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Two-Dimensional Microwave Tomographic Algorithm for Radar
Imaging through Multilayered Media
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Abstract—The imaging of targets embedded in a planar layered background media has been an
important topic in subsurface and urban sensing. In this paper a fast and efficient tomographic algorithm
for the imaging of targets embedded in a multilayered media is presented. The imaging algorithm
is based on the first-order Born approximation and exploits the spectral multilayered media Green’s
function. The exploding reflection model is employed and then the Green’s function is expanded in the
spectral form to facilitate the easy implementation of the imaging algorithm with fast Fourier transform
(FFT). The wave propagation effect due to the presence of the layered subsurface media is automatically
taken into account in the imaging formulation through the multilayer media Green’s function. The
linearization of the inversion scheme and employment of FFT make the imaging algorithm suitable in
several applications concerning the diagnostics of large probed domain and allow real-time processing.
Representative examples are presented to show the effectiveness and efficiency of the proposed algorithm
for radar imaging through multilayered media.

1. INTRODUCTION

Ground penetrating radar (GPR) has been broadly used in many civilian and military applications
in order to nondestructively investigate the subsurface property, i.e., in geological and archeological
surveys, for detecting buried objects and locating subsurface cavities, due to its easy usage, quick
operation, and low cost [1–8]. It is less destructive and can provide more information than other
methods of exploration, i.e., borehole and drilling radar systems. These advantages have sparked a
growing interest in GPR imaging algorithms for subsurface nondestructive testing.

During the past decade, several effective subsurface imaging algorithms have been developed
to reconstruct targets buried under ground. In [9–11] the reconstruction of the target permittivity
distribution is cast as the minimization of a non-quadratic cost function and solved with global
or deterministic optimization methods. To improve the computation efficiency, the distorted Born
iterative method (DBIM) and Born iterative method (BIM) dealing with intermediate scatterers
are developed in [12, 13]. BIM and DBIM start with the first-order Born inversion result and are
solved iteratively by incrementally correcting the estimated contrast function in every iteration step.
Subsurface imaging algorithms should be computationally efficient, so that the location of the buried
objects can be determined in a few seconds for on-site measurement. For a typical GPR survey,
this requirement prohibits the use of iterative, nonlinear inversion schemes. In order to reduce the
requirement of computation resources and make the imaging algorithm suitable for on-site applications,
linear simplifications or approximations of the scattering process are usually employed [2, 14]. Under the
ideal point target model, subsurface beamforming algorithms using ray tracing technique are proposed
in [14–17]. In these algorithms ray tracing technique is used to calculate the wave propagation time
from the radar in the air to the target buried under ground. Due to the highly simplified assumptions
of wave propagation phenomenon, the only part of the information contained in the GPR signal that is
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exploited in the imaging algorithm is the propagation time. Moreover, a nonlinear equation has to be
solved in order to find the wave propagation path using ray tracing technique which is time consuming
and difficult to be extended to complex subsurface environment involving layered soils. As an efficient
compromise between the imaging accuracy and efficiency, tomographic imaging algorithms based on
the first order Born or Rytov approximation are proposed in [18–20]. Tomographic imaging algorithms
provide efficient quantitative reconstruction of cross-sections of inhomogeneous objects, such as their
location, shape and electrical properties, etc. [18–25].

Most of the aforementioned subsurface imaging algorithms mainly deal with a two layered
homogeneous media, in which the upper region is the air and the lower region is the homogeneous soil.
During the past decade, imaging of inhomogeneous objects embedded in a planar layered background
media has attracted growing interest. A layered media represents a more realistic model than a
homogeneous single layer half space background. It is of practical importance and interest to extend
the GPR imaging to buried targets under multilayered subsurface media. Due to the limitation of the
computation complexity of ray tracing technique, it is very difficult to generalize the ray tracing based
backprojection algorithm to multilayered media. A linear inverse scattering algorithm for the imaging
of 2D objects buried in a two-layered media was proposed in [25]. A piecewise and Wiener filter-
based SAR techniques are presented for the imaging of targets in layered structures in [23]. Nonlinear
iterative imaging algorithm for the reconstruction of concealed targets buried in a multilayered media
environment was proposed in [29]. The computation time increases significantly with the increasing
of number of pixels in the image, making the iterative algorithms very difficult to be used for on-site
applications. In this paper a fast and efficient tomographic algorithm for the imaging of inhomogeneous
objects embedded in a planar multilayered subsurface media is presented. The imaging algorithm is
based on the first-order Born approximation and employing the multilayered media Green’s function.
The exploding reflection model is employed and then the Green’s function is expanded in the spectral
domain to facilitate the implementation of the imaging algorithm with fast Fourier transform (FFT).
The linearization of the inversion scheme and the employment of FFT in the imaging formula make it
suitable for several applications concerning the diagnostics of large probed region and allow real-time
processing.

The organization of the remainder of the paper is as follows. In Section 2, the formulation of the
real-time subsurface tomography algorithm for the imaging of targets buried under a planar multilayered
media is presented. Numerical results are presented in Section 3 to show the effectiveness of the proposed
algorithm. Finally, some conclusions are drawn in Section 4.

2. FORMULATION OF THE PROBLEM

Figure 1 shows a typical scenario of ground penetrating synthetic aperture radar imaging through
multilayered media. We consider a multilayer plane structure formed by N lossy homogeneous layers.
The stratified layers of the background media are characterized by material electrical parameters ε1, µ1;

Figure 1. Geometrical configuration of GPR imaging through multilayered media.
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ε2, µ2; . . .; εi, µi; . . .; εN , µN for the 1, 2, . . . , i, . . . , Nth layer. Permeabilities µ1, µ2, . . ., µN are equal
to the magnetic constant of a vacuum µ0. Permittivities ε1, ε2, . . ., εN may take complex values. In
this paper we consider the two-dimensional (2-D) problem in which the layered media and target are
assumed to be infinitely long and invariant along the y-axis. The monostatic radar system transmits
electromagnetic wave along a scan line above the ground from −xs to xs and collects echoes. The scan
line, denoted as Dobs is parallel to the x-axis at a height z = zR > 0. The working frequency of the
radar system ranges from fmin to fmax with frequency step ∆f . The targets to be imaged are located
in an inaccessible investigated region denoted as Dinv in Region N . The investigated domain is chosen
to be a rectangular region ranging from –xinv to xinv and zmin to zmax in layer N . The relative complex
permittivity εr(ρ) inside Dinv can be defined as

εr (ρ) =
{

εri (ρ) , ρ ∈ Dinv

εN , otherwise (1)

where ρ = x̂x + ẑz is a spatial vector.
Assume that the electric current is a 2-D point source, which is equivalent to a 3-D line source

directed in the y direction. In this case only the y component of the electric field is nonzero and hence
the subscript y will be omitted in the following formulations. Then, the scattered electric field from
2-D buried targets at the receiver can be written as

Es (ρR, k) = k2

∫

Dinv

G (ρR, ρ, k) Et (ρ,ρS , k) χ (ρ)dρ (2)

where k is the wavenumber in the free space, ρR = x̂xR+ẑzR the position of the receiver, ρS = x̂xS+ẑzS

the position of the transmitter, G the Green’s function for the background layered media, Et(ρ, ρS , k)
the total electrical field inside the target, χ(ρ) the contrast function of the object χ(ρ) = εri(ρ)− εN ,
εri the relative permittivity of the object, and εN the relative permittivity of the N -th layer. The total
field inside the target also depends on the contrast of the target. Thus (2) is a nonlinear equation that is
very time consuming to solve. In order to linearize the equation and accelerate the imaging algorithm,
the first-order Born approximation is employed, where the total field inside the target is approximated
by the incident electric field

Et (ρ, ρS , k) ∼= Einc (ρ,ρS , k) = ikη0G (ρ, ρS , k) (3)

Then the received scattered field can be derived as

Es (ρR, k) = iη0k
3

∫

Dinv

G (ρR, ρ, k) G (ρ, ρS , k) χ (ρ) dρ (4)

where η0 is the wave impedance in the freespace. For the monostatic measurement configuration in
which ρR = ρS , the received scattered field can be written as

Es (ρR, k) = iη0k
3

∫

Dinv

G2 (ρR, ρ, k)χ (ρ) dρ (5)

In the above equation the reciprocity relationship has been used G(ρR,ρ, k) = G(ρ,ρR, k).
The Green’s function for the multilayered media can be expressed in the spectral form as [30]:

G (ρR, ρ, k) =
i

4π

∫ ∞

−∞
dkx

T (kx)
k1z

exp (ikx (xR − x) + ik1zzR − ikNzz) (6)

where T is the transmission coefficient for the layered media.
For the multilayered homogeneous media shown in Figure 1, ki is the wavenumber in the i-th layer.

By applying the boundary condition at the interface of each layer, the generalized reflection coefficient
can be derived as [30]:

R̃i,i+1 =
Ri,i+1 + R̃i+1,i+2 exp (j2ki+1,z (di+1 − di))
1 + Ri,i+1R̃i+1,i+2 exp (j2ki+1,z (di+1 − di))

(7)

where R̃i,i+1 is the generalized/total reflection coefficient from the i + 1th layer to the ith layer, kiz the
normal components of the propagation constant in the i-th layer, −di+1 the coordinate of the interface
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between the i + 1th and ith layers in z direction, and Ri,i+1 the reflection coefficient from the i + 1th
layer to the ith layer, i.e.,

Rij =
kiz − kjz

kiz + kjz
, Tij =

2kiz

kiz + kjz
(8)

The generalized transmission coefficient from the first layer to the N -th layer can also be derived
from the continuous boundary condition at the interface of each layer:

T1N = exp (−jkNzdN−1 + jk1zd1)
N−1∏

p=1

exp (jkpz (dp − dp−1))Sp,p+1 (9)

where
Sp−1,p =

Tp−1,p

1−Rp−1,pR̃p,p+1 exp (j2kpz (dp − dp−1))
(10)

and where R̃p,p+1 can be calculated from (7).
For the convenience of derivation, (5) can be written in the following operator form

Es (ρR, k) = (Lχ) (ρ) (11)
The operator L maps the contrast function from the object space to the data space, in particular,

L(·) , jη0k
3

∫

Dinv

G2(ρR, ρ, k)(·)dρ (12)

Then the image can be formulated by
I (r) = La (Es (ρR, k)) (13)

where La is the adjoint operator of L and maps the scattered field from the data space to the object
space, in particular [6, 31],

La(·) , jη0

∫ kmax

kmin

dkk3

∫

Dobs

[
G2 (ρR, ρ, k)

]∗ (·)dρR (14)

where ∗ denotes the conjugate operator. The complex conjugation in the adjoint operator is essentially
the backpropagation of the wave to the location where it is excited. From the concept of time reversal
imaging, the complex conjugation in the frequency domain is equivalent to the time reversal in the time
domain. The backpropagation of the time reversed field will focus on the target. In the above equation
the inner integrand corresponds to the beamforming over the cross range and the outer integrand is the
coherent summation over all the operating frequencies.

In this paper, to obtain the real-time imaging algorithm the assumption of exploding reflection
model is employed [35, 36]. In particular, G2(ρR, ρ, k) is replaced or approximated by G(ρR, ρ, 2k).
Then (14) can be further simplified as

La(·) , −jη0

∫ kmax

kmin

dkk3

∫

Dobs

G∗(ρR, ρ, 2k)(·)dρR (15)

Substituting the spectral form of the Green’s function (6) into (11) one has

La (Es (rR, k)) =
−η0

4π

∫ kmax

kmin

k3dk

∫ ∞

−∞
dkxT ∗ (kx)

exp (ikxx− ik∗1zzR + ik∗Nzz)

k∗1z

∫

Dobs

Es (rR, k) exp (−ikxxR) dxR (16)

Due to employing of the exploding model kiz =
√

4k2
i − k2

x, i = 1, 2, . . . N in the above equation.
Then the image can be derived as

I (ρ) = La (Es (ρR, k)) =
−η0

4π

∫ kmax

kmin

k3dk

∫ ∞

−∞
dkxẼs (kx, k)T ∗ (kx)

exp (ikxx− ik∗1zzR + ik∗Nzz)
k∗1z

(17)

where Ẽs(kx, k) is the Fourier transform of Es(rR, k) with respect to xR, in particular

Ẽs (kx, k) =
∫

Dobs

Es (rR, k) exp (−ikxxR) dxR (18)

Ẽs(kx, k) can be calculated in a very short computation time by employing FFT. From the imaging
formula one can find that:
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(1) The complex scattering process due to presence of the multilayered background media is
automatically included in the imaging formulation. The focusing delay due to the changes of
the propagation speed and the bending effect of the wave in different layers has been taken into
account through the Green’s function.

(2) The time-consuming computation of the nonlinear equation aiming at finding the wave propagation
path through different layers is avoided. The ray tracing technique employed in the conventional
imaging algorithms in [14, 16, 17] becomes complicated and is generally difficult to solve for imaging
of the target through multilayered media. However, the imaging algorithm proposed in this paper
can deal with this problem very efficiently without noticeable increasing of computation time.

(3) The imaging process can be achieved in a short computation time by employing FFT, which is very
welcome for real-time imaging applications.

3. NUMERICAL RESULTS

In order to show the effectiveness and efficiency of the proposed algorithm for radar imaging through
multilayered media, some representative examples are presented in this section. In the following
examples we assume that the permittivity and thickness of each layer are known. The inversion of
multilayer media parameters is essentially a one-dimensional inverse scattering problem and has been
well developed in the past two decades. We refer the readers to [32–34] for the estimation of parameters
of multilayered media.

3.1. Imaging of Targets Embedded in a Single Layer Subsurface

In the first example, we investigate the imaging of two dielectric targets embedded in a single layer
subsurface media, as shown in Figure 2(a). The forward scattered data were generated using Finite
Difference Time Domain (FDTD) method, where the transmitter is an electrical dipole source. The
monostatic radar measures the return signal at a distance of 0.3 m above the ground over a synthetic
aperture extending from −2m to 2 m with a step of 0.05m. The permittivity and conductivity of
the subsurface media are εr = 6 and σ = 2 mS/m. The operating frequency ranges from 1 GHz to
3GHz with frequency step ∆f = 33.33MHz. The two targets investigated in this example from left to
right in Figure 2(a) are a dielectric square and a dielectric rectangle with the designation of Target 1
and Target 2 respectively. The spatial characteristics of the targets are summarized in Table 1. The
permittivity of the two objects is 10. The investigation domain is a 2m× 1.6m rectangular region and
is divided into 150× 120 pixels.

Figure 2(b) shows the imaging results of the targets using the proposed subsurface imaging
algorithm. The true regions of the two targets are indicated with a white dashed square and rectangle.
From this image it is found that the upper side of the object is correctly localized. However, the
lower edges of the objects appear to be further than their true locations. This is due to the fact the
Born approximation in the imaging algorithm assumes velocity of the electromagnetic waves equals to
12.25 cm/ns in the ground, while the actual velocity of the electromagnetic waves inside the object is
9.5 cm/ns. This leads the imaging algorithm to locate the lower edge further than its actual position.
For comparison, the imaging results with the prestack migration algorithm in [14–16] are shown in
Figure 2(c). From Figure 2(c) we find that prestack migration algorithm is also successful in imaging
of the targets embedded in a single layer subsurface. Due to the point target model assumption in the
prestack migration algorithm, which assumes the wave velocity inside the object to be the same as the
background, we have similar observation that the lower edges of the dielectric object are localized further
than their true locations. It takes about 33.67 s to form the image in Figure 2(c) using the prestack

Table 1. Target spatial characteristics.

Target Type Size Center Position
Target 1 Rectangular 0.4m× 0.3m (0.4m, −1.0 m)
Target 2 Rectangular 0.3m× 0.3m (−0.55m, −1.2m)
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(b) (c)

(a)

Figure 2. Imaging of targets buried under ground. (a) Simulation geometry. (b) Imaging result using
the proposed algorithm. (c) Imaging result using the prestack migration algorithm.

migration algorithm on a 4-core P4 2.3 G, 4G Ram personal computer. However, by using the proposed
subsurface imaging algorithm, only 0.73 s is required to form the same size image in Figure 2(b). Due
to the employment of FFT in the imaging algorithm, the imaging process can be achieved in a very
short computation time, which is very useful for real time subsurface imaging.

3.2. Imaging of Targets under Multilayered Ground

In this example we present an imaging result of three targets buried under a two-layered media. The first
layer is dry sand with dielectric constant εr = 3.5, conductivity σ = 1mS/m and thickness d = 0.3m.
The targets are buried in the second layer which is composed of wet soil characterized by dielectric
constant εr = 8, conductivity σ = 0.025 S/m (as shown in Figure 3). The radar operating condition is
the same as previous example. The three targets from left to right in Figure 3 are rectangular, cylindrical,
and square PEC objects with the designation of Target 1, Target 2, and Target 3 respectively. The
spatial characteristics of the three targets are summarized in Table 2.

The investigation domain is a 1.6m × 1.6m square region divided into 100× 100 pixels. Figure 4
shows the imaging result of the three targets using the proposed subsurface imaging algorithm, in which
the true regions of the three targets are indicated with white dashed circle or rectangles. From this
image we find that the three targets are clearly identified and well localized at their true locations. The
electromagnetic wave cannot penetrate into PEC objects thus only the upper edges of the objects are
imaged. Due to the complexity of the ray tracing technique to deal with multilayered subsurface media,
conventional subsurface beamformer could not handle this problem efficiently. Even for a single layer
subsurface media it takes about 23.5 s to form the same size image. However, it takes only 0.67 s to form

Table 2. Target spatial characteristics.

Target Type Size Center Position
Target 1 Square 0.3m ×0.3m (−0.55m, −0.75 m)
Target 2 Cylindrical radius = 0.1m (0, −0.6m)
Target 3 Rectangular 0.4 m× 0.3m (0.5m, −0.85m)
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Figure 3. Simulation geometry of multilayer
subsurface imaging.

Figure 4. maging of targets under multilayered
ground.

the image in Figure 4 using the proposed multilayer subsurface imaging algorithm. Much computation
time has been saved in the imaging process due to the employing of FFT in the algorithm. From this
result it is clear that the imaging algorithm is very efficient for the imaging of targets buried under
multilayer ground in a very short computation time.

3.3. Imaging through Multilayered Building Walls

The capability of EM wave to penetrate through building walls has made through-the-wall radar imaging
(TWRI) of increasing interest in both civilian and military applications. Up to present, different TWRI
algorithms have been developed for the imaging of targets behind the walls [24, 26–28]. However, most
of these algorithms deal with only a single layer wall. In practical applications, we often encounter
situations to detect and identify targets behind multilayered walls with composite materials or inside a
building with multiple inner walls or walls separated by a hallway [26–28]. This is challenging and is
beyond the capability of the existing TWRI algorithms.

In this section, we investigate the imaging of multiple targets behind external and internal walls
separated by a hallway, as shown in Figure 5(a). The thickness of the external and internal walls is
0.2m with relative permittivity εr = 6 and conductivity σ = 0.01 S/m. The width of the hallway
between the two walls is 1.2 m. The radar antenna transmits an UWB EM wave covering the frequency
range from 1GHz to 3 GHz and measures the return signal at a distance of 0.3 m from the external wall
over a synthetic aperture from −2m to 2 m. The two targets investigated in this example are two PEC
cylinders with a radius of 0.3 m and 0.2 m centred at (−0.7m, −3.6m) and (0.8 m, −3.3m), respectively.
The investigation domain is a 2.4 m × 2m rectangular region and is divided into 120 × 100 pixels.
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Figure 5. Two walls separated by a hallway. (a) Simulation configuration. (b) Imaging result.
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Figures 5(b) shows the imaging results of the targets using the proposed imaging algorithm, where the
correct locations of the targets are indicated with white dashed circles. From Figure 5(b) we find that
the two targets are clearly identified and well localized at their correct locations. It is clear from the
image that, the propagation effect has been properly taken into account and high quality focused images
of the targets can be achieved using the proposed imaging algorithm.

4. CONCLUSION

It is of practical importance and interest in subsurface and urban sensing applications to extend the
radar imaging algorithm to the imaging of targets buried under multilayered media. In this paper,
a novel tomographic inverse scattering algorithm is proposed for radar imaging through multilayered
media with multi-frequency multi-monostatic measurement configuration. The exploding reflection
model is employed and then the Green’s function is expanded in the spectral domain to facilitate
the easy implementation of the imaging algorithm with FFT. Representative examples are presented
to show that the imaging algorithm is efficient in the diagnostics of large probed domain and allow
real-time processing. This imaging algorithm can be generalized to three-dimensional imaging through
multilayered subsurface by incorporation of the layered media dyadic Green’s function.
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