in the analysis is a representation of the field components as nonlinear
functionals of the electron arrival time through a Green’s function sequence for the slow-wave circuit.
Substitution of this functional representation for the axial electric field component into the electron
ballistic equation casts the latter into a fixed point format for a nonlinear operator in an appropriate
function space. The fixed point, and therefore the solution for the electron-arrival time and hence the
solution for the electromagnetic field components, can be obtained by standard successive approximation
techniques. The calculations of the gain, the efficiency and the other amplifier parameters, comparison
of the results of the present theory with experimental results etc., on the basis of such a successive
approximation solution for the field components, will be presented in the second part of this paper.

1. INTRODUCTION

Ever since the invention by Rudolf Kompfner in 1943, the linear beam traveling wave tubes making use of
an helix for the slow-wave structure (popularly known as helix TWTs), with their wide bandwidths and
large power outputs, continue to be unsurpassed as broadband amplifiers of microwave power except
possibly by gyro-TWTs. The phenomenal growth of the satellite communication industry and the
proliferation of radar applications have fueled an unprecedented demand for TWTs meeting stringent
design specifications. In high power applications, the traveling wave tube amplifier (TWTA) will
invariably be operated on the verge of saturation, and hence an analytical study of its large-signal
behavior will be of immense interest.

The analysis of TWT as an amplifier has been carried out by Pierce and Kompfner [1–3]. This
theory was developed some six and half decades ago, and it was based on a coupled-wave analysis
utilizing the vacuum modes of the helix and the positive and the negative energy space — charge waves
of the beam. An improved theory based on an eigen-vector analysis of Maxwell’s equations for the helix
has been developed by Reydbeck [4]. Chu and Jackson [5] and Collin [6] considered the field approach
for a small-signal analysis of the helix-TWTA. The linearized ‘solution’ [6] for the axial electric field was
obtained as a linear combination of three space charge waves, a growing wave and a decaying wave, both
having phase speeds slightly smaller than the beam speed and a constant-amplitude wave with a phase
speed greater than the beam speed. However, the input boundary conditions (that the total a.c. beam
current density and the r.f. perturbation in the electron speed vanish at the input plane) could exactly
be satisfied for a finite beam only by the trivial solution as the (complex) phase-shift constants associated
with the three waves were not equal. Moreover, in the nonlinear regime this approach is completely
intractable without the introduction of multitudinous limiting assumptions [7]. Freund et al. [8, 9]
presented a linear field analysis for a TWTA using radial admittances at the boundaries. The analyses
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were based on the coupled-mode theory [8] and the linearized relativistic field theory [9]. Being linear
theories, they are not applicable to large signals.

The results of many attempts at developing a large-signal theory for the linear beam TWTA have
been summarized in [7] and Detweiler and Rowe [10]. However, all of these studies make use of a
transmission-line analogy to what is essentially a field problem, and suffer from at least the following
two serious drawbacks:

1. The slow wave structure is modeled by a linear transmission-line circuit that is equivalent to it
only in the small-signal limit, and this only at a single frequency, for the study of large-signal
electron-wave interaction phenomena.

2. The electron stream entering the interaction region is arbitrarily divided into a finite number of
discrete charge groups, and in the subsequent motion each charge group is treated as a single entity
with complete disregard for the relative motion of the electrons within.

It is a well-known fact that when the TWTA is operated under large input-signal conditions,
crossing of electron trajectories invariably takes place because of which the electron speed ceases to be
single-valued when expressed as a function of the usual Eulerian spatial coordinates. Hence, recourse
has to be made in the nonlinear case to the Lagrangian description wherein the entering electrons are
indexed by their respective entrance times and the radial and the angular positions at the entrance
plane, thereby obviating the need to have to deal with a multi-valued function. A rigorous field-theory
based method of analyzing the large-signal behavior of a TWTA for an open sheath-helix model for the
slow wave structure was presented for the first time by Kalyanasundaram [11] and Kalyanasundaram
and Chinnadurai [12, 13] resorting to such a Lagrangian description for the electron trajectories.

In this paper, the large-signal field analysis method of [11] is extended to the practically relevant
model of a sheath-helix supported inside a coaxial perfectly cylindrical shell by symmetrically disposed
wedge-shaped dielectric rods (Fig. 1(a)). In order to make the analysis of the TWTA tractable, the above
model of the slow-wave structure is simplified further by replacing the azimuthally periodic dielectric
constant of the tubular region between the helix and the outer conductor by its azimuthally averaged
constant value εeff (Fig. 1(b)). The azimuthally periodic nonhomogeneous relative permittivity ε(r̄, ϕ)
of the tubular region between the sheath helix and the outer conductor for L symmetrically disposed
wedge-type support rods of angular width 2πσ/L and dielectric constant εr is given by

ε(r̄, ϕ) = εr for π(2l − σ)/L ≤ ϕ ≤ π(2l + σ)/L

= 1 for π(2l + σ)/L ≤ ϕ ≤ π((2l + 2)− σ)/L

for ā ≤ r̄ ≤ b̄ and l = 0, 1, 2, . . . , L− 1.

where r̄, ā and b are the radial coordinate, helix radius and outer-conductor radius, respectively (see
the next section). Therefore, the effective dielectric constant of the medium between the sheath helix

(a) (b)

Figure 1. Cross-sectional view of a dielectric-loaded sheath helix model: (a) Actual structure with three
support rods of dielectric constant εr. (b) Azimuthally averaged structure with an effective dielectric
constant εeff = (1− σ) + σεr for the region between the sheath helix and the outer conductor.
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and the outer conductor works out to be

εeff , 1
2π

2π∫

0

ε(r̄, ϕ)dϕ = (1− σ) + σεr

where the symbol ‘,’ denotes equality by definition. This simplified model of the slow-wave structure
will be referred to as ‘dielectric-loaded sheath helix’ in the sequel. When the cross-sectional shape of
the symmetrically loaded dielectric support rods is anything other than a wedge {(r̄, ϕ): ā ≤ r̄ ≤ b̄,
ϕ1 ≤ ϕ ≤ ϕ2} of angular width ϕ2 − ϕ1, the azimuthally averaged value of the dielectric constant will
turn out to be a function of the radial coordinate: εeff (r̄), ā ≤ r̄ ≤ b̄. In this case, the region between
the sheath helix and the outer conductor is partitioned into a finite number of tubular layers and
each layer is characterized by the radially-averaged (constant) value of εeff (r̄) over its radial thickness.
This is equivalent to approximating εeff (r̄) by a piecewise constant function in the radial variable r̄.
The solution for the field components over the entire region between the sheath helix and the outer
conductor can then be recovered from the solutions for all the layers with constant values for the effective
dielectric constant by enforcing the continuity of the tangential field components across the interfaces
separating two adjacent tubular layers with different values for the effective dielectric constant. A
similar approach has been adopted by Jain and Basu [14] to derive the dispersion relation governing
the guided propagation of cold electromagnetic waves through a tape helix supported by dielectric rods
of circular cross section on the basis of an ad hoc assumption about the tape-current distribution.

As in [11], the axial electric field component inside the electron beam is represented, invoking the
steady-state assumption, as a nonlinear functional of the electron-arrival time through a sequence of
Green’s functions for the slow-wave structure which is a dielectric-loaded sheath helix in the present
case. Substitution of the resulting expression for this field component into electron ballistic equation
casts the latter into a fixed point format for an operator in an appropriate function space. The
fixed point, and hence the solution for the electron-arrival time can then be obtained by standard
successive approximation techniques, the convergence of the sequence of successive approximations
being guaranteed by the classical Banach fixed point theorem. Once we have the solution for the
electron-arrival time, the expressions for the electromagnetic field components readily follow. The
numerical computations of the gain, the efficiency and the other amplifier parameters, comparison of
the theoretical predictions with the available experimental results etc., will be deferred to the second
part of this paper.

2. PROBLEM FORMULATION

In this paper, only a steady-state solution corresponding to a single-frequency input excitation will be
sought. Moreover, the following assumptions regarding the slow-wave circuit and the electron beam
will be made use of in the formulation and the subsequent field analysis of the nonlinear electron-wave
interaction phenomenon:

(i) Dielectric-loaded sheath-helix model for the slow-wave circuit.
(ii) Axially symmetric mode of operation.
(iii) Axially confined electron beam partially filling the tube.
(iv) Nonrelativistic operation justifying the dropping of r.f. magnetic force terms from the electron

ballistic equation.
(v) Transverse electric field has negligible effect on the electron motion.
(vi) Electrons enter the interaction region with zero transverse speed.
(vii) The axial speed v0 and the charge density ρ0 of the entering electron stream remain constants

with respect to the transverse co-ordinates and the time.
(viii) The electron entrance speed v0 is assumed to be close to the cold-wave phase speed vp at the

input signal frequency ω0/2π in order to meet the condition of approximate synchronism between
the electron beam and the traveling electromagnetic wave.
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Since it is desirable to carry out the analysis of the problem to be formulated in this section in
terms of dimensionless variables, all dimensional variables will be distinguished from their dimensionless
counterparts with an over bar in the notation for the dimensional variables. Accordingly, the axis of
the tube (helix) is taken along the z̄-co-ordinate of a cylindrical polar co-ordinate system (r̄, ϕ, z̄). The
electron stream is assumed to enter the interaction region at the plane z̄ = 0. In addition to rendering
the dependent and the independent variables dimensionless, the beam radius ā0, the helix radius ā and
the inner radius b̄ of the outer conductor are rendered dimensionless by dividing by the helix radius
to yield the corresponding dimensionless versions a = ā0/ā, 1 = ā/ā and b = b̄/ā respectively. The
interaction length d̄ of the tube is, however, rendered dimensionless according to d = ω0d̄/v0, where ω0

is the angular frequency of the r.f. input signal and v0 is the mean value of the axial electron speed at
the entrance plane z̄ = 0. Notations for the various independent and dependent variables together with
an explanation of the notation are given in Table 1(a) and Table 1(b) respectively.

In Table 1(b), Z0 is the intrinsic impedance of free space and A0(, supt |Ē1(0, ā, t̄)|) is the amplitude
of axial electric field component at z̄ = 0, r̄ = ā.

From Table 1(b), and the definition of the axial electron speed (assumed to be always positive), we
have

v(z, r, t0) = 1/tz(z, r, t0) (1)

Table 1. (a) Notation and terminology for independent variables. (b) Notation and terminology for
dependent variables.

(a)
Dimensional Variables Dimensionless Variables
z̄ axial co-ordinate z = ω0z̄/v0

r̄ radial co-ordinate r = r/ā

t̄ time t = ω0t̄

t̄0 electron entrance time t0 = ω0t̄0

Dimensional Variables Dimensionless Variables 

 

     ),,( 0trzt :  time of arrival at the location  

     ),( rz  of an electron with entrance time 0t  

 

     ),,( 0trzv :   axial speed at  the location  

     ),( rz of an electron with entrance time 0t  

   

     ),,( 0trz :   electron charge density 

 

     ),,( 0trzi :   convection  current  density 

 

     ),,( trzk :   for  k = 1,2,3, axial, azimuthal  

and radial component of electric field vector  

    ),,( trzk :   for  k = 1,2,3, axial, azimuthal  

and radial component of magnetic field vector 

 

 

t(z, r, t0) = ),,( 00 trzt  

 

 

v(z, r, t0) = ),,( 0trzv / v0   

 

 

(z, r, t) =  v0
2
Z0 ),,( 0trz / 0 A0  

 

i(z, r, t) = v0Z0 ),,( 0trzi / 0 A0 

 

 

k (z, r, t) = ),,( trzk /A0  

       
for k=1,2,3

k (z, r, t) = Z0 ),,( trzk  /A 0

 

    

for k=1,2,3

ρ
ρ ω

ω

ρ

ω

(b)
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In (1) and in the following, an independent-variable subscript denotes partial differentiation with respect
to that variable. From the law of conservation of charge [15], we obtain

i(z, r, t) =
∑

l

q0/|tt0(z, r, t0l(z, r, t))| (2a)

and hence using (1), we have

ρ(z, r, t) =
∑

l

q0tz(z, r, t0l(z, r, t))/|tt0(z, r, t0l(z, r, t))| (2b)

where q0(, v2
0ρ0Z0/ω0A0) is both the dimensionless beam current density and the charge density at the

entrance plane and the summation in (2) is over all roots (a finite number depending on the values of
z, r and t) of the equation

t(z, r, t0) = t

for t0. The lth term in the summation on the right sides of (2a) and (2b) denotes respectively the
contribution to the convection current density i(z, r, t) and the charge density ρ(z, r, t) from an electron
with entrance time t0l(z, r, t). Thus the convection current density i(z, r, t) and charge density ρ(z, r, t)
have contributions from all those electrons arriving at the location (z, r) at time t irrespective of the
order of their arrivals. The absolute value sign on tt0 in (2) corresponds physically to the fact that the
contributions to the charge and the current densities have the same sign irrespective of the order in
which the contributing electrons arrive at the location (z, r) [15].

Making use of the definitions of the dimensionless variables and parameters and invoking the
simplifying assumptions from the beginning of this section, Maxwell’s field equations and the electron
ballistic equation can be expressed in dimensionless form as

a1κ(r)E1t−a2 (H2r +H2/r) = −i(z, r, t) = −q0

∑

l

|tt0(z, r, t0l(z, r, t))|−1 (3a)

a1κ(r)E2t −H3z + a2H1r = 0 (3b)
a1κ(r)E3t + H2z = 0 (3c)
a1H1t + a2 (E2r + E2/r) = 0 (4a)
a1H2t + E3z − a2E1r = 0 (4b)
a1H3t − E2z = 0 (4c)
E1z + a2 (E3r + E3/r) = ρ(z, r, t)/a1 =

∑

l

q0tz(z, r, t0l(z, r, t))/ |tt0(z, r, t0l(z, r, t))| (5)

H1z + a2 (H3r + H3/r) = 0 (6)
tzz(z, r, t0) = ε(tz(z, r, t0))3E1(z, r, t(z, r, t0)) (7)

where the piecewise constant function κ(r) is defined as

κ(r) =
{

1 if 0 ≤ r < 1
εeff if 1 < r < b

and a1 = v0/c, a2 = (v0/ω0ā), ε = A0e/meω0v0 and where e/me is the charge magnitude-to-rest mass
ratio of an electron. The dimensionless parameter ε is a measure of the input excitation. Equations (3)–
(7) constitute an highly nonlinear coupled system of differential equations for the seven scalar functions
Ek(z, r, t) and Hk(z, r, t) for k = 1, 2, 3 and t(z, r, t0). It is to be noted that the right sides of (3a)
and (5) involve a’priori unknown roots of the nonlinear equation

t(z, r, t0) = t

for t0, where t(z, r, t0) is itself one of the scalar functions to be solved for. Nevertheless, it will be
demonstrated in this section how the steady-state assumption enables Equations (3)–(6) to be solved
for the field components as explicit nonlinear functionals of the electron arrival time.

Equations (3)–(7) are to be solved for Ek(z, r, t) and Hk(z, r, t), k = 1, 2, 3 and t(z, r, t0) subject
to the sheath-helix boundary conditions, continuity conditions across the beam boundary, tangential
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electric field boundary conditions on the inner surface of the outer cylindrical shell, the monochromatic
signalling conditions and the entrance conditions on the electron arrival time:

E1(z, 1−, t)− E1(z, 1+, t) = 0
E1(z, 1−, t) + E2(z, 1−, t) cot ψ = 0
E1(z, 1+, t) + E2(z, 1+, t) cot ψ = 0
H1(z, 1−, t)−H1(z, 1−, t)+[H2(z, 1−, t)−H2(z, 1+, t)]cotψ = 0

(8)

Ek(z, a−, t)− Ek(z, a+, t) = 0
Hk(z, a−, t)−Hk(z, a+, t) = 0

for k = 1, 2, 3 (9)

Ek(z, b−, t) = 0 for k = 1, 2, 3 (10)
E1(0, 1, t) = (A/2) exp(jt) + c.c.

E1z(0, 1, t) = −jβ1(A/2) exp(jt) + c.c.
(11)

t(0, r, t0) = t0
tz(0, r, t0) = 1

(12)

In (8), ψ is the pitch angle of the sheath helix, A(, exp(jθ)) the phase factor of the input signal, β1(,
v0/vp) the dimensionless phase shift constant of the cold-wave solution for the dielectric-loaded sheath
helix at the operating radian frequency ω0, and c.c. denotes the complex conjugate and for an arbitrary
function f(z, r, t)

f(z, r0±, t) , lim
δ↓0

f(z, r0 ± δ, t)

In the definition of β1, vp is the phase speed of the axially symmetric cold-wave mode supported by the
dielectric-loaded sheath helix at the angular frequency ω0. The signalling conditions (11) imply that,
in the immediate vicinity of z = 0 and r = 1 (i.e., of the helix boundary at the entrance plane), the
solution for the field components corresponds to a forward traveling cold-wave. The convection current
density and the electron charge density, along with the electromagnetic field components, are periodic
functions of time in the steady state. They can hence be expanded in complex exponential Fourier series
in t as

i(z, r, t) = q0I[0,a](r) +
∞∑

m=1

(im(z, r) exp jmt + c.c.) (13a)

ρ(z, r, t) = q0I[0,a](r) +
∞∑

m=1

(ρm(z, r) exp jmt + c.c.) (13b)

where, for any set B, IB denotes its indicator function, defined as

IB(X) =
{

1 if X ∈ B

0 if X /∈ B

and the ‘Fourier coefficients’ im(z, r) and ρm(z, r), m ∈ N , are given by

im(z, r)=(q0/2π)
∫ π

−π

{∑

l

|tt0(z, r, t0l(z, r, t))|−1

}
exp(−jmt)dt (14a)

and

ρm(z, r) = (q0/2π)
∫ π

−π

{∑

l

tz(z, r, t0l(z, r, t))/ |tt0(z, r, t0l(z, r, t))|
}

exp(−jmt)dt (14b)

where the symbol N denotes the set of natural numbers (positive integers).
Changing the variable of integration in (14) from t to t0, with the substitution t = t(z, r, t0) and

making use of change of variable formula for a many-to-one map established in Appendix A, we obtain

im(z, r) = (q0/2π)
∫ π

−π
exp(−jmt(z, r, t0))dt0 (15a)
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and

ρm(z, r) = (q0/2π)
∫ π

−π
tz(z, r, t0) exp(−jmt(z, r, t0))dt0 for 0 ≤ z ≤ d and 0 ≤ r < a (15b)

Thus we have represented the Fourier coefficients of i(z, r, t) and ρ(z, r, t) as nonlinear functionals
of the electron-arrival time t(z, r, t0). These functional representations will play a crucial role in the
large-signal field analysis the TWTA.

3. SOLUTION PROCEDURE

The solution of the nonlinear boundary value problem formulated in the previous section will be obtained
in the following steps. A sequence of Green’s functions (Gm), m ≥ 1, with the mth Green’s function
Gm corresponding to the mth harmonic mωo of the input signal frequency, will be constructed for the
slow-wave circuit. The axial electric field component inside the electron beam will then expressed as
a nonlinear functional of the electron-arrival time through the above set of Green’s functions. The
expressions for all the electromagnetic field components will simultaneously be obtained in terms of the
electron-arrival time.

Substitution of the expression for the axial electric field component inside the beam into the
equation of electron motion puts the latter into the fixed-point format for a nonlinear operator on the
Banach space of bounded continuous functions [16]. The unique solution for the fixed point problem for
the electron arrival time may be obtained by successive approximations as guaranteed by the Banach
fixed point theorem [16].

3.1. Construction of the Green’s Functions

We start by expanding the field components, also in Fourier series, similarly to those in (13):

Ek(z, r, t)=Ek0(z, r)+
∞∑

m=1

Ekm(z, r) exp(jmt)+c.c.

Hk(z, r, t)=Hk0(z, r)+
∞∑

m=1

Hkm(z, r) exp(jmt)+c.c.

for k=1, 2, 3 (16)

Substituting (16) together with (14) into the Maxwell’s Equations (3)–(6), and equating the coefficients
of exp(jmt), for m ≥ 0, on both sides, we obtain

E10z + a2 (E30r + E30/r) = q0I[0,a](r)/a1

E20z = 0
E20r + E20/r = 0

E30z − a2E10r = 0

(17a)

H10z + a2 (H30r + H30/r) = 0
H20z = 0

H20r + H20/r = q0I[0,a](r)/a2

H30z − a2H10r = 0

(17b)

for m = 0

and
jma1κ(r)E1m − a2 (H2mr + H2m/r) = −im(z, r)
jma1H1m + a2 (E2mr + E2m/r) = 0
jma1κ(r)E2m −H3mz + a2H1mr = 0
jma1H2m + E3mz − a2E1mr = 0
jma1κ(r)E3m + H2mz = 0
jma1H3m − E2mz = 0

for m ≥ 1 (18)
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Equation (18) may be considered to be a nonhomogeneous system of partial differential equations for
Ekm and Hkm, k = 1, 2, 3 with −im(z, r) playing the role of the nonhomogeneous term. The equations
corresponding to (5) and (6) do not appear in (18) as Maxwell’s divergence Equations (5) and (6) are not
independent of his curl Equations (3) and (4) for time-varying fields. The boundary conditions (8)–(10)
and the signalling conditions (11), when expressed in terms of the Fourier coefficients, are

E1m(z, 1−)−E1m(z, 1+) = 0
E1m(z, 1−) + E2m(z, 1−) cot ψ = 0
E1m(z, 1+) + E2m(z, 1+) cot ψ = 0
H1m(z, 1−)−H1m(z, 1+) + [H2m(z, 1−)−H2m(z, 1+)] cot ψ = 0

(19a)

Ekm(z, b−) = 0 for k = 1, 2 (19b)
Ekm(z, a−)− Ekm(z, a+) = 0
Hkm(z, a−)−Hkm(z, a+) = 0

for k = 1, 2, 3 (19c)

E1m(0, 1) = (A/2)δ1m

E1mz(0, 1, ) = −jβ1(A/2)δ1m
(19d)

where

δ1m =
{

1 if m = 1
0 otherwise

The solution of (17), satisfying the boundary and signalling conditions (19) for m = 0, is

E10 = H10 = E20 = H30 = 0

H20 = a1E30 = q0[rI[0,a](r) + a2I(a,b)(r)/r]/2a2
(20)

Now the solution of the nonhomogeneous boundary value problem described by (18) and (19) for m ≥ 1
may be obtained as follows. The nonhomogeneous term im(z, r) on the right side of (18) considered as
a function of z, defined on the bounded interval [0, d], is first expanded in a cosine series in the variable
z:

im(z, r) = imn(r) + 2
∞∑

n=−1

imn(r) cos(jnkdz) for 0 ≤ z ≤ d (21)

where

kd = 2π/d

and

imn(r) = (1/d)

d∫

0

im(z, r) cos(nkdz)dz (22)

Since im(−n)(r) = imn(r), the cosine-series expansion (21) may be expressed in complex-exponential
form as

im(z, r) =
∑

n∈66Z
imn(r) exp(−jnkdz) for 0 ≤ z ≤ d (23)

In (23) and in the following, Z stands for the ring of integers. A solution of the boundary value
problem described by (18) and (19), for each m ≥ 1, is sought as a sum of two terms, the first term, the
homogeneous solution, being a superposition of forward propagating and backward propagating cold
waves (i.e., in absence of the electron beam) supported by the dielectric-loaded sheath and the second
term being the ‘particular’ solution of the nonhomogeneous boundary value problem described by the
partial differential Equation (18) and the boundary conditions (19a)–(19c). The particular solution
for the phasor field components may be assumed to have the same form as the complex-exponential
Fourier-series representation (23) of the nonhomogeneous term. The arbitrary constants appearing in
the homogeneous solution are so chosen that the sum of the homogeneous and the particular solutions
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satisfies the signalling conditions (19d). Thus the solution for the phasor field components, for m ≥ 1,
may be represented as

Ekm(z, r) = E
(h)
km(z, r) + E

(p)
km(z, r)

= E+
km(r) exp(−jβmz) + E−

km(r) exp(jβmz) +
∑

n∈Z

Ekmn(r) exp(−jnkdz) (24a)

Hkm(z, r) = H
(h)
km(z, r) + H

(p)
km(z, r)

= H+
km(r) exp(−jβmz) + H−

km(r) exp(jβmz) +
∑

n∈Z

Hkmn(r) exp(−jnkdz) (24b)

for 0 < z < d, 0 ≤ r < b and k = 1, 2, 3

where

E±
1m(r) = A±mWm(r) (25a)

H±
1m(r) =

(−ja2A
±
m tanψ/ma1

)
Vm(r) (25b)

E±
2m(r) =

(−jma1/a2τ
2
m(r)

)
H±

1mr
(r) (25c)

H±
3m(r) = (∓βm/ma1)E±

2m(r) (25d)

E±
3m(r) =

(±jβm/a2τ
2
m(r)

)
E±

1mr
(r) (25e)

H±
2m(r) = (±ma1κ(r)/βm)E±

3m(r) (25f)

In (25a) and (25b), A±m are arbitrary constants of integration

Wm(r)∆
{

[I0(τmr)/I0(τm)] for 0≤r<1
[I0(τ̃mr)−σmK0(τ̃mr)]/[I0(τ̃m)−σmK0(τ̃m)] for 1<r<b

(26a)

Vm(r)∆
{

[τmI0(τmr)/I ′0(τm)] for 0≤r<1
τ̃m[I0(τ̃mr)−σ′mK0(τ̃mr)]/[I ′0(τ̃m)−σ′mK ′

0(τ̃m)] for 1<r<b
(26b)

where
τ2
m =

[
β2

m −m2a2
1

]
/a2

2

τ̃2
m =

[
β2

m −m2a2
1εeff

]
/a2

2

(27a)

and the function τm(r) appearing in (25c) and (25e) is defined in terms of τm and τ̃m by

τ2
m(r) = τ2

mI[0,1](r) + τ̃2
mI(1,b)(r) =

[
β2

m − κ(r)m2a2
1

]
/a2

2 (27b)

In (27b)

σm∆I0(τ̃mb)/K0(τ̃mb), σ′m∆I ′0(τ̃mb)/K ′
0(τ̃mb) (28)

and the abbreviation τ̃mb = τ̃mb has been used in the definitions (28). The phase-shift constants βm(> 0)
of the cold wave supported by the dielectric-loaded sheath helix at the radian frequency mω0 satisfies
the dispersion equation

τmI0(τm)/I1(τm) + τ̃m∆m10(1)/∆m11(1)
= (ma1 cotψ/a2)2 (I1(τm)/τmI0(τm) + εeff ∆m01(1)/τ̃m∆m00(1)) (29)

where
∆m11(r) = I1(τ̃mb)K1(τ̃mr)−K1(τ̃mb)I1(τ̃mr)
∆m10(r) = I1(τ̃mb)K0(τ̃mr) + K1(τ̃mb)I0(τ̃mr)
∆m01(r) = I0(τ̃mb)K1(τ̃mr) + K0(τ̃mb)I1(τ̃mr)
∆m00(r) = I0(τ̃mb)K0(τ̃mr)−K0(τ̃mb)I0(τ̃mr)

(30)

In (26), (28), (29), (30) and henceforth, Iv and Kv, v = 0, 1, 2, . . . denote vth order modified Bessel
function of the first and second kind respectively.
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The expressions for Ekmn(r) and Hkmn(r), k = 1, 2, 3 and n ∈ Z, appearing as Fourier coefficients
in the Fourier-series representation of the particular solution to the nonhomogeneous boundary value
problem described by (18) and (19a)–(19c) are

E1mn(r) =





(j/ma1d)

d∫

0

a∫

0

Gmn(r, y))im(x, y)(cosnkdx)ydydx if τ2
mn(r) 6=0

0 if τ2
mn =0 or τ̃2

mn =0
for 0 ≤ r < b (31a)

H1mn(r) =





(
a2 tanψ/m2a2

1dΛmnC0(pmn)
) d∫

0

a∫
0

Vmn(r)C0(pmny)im(x, y)(cosnkdx)ydydx

if τ2
mn(r) 6= 0

0 if τ2
mn = 0 or τ̃2

mn = 0
for 0 ≤ r < b (31b)

E2mn(r) =
(−jma1/a2τ

2
mn(r)

)
H1mnr(r) for 0 ≤ r < b (31c)

H2mn(r) =





(
jma1κ(r)/a2τ

2
mn(r)

)
E1mnr(r) if τ2

mn(r) 6= 0

(1/a2dr)

d∫

0

r∧a∫

0

im(x, y)(cos nkdx )ydydx if τ2
mn = 0

0 if τ̃2
mn = 0

for 0 ≤ r < b (31d)
H3mn(r) = (−nkd/ma1) E2mn(r) for 0 ≤ r < b (31e)

E3mn(r) =

{
(nkd/ma1κ(r))H2mn(r) if τ2

mn 6=0

(nkd/ma1) H2mn(r) if τ2
mn =0

for 0≤r<b (31f)

where the partial Green’s function Gmn(r, y), defined on [0, b)× [0, a], is given by

Gmn(r, y) =





τ2
mn{D0(pmnr)C0(pmny)I[0,r∧a](y) + C0(pmnr)D0(pmny)I[r∧a,a](y)

−D0(pmn)C0(pmnr)C0(pmny)/C0(pmn)}+ C0(pmnr)C0(pmny)/ΛmnC2
0 (pmn)
for 0 ≤ r ≤ 1

(C0(p̃mnr)− σmnD0(p̃mnr))/ΛmnC0(pmn)(C0(p̃mn)− σmnD0(p̃mn)) for 1 < r < b

(32)

and

Vmn(r) =
{

pmnC0(pmnr)/C1(pmn) for 0 ≤ r < 1
p̃mn(C0(p̃mnr)− σ′mnD0(p̃mnr))/((C1(p̃mn) + σ′mnD1(p̃mn)) for 1 < r < b

(33)

In (31), (32) and in the following

Λmn =
[
(a2 tanψ/ma1)2

{
pmnC0(pmn)

C1(pmn)
+

p̃mn∆mn10

∆mn11

}
− C1(pmn)

pmnC0(pmn)
− εeff ∆mn01

∆mn00

]
(34)

τ2
mn =

[
n2k2

d −m2a2
1

]
/a2

2

τ̃2
mn =

[
n2k2

d − εeff m2a2
1

]
/a2

2

and

τ2
mn(r) ,

[
nk2

d −m2a2
1κ(r)

]
/a2

2 = τ2
mn for 0 ≤ r < 1

τ̃2
mn for 1 < r < b

pmn , |τmn| , p̃mn , |τ̃mn| , r ∧ a = min(r, a)
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and where
σmn = C0(p̃mnb)/D0(p̃mnb),
σ′mn = C ′

0(p̃mnb)/D′
0(p̃mnb) = −C1(p̃mnb)/D1(p̃mnb)

(35a)

∆mn11 = C1(p̃mnb)D1(p̃mn)−D1(p̃mnb)C1(p̃mn)
∆mn10 = C1(p̃mnb)D0(p̃mn) + D1(p̃mnb)C0(p̃mn)
∆mn01 = C0(p̃mnb)D1(p̃mn) + D0(p̃mnb)C1(p̃mn)
∆mn00 = C0(p̃mnb)D0(p̃mn)−D0(p̃mnb)C0(p̃mn)

(35b)

In (31b), (32)–(34) and (35) and in the following, we have denoted the Bessel functions and the modified
Bessel functions (of integer order) appearing for the positive and negative values of τ2

mn and τ̃2
mn using

a common symbol as follows:

Cv(pmnr) = Jv(pmnr) if τ2
mn < 0

Iv(pmnr) if τ2
mn > 0

Dv(pmnr) = (−1)v+1(π/2)Yv(pmnr) if τ2
mn < 0

Kv(pmnr) if τ2
mn > 0

for v = 0, 1, 2, . . . and for 0 ≤ r < 1 (36)

where Jv and Yv, v = 0, 1, 2, . . .. denote vth order (ordinary) Bessel functions of the first and second
kind respectively.

For 1 < r < b, the corresponding Cv(p̃mnr) and Dv(p̃mnr) are also defined by the right side of (36)
except for the replacement of pmn by p̃mn and τ2

mn by τ̃2
mn. In arriving at the formulas (31a) and (31b)

for E1mn(r) and H1mn(r), we have made use of (22). Finally, the arbitrary constants A±m, m ≥ 1,
appearing in the homogeneous part of the solution (25) are chosen so that the sum of homogeneous and
nonhomogeneous parts of the solution satisfies the signalling conditions (19d). Thus

A+
m = Aδ1m/2−

∑

n∈6Z
E1mn(1)/2

A−m = −
∑

n∈66Z
E1mn(1)/2

(37)

Writing down the particular solution (31) for the Fourier coefficients of the field components and
the formula for Gmn(r, y), we have tacitly assumed that Λmn 6= 0 for all m ∈ N and n ∈ Z. Since Λmn

cannot vanish for 0 ≤ |n| < ma1/kd, we require specifically that τmn for |n| > ma1/kd does not coincide
with τm for any m ≥ 1 or equivalently that βm 6= |n|kd for any m ∈ N and n ∈ Z; the condition for
non-resonance. The modifications required in the form of the solution and in the expressions for the
Green’s functions, when there is resonance, are relegated to Appendix B, so as not to interrupt the
main stream of the development at this stage.

Incorporating the values of the arbitrary constants A±m given by (37) into (25), the homogeneous
part of the solution for the field components may be represented in the non-resonant case in the form

E
(h)
1m(z, r) = δ1m(A/2)W1(r) exp(−jβ1z)− (j/ma1d)Wm(r) cos βmz

d∫

0

a∫

0

Um(x, y)im(x, y)ydydx (38a)

H
(h)
1m(z, r) = (−ja2 tanψ/ma1)δ1m(A/2)V1(r) exp(−jβ1z)

− (
a2 tanψ/m2a2

1d
)
Vm(r) cosβmz

d∫

0

a∫

0

Um(x, y)im(x, y)ydydx (38b)

E
(h)
2m(z, r) =

(−jma1/a2τ
2
m(r)

)
H

(h)
1mr

(z, r) (38c)

H
(h)
2m(z, r) =

(
jma1κ(r)/a2τ

2
m(r)

)
E

(h)
1mr

(z, r) (38d)
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E
(h)
3m(z, r)=(j/ma2

1κ(r))H(h)
2mz

(z, r) (38e)

H
(h)
3m(z, r)=(−j/ma1)E

(h)
2mz

(z, r) for 0 ≤ r < b, 0 ≤ z ≤ d (38f)

where
Um(x, y) ,

∑

n∈ 6Z
(cos nkdx C0(pmny)/ΛmnC0(pmn)) (39)

The complete solution for the field components is then obtained (in the non-resonant case) by combining
the homogeneous part given by (38) with the Fourier-series representation of the nonhomogeneous part
according to (24) after substituting for the ‘Fourier coefficients’ from (31). In order to derive the
nonlinear integral equation satisfied the electron-arrival time t(z, r, t0), it is first necessary to express the
axial electric field component inside the electron beam as an explicit nonlinear functional of t(z, r, t0)
through a Green’s function sequence Gm(z, r; x, y), m ≥ 1, for the dielectric-loaded sheath helix.
Substituting for E

(h)
1m(z, r) and E1mn(r), n ∈ Z, from (38a) and (31a) into the representation

E1m(z, r) = E
(h)
1m(z, r) +

∑

n∈6Z
E1mn(r) exp(−jnkdz) (40)

for the axial phasor electric field component and making use of the formula (15a) for im(z, r), the axial
(physical) electric field component

E1(z, r, t) =
∞∑

m=1

E1m(z, r) exp(−jmt) + c.c

may be represented as

E1(z, r, t) = δ1mW1(r) ((A/2) exp(j(t− β1z)) + c.c) + (jq0/2πa1d)
∞∑

m=1

(1/m) exp(jmt)
∫ d

0
dx

∫ a

0
Gm(z, r; x, y)ydy

∫ π

−π
exp{−jmt(x, y, τ)}dτ + c.c. (41)

where the mth Green’s function

Gm(z, r; x, y) =
∑

n∈6Z
[Gmn(r, y) exp(−jnkdz)−Wm(r)Gmn(1, y) cos βmz] cos nkdx (42)

and from (32)
Gmn(1, y) = C0(pmny)/ΛmnC0(pmn)

This concludes the construction of the Green’s function sequence Gm(z, r; x, y), m ≥ 1, for the slow-
wave structure.

3.2. Reduction to the Fixed-point Problem and the Method of Successive
Approximations

Formal integration of (7) with the help of the entrance conditions (12) gives

t(z, r, t0) = t0 +
∫ z

0
dx/

{
1− 2ε

∫ x

0
E1(s, r, t(s, r, t0))ds

}1/2

for 0 ≤ z ≤ d and 0 ≤ r ≤ a (43)

where E1(z, r, t) was defined in (16) and is represented as a nonlinear functional of the electron-arrival
time t(z, r, t0) in (41). In terms of the electron transit-time θ(z, r, t0)(, t(z, r, t0)− t0), (43) reads

θ(z, r, t0) =
∫ z

0
dx/

{
1− 2ε

∫ x

0
F (s, r, t0, θ(s, r, t0))ds

}1/2

(44)

where

F (s, r, t0, θ(s, r, t0))∆ E1(z, r, t0 + θ(z, r, t0))
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Consider now the Banach space C(D) of bounded continuous (real-valued) functions θ(z, r, t0) defined
on the region

D , {(z, r, t0) : 0 ≤ z ≤ d, 0 ≤ r ≤ a, −π ≤ t0 ≤ π}
with norm

‖θ‖ , max
(z,r,t0)∈D

|θ(z, r, t0)|

Let T be the operator mapping C(D) into C(D), defined by the right side of (44). Equation (44) then
becomes a fixed-point statement for the operator T . Let θ0 ∈ C(D) be arbitrary (it is expedient to take
θ0 = z in numerical evaluation of the fixed point). Starting with θ0 as the initial approximation, we
recursively define a sequence of successive approximations by

θn = T (θn−1) for n ≥ 1 (45)

It is straightforward to check that each θn(n ≥ 1) is well defined. That the sequence of successive
approximations (θn)n≥0 converges to the unique fixed point of T in the Banach space C(D) is guaranteed
by the classical Banach fixed point theorem [16]. That the operator T is a contraction for sufficiently
small ε is demonstrated in [17]. Once the functional form of t(z, r, t0) has been identified, the solution
for all the field components readily follow.

4. CONCLUDING COMMENTS

We have thus demonstrated, as for the case of the open sheath-helix model for the slow-wave
structure [11–13], the feasibility of a rigorous large-signal field analysis of a linear beam travelling
wave tube amplifier for the more practically relevant model of dielectric-loaded sheath helix. Numerical
computation of TWTA parameters such as the power gain, current gain, conversion efficiency, optimum
interaction length etc. on the basis of the large signal field theory developed in this paper will be
presented in the second part of this contribution.

It is, however, far from clear as to what extent the proposed set of signalling conditions simulates
the input conditions in a traveling wave tube. In practice the two ends of a tape helix (of finite
length, finite ribbon thickness and finite material conductivity) are transformed to the shape of circular
cylindrical conductors which are then extended outside the tube to form the central conductors of coaxial
transmission lines through which r.f. power is coupled in and out of the tube. Unfortunately the sheath-
helix model of the slow-wave structure is incompatible with this coupling arrangement. For this reason
it is impossible to rigorously account for the perturbation of the field configuration due to the input
and the output connections within the framework of the sheath-helix model. In this context, it will be
of interest to model the slow-wave structure to be a finite-length tape helix which is indeed compatible
with input and output coupling arrangements employing shielded strip lines to carry microwave power
into and out of the TWTA.

Work on a large-signal field theory for a linear beam travelling wave tube amplifier (TWTA) making
use of the dielectric-loaded tape-helix model analysed in [20] for the slow-wave structure is in progress
and will be reported in due course.

APPENDIX A.

In this appendix, we give a proof of the change-of-variables formula used to arrive expressions (15) for
the Fourier coefficients im(z, r) and ρm(z, r), m ∈ N .

Let X be an absolutely continuous random variable with density pX . Let another random variable
Y be defined by Y = g(X) where g is a differentiable but not necessarily one-to-one function. The
density of Y is then given in terms of that X by [18]

pY (y) =
∑

l

pX(xl(y))/|dg(xl(y))/dx| (A1)
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where the summation is over all the roots xl(y) (at most countable) of the equation g(x) = y for x.
Now for any Borel function f [19], the expectation of f(X), by definition, is

Ef(Y ) ,
∫

R

f(y)pY (y)dy (A2)

In terms of the density pX of the random variable X, (A2) may be expressed as [19]

Ef(Y ) = Efog(X) =
∫

R

f(g(x))pX(x)dx (A3)

On substituting for pX(x) from (A1) and equating the two expressions for Ef(Y ), we have
∫

R

f(y)

(∑

l

pX(xl(y))/|dg(xl(y))/dx|
)

dy=
∫

R

f(g(x))pX(x)dx (A4)

Setting x = t0, y = t, g(·) = t(z, r, ·), f(·) = (q0/2π) exp(−jm ·) and choosing successively

pX(·) = I[−π,π](·)/2π and pX(·) = tz(z, r, ·)I[−π,π](·)/
π∫
−π

tz(z, r, τ)dτ in (A4), we obtain the change-

of-variables formulas

(q0/2π)
∫

g([−π,π])

(∑

l

|tt0(z, r, t0l(z, r, t))|−1

)
exp(−jmt)dt = (q0/2π)

π∫

−π

exp(−jmt(z, r, t0))dt0 (A5a)

and

(q0/2π)
∫

g([−π,π])

(∑

l

tz(z, r, t0l(z, r, t))/|tt0(z, r, t0l(z, r, t))|
)
exp(−jmt)dt

= (q0/2π)

π∫

−π

tz(z, r, t0) exp(−jmt(z, r, t0))dt0 (A5b)

Since the image g[−π, π] of the interval [−π,π] under the map g is again an interval of length 2π and
the integrands on the left sides of (A5a) and (A5b) are 2π-periodic in the variable t, we recover the
expressions (15a) and (15b) for the Fourier coefficients im(z, r) and ρm(z, r).

APPENDIX B.

In this appendix, we give the modifications required in the form of the particular solution Ekm(z, r)
and Hkm(z, r), k = 1, 2, 3, for the phasor field components, when there exist integers m and n (with
m ≥ 1 and |n| > ma1/kd) for which

τmn = τm

or equivalently
nkd = ±βm (B1)

When the condition (B1) for resonance is satisfied, the Λmn appearing in the particular solution (31)
for Ekmn(r) and Hkmn(r), k = 1, 2, 3, (implicitly through the expression (32) for the partial Green’s
function Gmn(r, y) in the case of E1mn(r)) becomes zero and the solution (31) loses its validity. It is to
be noted that resonance is possible if and only if the set

Q , {m ∈ N : ∃ n ∈ N with nkd = βm}
is nonempty. Physically, the condition (B1) means that the interaction length of the TWTA is an integral
multiple of a cold wavelength at the mth harmonic of the input signal frequency. In this resonant case,
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the particular solution for the nonhomogeneous boundary value problem described by (18) and (19a)–
(19c) has to be assumed in the alternate form

Ekm(z, r) =
∑

n∈6Z

(
εmnzĒkmn(r) + Ekmn(r)

)
exp(−jnkdz)

Hkm(z, r) =
∑

n∈6Z

(
εmnzH̄kmn(r) + Hkmn(r)

)
exp(−jnkdz)

for k = 1, 2, 3 (B2)

where

εmn =
{

1 whenever nkd = ±βm

0 otherwise

We will now obtain the expressions for Ēkmn(r), H̄kmn(r), Ekmn(r) and Hkmn(r) assuming that the
resonance condition (B1) is satisfied by the pair of integers m and n. Substituting (B2) into (18)
and (19a)–(19c), equating firstly the coefficients of exp(−jnkdz) and then the coefficients of zp for
p = 1 and 0 on both sides, we obtain ordinary differential equations and corresponding boundary
conditions to be satisfied the functions Ēkmn(r), H̄kmn(r), Ekmn(r) and Hkmn(r). The solution of the
homogeneous system of differential equations for Ēkmn(r) and H̄kmn(r) satisfying the corresponding
boundary conditions, is given by (25) except that the arbitrary constants A±m appearing therein are
denoted by Āmn(n = ±βm/kd) in the present context. The solution of the nonhomogeneous system
of ordinary differential equations for Ekmn(r) and Hkmn(r) for k = 1, 2, 3, that is continuous across
the beam boundary at r = a and consistent with the tangential electric field boundary conditions
Ekmn(b) = 0 for k = 1, 2, at the inner surface of the outer cylindrical conductor may be expressed as

E1mn(r) =





I0(τmr)Amn−(jτ2
m/ma1)

r∧a∫

0

G̃m(r, y)imn(y)ydy

+ (2jnkd/a2
2I0(τm))Āmn

r∫

0

G̃m(r, y)I0(τmy)ydy for 0≤r<1

∆m00(r)Cmn/K0(τ̃mb)+
(
2jnkdεeff /a2

2∆m00(1)
)

Āmn

b∫

r

G̃m(r, y)∆m00(y)ydy for 1<r<b

(B3a)

H1mn(r) =





I0(τmr)Bmn−(2nkdma1τm tanψ/a2I1(τm))

Āmn

r∫

0

G̃m(r, y)I0(τmy)ydy for 0≤r<1

∆m10(r)Dmn/K1(τ̃mb) + (2nkdma1τm tanψ/a2∆m11(1))

Āmn

b∫

r

G̃m(r, y)∆m10(y)ydy 1 < r < b

(B3b)

E2mn(r) =
(−jma1/a2τ

2
m(r)

)
H1mnr(r) (B3c)

H2mn(r) =
(
jma1κ(r)/a2τ

2
m(r)

)
E1mnr(r) (B3d)

E3mn(r) = (nkd/ma1κ(r))H2mn(r)− em1(r)Āmn/a2τm(r) (B3e)
H3mn(r) = (−nkd/ma1)E2mn(r)− jhm1(r)Āmn tanψ/ma1 (B3f)
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where
G̃m(r, y) , I0(τmr)K0(τmy)−K0(τmr)I0(τmr) for 0 ≤ y ≤ r ≤ 1

K0(τ̃mr)I0(τ̃my)− I0(τ̃mr)K0(τ̃mr) for 1 < r ≤ y ≤ b

emi(r) = Ii(τmr)/I0(τm) for 0 ≤ r < 1
∆m0i(τm)/∆m00(1) for 1 < r < b, i = 0, 1

hmi(r) = Ii(τmr)/I1(τm) for 0 ≤ r < 1
∆m1i(τm)/∆m11(1) for 1 < r < b, i = 0, 1

The arbitrary constants Bmn, Cmn and Dmn can be determined in terms of Amn and Āmn using the
first three sheath-helix boundary conditions:

Cmn = I0(τm)K0(τ̃mb)Amn/∆m00(1)− (
jτ2

mK0(τ̃mb)/ma1∆m00(1)
) a∫

0

G̃m(1, y)imn(y)ydy

+
(
jnkdK0(τ̃mb)/a2

2∆m00(1)
)
[I1(τm)/τmI0(τm)

+ εeff ∆m01(1)(1− b∆m10(1)/∆m01(1)) /τ̃m∆m00(1)]Āmn (B4a)

Bmn = (−ja2τmI0(τm) tanψ/ma1I1(τm))Amn −
(
τ3
ma2 tanψ/(ma1)2I1(τm)

) a∫

0

G̃m(1, y)imn(y)ydy

+nkd tanψ
(
1 + m2a2

1I
2
0 (τm)/I2

1 (τm)
)
Āmn/ma1a2I0(τm) (B4b)

Dmn = ja2τ̃mK1(τ̃mb)I0(τm)Amn tanψ/ma1∆m11(1)

+
(
a2τ

2
mτ̃mK1(τ̃mb) tan ψ/m2a2

1∆m11(1)
) a∫

0

G̃m(1, y)imn(y)ydy

− (nkdK1(τ̃mb) tan ψ/ma1a2∆m11(1)) [τ̃mI1(τm)/τmI0(τm)
−m2a2

1∆m10(1)(1− b∆m01(1)/∆m10(1)) /∆m11(1)
]
Āmn (B4c)

Finally substituting for H1mn(1±) and H2mn(1±) from (B3b) and (B3d) into the fourth sheath-helix
boundary condition and making use of the relations (B4), the fourth boundary condition may be
manipulated into the form

(−jma1I0(τm)Λmn cotψ/a2) Amn + (ma1nkd cotψ/a2)
[(

I2
1 (τm)/I2

0 (τm)− 1
)
/a2

2τ
2
m

+
(
I2
0 (τm)/I2

1 (τm)−1
)
tan2 ψ∇+

(
1+τ̃−2

m ∆−2
m11(1)−∆2

m10(1)/∆2
m11(1)

)
tan2 ψ+εeff

(
1+τ̃−2

m ∆−2
m00(1)

−∆2
m01(1)/∆2

m00(1)
)
/a2

2τ̃
2
m

]
Āmn + (cotψ/a2I0(τm))

a∫

0

I0(τmy)imn(y)ydy = 0 (B5)

The sheath helix dispersion Equation (29) has been used repeatedly in order to arrive at the form (B5)
of the fourth sheath-helix boundary condition. Since the resonance condition (B1) has been assumed
to be met by the integer pair (m,n), Λmn = 0. Hence a solution for Āmn exists only if the solvability
condition

Āmn = (sgn(n)/ma1βm∆m)

a∫

0

(I0(τmy)/I0(τm))imn(y)ydy (B6)

is satisfied where

∆m ,
(
1− I2

1 (τm)/I2
0 (τm)

)
/a2

2τ
2
m +

(
1− I2

0 (τm)/I2
1 (τm)

)
tan2 ψ−(1 + τ̃−2

m ∆−2
m11(1)

−∆2
m10(1)/∆2

m11(1)) tan2 ψ − ε2
eff

(
1 + τ̃2

m∆−2
m00(1)−∆2

m01(1)/∆2
m00(1)

)
/a2

2τ̃
2
m

and sgn(n) denotes the sign of n. Once the arbitrary constants Āmn(n = ±βm/kd) appearing in the
solution (B3) for Ekmn(r) and Hkmn(r), k = 1, 2, 3 have been uniquely determined according to (B6),
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we may set Amn ≡ 0 (n = ±βm/kd) without any loss in generality as nonzero values of Amn may be
absorbed in the arbitrary constants A±m appearing in the homogeneous part of the solution.

When there is resonance, that is, when the set Q is nonempty, the expression (41) for the axial
electric field component gets modified to

E1(z, r, t) = δ1mW1(r) ((A/2) exp(j(t− β1z)) + c.c.) + (jq0/2πa1d)
∞∑

m=1
m/∈Q

(1/m) exp(jmt)
∫ d

0
dx

∫ a

0
Gm(z, r; x, y)ydy

∫ π

−π
exp{−jmt(x, y, τ)}dτ + c.c. + (jq0/πa1d)

∑

m ∈ Q

(1/m) exp(jmt)
∫ d

0
dx

∫ a

0
Ḡm(z, r; x, y)ydy

∫ π

−π
exp{−jt(x, y, τ)}dτ + c.c. (B7)

where

Ḡm(z, r; x, y)=
[(

Ḡmn(r, y)−Wm(r)Ḡmn(1, y)
)
cosβmz

−(zWm(r)I0(τmy) sinβmz/βm∆mI0(τm))]cosβmx (B8)

and where

Ḡm(r, y) =





rI1(τmr)I1(τmy)/τm∆mI2
0 (τm)−τ2

mG̃m(r, y)1[0,r∧a](y) for 0 ≤ r < 1 and 0 ≤ y ≤ a[
I1(τm)∆m00(r)/a2

2∆mτmI2
0 (τm)∆m00(1) +

(
εeff /τ̃m∆2

m00(1)I0(τm)
)

{∆m01(1)∆m00(r)−r∆m00(1)∆m01(r) + bK0(τ̃m)I0(τ̃mr)− bI0(τ̃m)K0(τ̃mr)}]
I0(τmy)− τ2

m(∆m00(r)∆m00(1))G̃m(1, y) for 1 < r < b and 0 ≤ y ≤ a

(B9)

In numerical computations, in order to avoid the problem of small divisors, it is expedient to take
εmn = 1 in (B2), even when |n|kd is very close to, but not coincident with βm.
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