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Abstract—Results of a self-consistent computational analysis based
on a mathematical model of resonance scattering and generation
of waves on an isotropic nonmagnetic nonlinear layered dielectric
structure excited by a packet of plane waves are presented, where
the analysis is performed in the domain of resonance frequencies.
Physically interesting properties of the nonlinear permittivities of
the layers as well as their scattering and generation characteristics
are obtained, for instance the characteristic dynamical behaviour of
the relative Q-factor of the eigenmodes and the energy of higher
harmonics generated by canalising as well as decanalising nonlinear
layers. The results demonstrate the possibility to control the scattering
and generating properties of a nonlinear structure by means of the
excitation intensities.

1. INTRODUCTION

We investigate the problem of scattering and generation of waves on an
isotropic, nonmagnetic, linearly polarised (E-polarisation), nonlinear,
layered, cubically polarisable, dielectric structure, which is excited by
a packet of plane waves, in the domain of resonance frequencies. We
consider wave packets consisting of both a strong electromagnetic field
at the excitation frequency and weak fields at multiple frequencies.

The resulting mathematical model can be represented equivalently
by a system of nonlinear boundary-value problems of Sturm-Liouville
type or by a system of one-dimensional nonlinear integral equations.
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The solution of the latter system is approximated numerically by the
help of a quadrature method. The numerical algorithms of the solution
of the nonlinear problems are based on iterative procedures which
require the solution of a linear system in each step. The analytical
continuation of these linear problems into the region of complex values
of the frequency parameter allows us to switch to the investigation of
spectral problems.

Some results of calculations of characteristics of the scattered
field of a plane wave are presented, taking into account the third
harmonic generated by nonlinear cubically polarisable layers with both
negative as well as positive values of the cubic susceptibility of the
medium. We show that layers with negative and positive values of
the coefficient of cubic susceptibility of the nonlinear medium have
fundamentally different scattering and generation properties in the
domain of resonance. In the case of negative/positive values of the
susceptibility, a decanalisation/canalisation of the electromagnetic field
can be observed.

The paper is organized as follows: In the subsequent section, we
introduce the mathematical model. Then, in Section 3, we describe
the basic elements of the numerical method. The main part is formed
by Section 4, where we discuss the results of numerical simulations of
single-layered structures with both negative (Subsection 4.1) as well as
positive (Subsection 4.2) values of the cubic susceptibility.

2. WAVE PROPAGATION IN NONLINEAR MEDIA
WITH CUBIC POLARISABILITY

We consider nonlinear media which are located in the region
{
r = (x, y, z)> ∈ R3 : |z| ≤ 2πδ

}
,

δ > 0 (cf. Figure 1), such that the vector of the polarisation moment
P can be expanded as P = χ(1)E + (χ(2)E)E + ((χ(3)E)E)E + . . .,
where χ(1), χ(2), χ(3) are the media susceptibility tensors. In the case
of isotropic media, the quadratic term disappears.

Figure 1. The nonlinear dielectric layered structure.
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It is convenient to split P into its linear and nonlinear parts as
P = P(L) + P(NL) := χ(1)E + P(NL). Similarly, with ε := I + 4πχ(1),
the electric displacement field can be decomposed as

D = εE + 4πP(NL). (1)
Furthermore, if the media under consideration are nonmagnetic,
isotropic and transversely inhomogeneous w.r.t. z, i.e., ε = ε(L)I with
a scalar, possibly complex-valued function ε(L) = ε(L)(z), if the wave
is linearly E-polarised, i.e.,

E = (E1, 0, 0)>, H = (0,H2,H3)>, (2)
and if the electric field E is homogeneous w.r.t. the coordinate x, i.e.,
E(r, t) = (E1(t; y, z), 0, 0)>, then the Maxwell’s equations together
with (1) reduce to

∇2E− ε(L)

c2

∂2

∂t2
E− 4π

c2

∂2

∂t2
P(NL) = 0, (3)

where ∇2 := ∂2/∂y2 + ∂2/∂z2.
A stationary electromagnetic wave (with oscillation frequency

ω > 0) propagating in a weakly nonlinear dielectric structure gives rise
to a field containing all frequency harmonics (see [1, 21]). Therefore,
representing E,P(NL) via Fourier series (F ∈ {E,P(NL)})

F(r, t) =
1
2

∑

n∈Z
F(r, nω)e−inωt,

we obtain from (3) an infinite system of coupled equations w.r.t. the
Fourier amplitudes. In the case of a three-component E-polarised
electromagnetic field (cf. (2)) this system reduces to a system of scalar
equations w.r.t. E1:

∇2E1(r, sω)+
ε(L) (sω)2

c2
E1(r, sω)+

4π (sω)2

c2
P

(NL)
1 (r, sω)=0, s ∈ N. (4)

We assume that the main contribution to the nonlinearity is introduced
by the term P(NL)(r, sω) (cf. [3–6, 11, 13, 14, 17, 19, 23, 24]), and we
take only the lowest-order terms in the Taylor series expansion of the
nonlinear part P(NL)(r, sω) = (P (NL)

1 (r, sω), 0, 0)> of the polarisation
vector in the vicinity of the zero value of the electric field intensity. In
this case, the only nontrivial component of the polarisation vector is
determined by the susceptibility tensor χ(3) = {χ(3)

ijkl}3
i,j,k,l=1, and we

have that
P

(NL)
1 (r, sω)

.=
1
4

∑

j∈N
3χ

(3)
1111(sω; jω,−jω, sω)|E1(r, jω)|2E1(r, sω)
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+
1
4

∑




n,m,p∈Z\{0}
n 6=−m, p=s
m6=−p, n=s
n 6=−p, m=s
n+m+p=s

χ
(3)
1111(sω; nω, mω, pω)E1(r, nω)E1(r, mω)E1(r, pω), (5)

where the symbol ·= means that higher-order terms are neglected.
If we study nonlinear effects involving the waves at the first

three frequency components of E1 only, it is possible to restrict the
system (4), (5) to three equations. Then the analysis of the scattering
problem for the plane wave packet

{
Einc

1 (r, nκ) := Einc
1 (nκ; y, z) := ainc

nκ exp
(
i
(
φnκy − Γnκ(z − 2πδ)

))}3

n=1
, (6)

z > 2πδ, δ > 0, with amplitudes ainc
nκ , angles of incidence ϕnκ,

|ϕ| < π/2 (cf. Figure 1) and κ := ω/c = 2π/λ, φnκ := nκ sinϕnκ,

Γnκ :=
√

(nκ)2 − φ2
nκ, on the nonlinear structure can be simplified by

means of Kleinman’s rule (i.e., the equality of all the coefficients χ
(3)
1111

at the multiple frequencies, [10, 12]) and reduces finally to the following
system of boundary-value problems ([4–6, 11, 17]):[∇2+κ2εκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))

]× E1(r, κ)

= −α(z)κ2E2
1(r, 2κ)Ē1(r, 3κ),[∇2+(2κ)2ε2κ(z, α(z),E1(r, κ),E1(r, 2κ),E1(r,3κ))

]×E1(r, 2κ)=0,[∇2+(3κ)2ε3κ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))
]× E1(r, 3κ)

= −α(z)(3κ)2
{1

3
E3

1(r, κ) + E2
1(r, 2κ)Ē1(r, κ)

}
,

(7)

where κ := ω/c = 2π/λ,

εnκ :=
{

ε(L) + ε
(NL)
nκ , |z| ≤ 2πδ,

1, |z| > 2πδ,
and ε(L) := 1 + 4πχ

(1)
11 ,

ε(NL)
nκ := α(z)

[
|E1(r, κ)|2 + |E1(r, 2κ)|2 + |E1(r, 3κ)|2

+δn1

[
Ē1(r, κ)

]2

E1(r, κ)
E1(r, 3κ)+δn2

Ē1(r, 2κ)
E1(r, 2κ)

E1(r, κ)E1(r, 3κ)

]

with α(z) := 3πχ
(3)
1111(z) and δnm — Kronecker’s symbol. In addition,

the following conditions are met (n = 1, 2, 3):
(C1) E1(nκ; y, z) = U(nκ; z) exp(iφnκy),

(the quasi-homogeneity condition w.r.t. y),
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(C2) φnκ = nφκ (or the equivalent condition ϕnκ = ϕκ),
(the condition of phase synchronism of waves, see [5]),

(C3) The tangential components Etg (nκ; y, z) and Htg (nκ; y, z) of
the intensity vectors (i.e., E1 (nκ; y, z) and H2 (nκ; y, z)) are
continuous at the interfaces |z| = 2πδ,

(C4) Escat
1 (nκ; y, z) =

{
ascat

nκ
bscat
nκ

}
exp(i(φnκy ± Γnκ(z ∓ 2πδ))), z>< ± 2πδ

(the radiation condition).
The condition (C4) provides a physically consistent behaviour of

the energy characteristics of scattering and guarantees the absence
of waves coming from infinity (i.e., z = ±∞), see [16]. The desired
solution is of the form (n = 1, 2, 3):

E1(nκ; y, z)=U(nκ; z) exp(iφnκy)

=





ainc
nκ exp(i(φnκy − Γnκ(z − 2πδ)))

+ascat
nκ exp(i(φnκy + Γnκ(z − 2πδ))), z > 2πδ,

U(nκ; z) exp(iφnκy), |z| ≤ 2πδ,
bscat
nκ exp(i(φnκy − Γnκ(z + 2πδ))), z < −2πδ.

(8)

Substituting this representation into (7), the following system of
nonlinear ordinary differential equations results (n = 1, 2, 3):

U ′′(nκ; z) +
{
Γ2

nκ − (nκ)2[
1− εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))

]}
U(nκ; z)

=−(nκ)2α(z)
(
δn1U

2(2κ; z)Ū(3κ; z)

+δn3

{1
3
U3(κ; z) + U2(2κ; z)Ū(κ; z)

})
, |z| < 2πδ. (9)

By elementary calculations, from (C3) we obtain the boundary
conditions (n = 1, 2, 3):

iΓnκU(nκ;−2πδ) + U ′(nκ;−2πδ) = 0,

iΓnκU(nκ; 2πδ)− U ′(nκ; 2πδ) = 2iΓnκainc
nκ .

(10)

The system of ordinary differential Equation (9) and the boundary
conditions (10) form a semi-linear boundary-value problem of Sturm-
Liouville type, see also [4–6, 17, 18, 24].

The problem (7), (C1)–(C4) can also be reduced to finding
solutions of one-dimensional nonlinear integral equations w.r.t.
U(nκ; ·) ∈ L2(−2πδ, 2πδ), n = 1, 2, 3, cf. [4–6, 11, 16–18, 24]:

U(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ|z − ξ|)

×[
1− εnκ

(
ξ, α(ξ), U(κ; ξ) , U(2κ; ξ) , U(3κ; ξ)

)]
U(nκ; ξ)dξ
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= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ|z − ξ|)α(ξ)U2(2κ; ξ)Ū(3κ; ξ)dξ

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ|z − ξ|)

×α(ξ)
{

1
3
U3(κ; ξ) + U2(2κ; ξ)Ū(κ; ξ)

}
dξ

+ U inc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3. (11)
Here U inc(nκ; z) = ainc

nκ exp [−iΓnκ(z − 2πδ)] . The following result can
be proved.
Theorem 1 Assume that ε(L), α are piecewise continuous, bounded
and that all the data κ, δ, ϕ, {ainc

nκ }3
n=1, α, and ε(L) satisfy

492γ max
|z|≤2πδ

|1−ε(L)(z)| ≤ 35, max
|z|≤2πδ

|α(z)|
3∑

m=1

(ainc
mκ)2≤ 1721−2

√
10

551368γ

with γ := πδκ/ cosϕ. Then the iteration

Us+1(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ|z − ξ|)

×[1− εnκ(ξ, α(ξ), Us(κ; ξ), Us(2κ; ξ), Us(3κ; ξ))]Us+1(nκ; ξ)dξ

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ|z − ξ|)α(ξ)U2

s (2κ; ξ)Ūs(3κ; ξ)dξ

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ|z − ξ|)

×α(ξ)
{

1
3
U3

s (κ; ξ) + U2
s (2κ; ξ)Ūs(κ; ξ)

}
dξ

+ U inc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3, s = 0, 1, 2, . . . ,

converges for sufficiently small initial values {U0(nκ; ·)}3
n=1 such that

max
|z|≤2πδ

3∑
m=1

|U0(mκ; z)|2 ≤ 1/(82γ max
|z|≤2πδ

|α(z)|) to the unique solution

of the system (11).

3. NUMERICAL INVESTIGATION OF THE
NONLINEAR INTEGRAL EQUATIONS AND
SPECTRAL PROBLEMS

The application of suitable quadrature rules to the system of nonlinear
integral Equation (11) as described in [4–6] leads to a system of
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complex-valued nonlinear algebraic equations:

(I−Bκ(Uκ,U2κ,U3κ))Uκ = Cκ(U2κ,U3κ) + Uinc
κ ,

(I−B2κ(Uκ,U2κ,U3κ))U2κ = Uinc
2κ ,

(I−B3κ(Uκ,U2κ,U3κ))U3κ = C3κ(Uκ,U2κ) + Uinc
3κ ,

(12)

where we use a discrete set {zl}N
l=1 of nodes such that −2πδ =:

z1 < z2 < . . . < zl < . . . < zN =: 2πδ. Unκ := {Ul(nκ)}N
l=1 ≈

{U (nκ; zl)}N
l=1 and Bnκ(Uκ,U2κ,U3κ) are the matrices generated by

the quadrature method. The right-hand side of (12) is defined by

Uinc
nκ :=

{
ainc

nκ exp[−iΓnκ(zl − 2πδ)]
}N

l=1
,

Cκ(U2κ,U3κ) :=

{
iκ2

2Γκ

N∑

m=1

Am exp(iΓκ|zl − zm|)

×α(zm)U2
m(2κ)Ūm(3κ)

}N

l=1

,

C3κ(Uκ,U2κ) :=

{
i(3κ)2

2Γ3κ

N∑

m=1

Am exp(iΓ3κ|zl − zm|)

×α(zm)
[1
3
U3

m(κ) + U2
m(2κ)Ūm(κ)

]}N

l=1

,

where the numbers Am are the coefficients determined by the
quadrature rule.

The solution of (12) can be found iteratively, where at each step
a system of linearised nonlinear complex-valued algebraic equations is
solved.

The system of nonlinear integral Equation (11) can be linearised
directly by freezing the permittivities εnκ. The analytic continuation of
these linearised nonlinear problems into the region of complex values of
the frequency parameter allows us to switch to the analysis of spectral
problems. That is, the eigen-frequencies and the eigen-fields of the
homogeneous linear problems with an induced nonlinear permittivity
are to be determined. Analogously as above but at the discrete level
we obtain a set of independent systems of linear algebraic equations
depending nonlinearly on the spectral parameter:

(I−Bnκ(κn))Uκn = 0, (13)

where κn ∈ Ωnκ ⊂ Hnκ, at κ = κinc, n = 1, 2, 3, Ωnκ are the discrete
sets of eigen-frequencies and Hnκ denote two-sheeted Riemann surfaces
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(see [6] and Figure 2). Bnκ(κn) := Bnκ(κn;Uκ,U2κ,U3κ) for Unκ

given. The spectral problem of finding the eigen-frequencies κn and
the corresponding eigen-fields Uκn (i.e., the nontrivial solutions of the
linearized homogeneous integral equations) reduces to the following
equations:



fnκ(κn) :=det(I−Bnκ(κn)) = 0,
(I−Bnκ(κn))Uκn = 0,
κ :=κinc, κn∈Ωnκ⊂Hnκ, n=1,2, 3.

(14)

Figure 2. The two-sheeted Riemann surfaces Hnκ.

4. NUMERICAL RESULTS

Consider the excitation of the nonlinear structure by a strong incident
field at the basic frequency κ and, in addition, by weak incident
quasi-homogeneous electromagnetic fields at the double and triple
frequencies 2κ, 3κ (see (6)), i.e.,

0 < max
{∣∣ainc

2κ

∣∣ ,
∣∣ainc

3κ

∣∣} ¿ |ainc
1κ |. (15)

The desired solution of the scattering and generation problem (7),
(C1)–(C4) (or of the equivalent problem (11)) are represented as in (8).
The solution of (12) is obtained by means of successive approximations
using the self-consistent approach based on an iterative algorithm. In
contrast to other techniques such as, e.g., the preset-field method, the
self-consistent approach is characterized by the direct application of
a numerical solver for nonlinear algebraic equation systems to (12).
For a comparison of different possibilities to solve the system (12) the
reader is referred to [8].

In order to describe the scattering and generation properties of the
nonlinear structure in the zones of reflection z > 2πδ and transmission
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z < −2πδ, we introduce the following notation:

Rnκ :=
∣∣ascat

nκ

∣∣2 / 3∑

n=1

∣∣ainc
nκ

∣∣2 and Tnκ := |bscat
nκ |2

/ 3∑

n=1

|ainc
nκ |2,

n = 1, 2, 3. The quantities Rnκ, Tnκ are called reflection, transmission
or generation coefficients of the waves w.r.t. the total intensity of the
incident packet.

We note that, for nonabsorbing media with Im[ε(L)(z)] = 0, the
energy balance equation

3∑

n=1

[
Rnκ + Tnκ

]
= 1 (16)

is satisfied. This equation generalises the law of conservation of energy
which has been treated in [16, 20] for the case of a single incident field
and a single equation. If we define by

Wnκ :=
∣∣ascat

nκ

∣∣2 +
∣∣bscat

nκ

∣∣2

the total energy of the scattered and generated fields at the frequencies
nκ, n = 1, 2, 3, then the energy balance Equation (16) can be rewritten
as

3∑

n=1

Wnκ =
3∑

n=1

∣∣ainc
nκ

∣∣2 .

In the numerical experiments, the quantities W3κ/Wκ (which
characterises the portion of energy generated in the third harmonic
in comparison to the energy scattered in the nonlinear layer) and

W (Error) := 1−
3∑

n=1

[
Rnκ + Tnκ

]
(17)

(which characterises the numerical violation of the energy balance) are
of particular interest. We emphasize that in the numerical simulation
of scattering and generation processes without any weak fields, i.e.,
ainc

2κ = ainc
3κ = 0, the residual of the energy balance Equation (16)

does not exceed the value |W (Error)| < 10−8. However, taking into
consideration the impact of weak fields in the numerical simulation
of the same scattering and generation processes, i.e., ainc

nκ 6= 0,
n = 2, 3, the error in the balance Equation (16) can reach up to
several percent. This indicates that the intensities of the exciting
weak fields are sufficiently large such that these fields become also
sources for the generation of oscillations. For such situations, the
presented mathematical model (7), (C1)–(C4) and the linearised
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nonlinear spectral problems should take into account the complex
Fourier amplitudes of the oscillations at the frequencies nκ for numbers
n > 3. Furthermore we observe, on the one hand, situations in
which the influence of a weak field ainc

2κ 6= 0 on the scattering and
generation process of oscillations leads to small errors in the energy
balance Equation (16) not exceeding 2% (that is |W (Error)| < 0.02),
and, on the other hand, situations in which the error can reach 6%
(that is |W (Error)| < 0.06 there, where in the region of generation of
oscillations the condition (15) is violated). The scattering, generating,
energetic, and dielectric properties of the nonlinear layer are illustrated
by surfaces in dependence on the parameters of the particular problem.
The bottom chart depicts the surface of the value of the residual
W (Error) of the energy balance Equation (see (17)) and its projection
onto the top horizontal plane of the figure. In particular, by the help
of these graphs it is easy to localise that region of parameters of the
problem, where the error of the energy balance does not exceed a given
value, that is |W (Error)| < const.

The spectral characteristics of the linearised nonlinear problems
with the induced dielectric permittivity at the frequencies nκ, n =
1, 2, 3, of excitation and generation were calculated by means of the
algorithm (14). In the graphical illustration of the eigen-fields Uκn

we have set aκn := 1 for κn ∈ Ωnκ ⊂ Hnκ, n = 1, 2, 3. Finally we
mention that the later-used classification of scattered, generated or
eigen-fields of the dielectric layer by the Hm,l,p-type is identical to that
given in [15, 16, 22]. In the case of E-polarisation, Hm,l,p (or TEm,l,p)
denotes the type of polarisation of the wave field under investigation.
The subscripts indicate the number of local maxima of |E1| (or |U |, as
|E1| = |U |) along the coordinate axes x, y and z (see Figure 1). Since
the considered waves are homogeneous along the x-axis and quasi-
homogeneous along the y-axis, we study actually fields of the type
H0,0,p (or TE0,0,p), where the subscript p is equal to the number of
local maxima of the function |U | of the argument z ∈ [−2πδ, 2πδ].

In what follows we will consider a single-layered structure
with a dielectric permittivity εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z)) =
ε(L)(z) + ε

(NL)
nκ , n = 1, 2, 3, where ε(L)(z) := 16 and α(z) := ∓0.01 for

z ∈ [−2πδ, 2πδ], δ := 0.5, κinc := κ := 0.375, and ϕκ ∈ [0◦, 90◦). In the
subsequent figures we will use the following conventions to illustrate
the different cases of incident fields:

ainc
2κ = 1

3ainc
κ , ainc

3κ = 0 . . . graphs labeled by “1/3”,
ainc

2κ = 2
3ainc

κ , ainc
3κ = 0 . . . graphs labeled by “2/3”,

ainc
2κ = ainc

3κ = 0 . . . graphs labeled by “0”.
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4.1. A Single-layered Structure with a Negative Value of the
Cubic Susceptibility

The Figure 3–Figure 6 demonstrate the electrodynamical properties
of a nonlinear decanalising layer with a constant cubic susceptibility
α(z) := −0.01.

The results shown in Figure 3 allow us to understand the
dynamical behaviour of the quantity W3κ/Wκ characterising the ratio
of the generated and scattered energies. Figure 3 shows the dependence
of W3κ/Wκ on the angle of incidence ϕκ and on the amplitude ainc

κ of
the incident field for the case ainc

2κ = 2
3ainc

κ . It describes the portion of
energy generated in the third harmonic by the nonlinear layer when a
plane wave at the excitation frequency κ and with the amplitude ainc

κ
is passing the layer under the angle of incidence ϕκ. For example, in
Figure 3(a) the maximum value of W3κ/Wκ and the value W (Error) are
reached at the following parameters [ainc

κ , ainc
2κ , ϕκ]: W3κ/Wκ = 0.08075,

W (Error) = −0.03207, [ainc
κ = 24, ainc

2κ = 2
3ainc

κ , ϕκ = 0◦] . . . graph #2/3.
The results depicted in Figure 3(a) show that the maximal portion of
the total energy generated in the third harmonic is observed in the
direction normal to the structure, cf. the behaviour of the surfaces
W3κ/Wκ at ϕκ = 0◦.

The right diagram in Figure 3 displays some graphs characterising
the scattering and generation properties of the nonlinear structure.
Graph #0.0 illustrates the value of the linear part ε(L) = 16 of the
permittivity of the nonlinear layered structure. Graphs #n.1 and
#n.2 show the real and imaginary parts of the permittivities at the
frequencies nκ, n = 1, 2, 3. The figure also shows the absolute values

(a) (b)

Figure 3. The portion of energy generated in the third harmonic for
(a) ainc

2κ = 2
3ainc

κ and (b) some graphs describing the properties of the
nonlinear layer for ϕκ = 0◦, ainc

κ = 20 and ainc
2κ = 2

3ainc
κ : #0.0, . . . , ε(L),

#1, . . . , |U(κ; z)|, #2, . . . , |U(2κ; z)|, #3, . . . , |U(3κ; z)|, #n.1, . . . ,
Re(εnκ), # n.2, . . . , Im(εnκ).
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|U(κ; z)|, |U(2κ; z)| of the amplitudes of the full scattered fields at the
frequencies of excitation κ, 2κ (graphs #1, #2) and |U(3κ; z)| of the
generated field at the frequency 3κ (graph #3). The values |U(nκ; z)|
are given in the nonlinear layered structure (|z| ≤ 2πδ) and outside it
(i.e., in the zones of reflection z > 2πδ and transmission z < −2πδ).
Here W (Error) = −1.902471 · 10−2, i.e., the error in the energy balance
is less than 1.9% (b).

The nonlinear parts ε
(NL)
nκ of the dielectric permittivity at each

frequency nκ depend on the values Unκ := U(nκ; z), n = 1, 2, 3,

(a) (b)

(c) (d)

(e) (f)

Figure 4. Graphs characterising the nonlinear dielectric permittivity
in dependence on [ainc

κ , ainc
2κ , z] for ϕκ = 0◦ and ainc

2κ = 2
3ainc

κ : (a) Re(εκ),
(b) Im(εκ), (c) Re(ε2κ), (d) Im(ε2κ), (e) Re(ε3κ), (f) Im(ε3κ).
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of the fields. The variation of the nonlinear parts ε
(NL)
nκ of the

dielectric permittivity for increasing amplitudes ainc
κ and ainc

2κ of the
incident fields are illustrated by the behaviour of Re(εnκ[ainc

κ , ainc
2κ , z])

and Im(εnκ[ainc
κ , ainc

2κ , z]) at the frequencies nκ in Figure 4 (case
ainc

2κ = 2
3ainc

κ ). The quantities Im(εnκ) take both positive and negative
values along the height of the nonlinear layer (i.e., in the interval
z ∈ [−2πδ, 2πδ]), see Figures 4(b), (d), (f). For given amplitudes ainc

κ

and ainc
2κ , the graph of Im

(
εnκ

[
ainc

κ , ainc
2κ , z

])
characterises the loss of

energy in the nonlinear layer at the excitation frequencies nκ, n = 1, 2,
caused by the generation of the electromagnetic field of the third
harmonic. Such a situation arises because of the right-hand side of (7)
at the triple frequency and the generation which is evoked by the right-
hand side of (7) at the basic frequency. In our case Im[ε(L)(z)] = 0
and Im[α(z)] = 0, therefore,

Im(εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z)))

= α(z)
[
δn1|U(κ; z)||U(3κ; z)|

× Im (exp {i [−3arg(U(κ; z)) + arg(U(3κ; z))]})
+ δn2|U(κ; z)||U(3κ; z)|
× Im (exp {i [−2arg(U(2κ; z)) + arg(U(κ; z)) + arg(U(3κ; z))]}) ]

,

n = 1, 2, 3. (18)

From Figures 4(b), (d), (f) we see that small values of ainc
κ and ainc

2κ
induce a small amplitude of the function Im(εnκ), i.e., |Im(εnκ)| ≈ 0.
The increase of ainc

κ corresponds to a strong incident field and leads to
the generation of a third harmonic field U(3κ; z), and the increase of
ainc

2κ changes the behaviour of εnκ (compare the surface #0 with the
surface #2/3 in Figure 4). Figures 4(b), (d), (f) shows the dynamical
behaviour of Im(εnκ). It can be seen that Im(ε3κ) = 0, whereas at
the same time the values of Im(εnκ), n = 1, 2, may be positive or
negative along the height of the nonlinear layer, i.e., in the interval
z ∈ [−2πδ, 2πδ], see (18). The zero values of Im(εnκ), n = 1, 2,
are determined by the phase relations between the scattered and the
generated fields in the nonlinear layer, namely at the basic frequency
κ by the phase relation between U(κ; z), U(3κ; z), and at the double
frequency 2κ by the phases of {U(nκ; z)}n=1,2,3, see (18):

δn1 [−3arg(U(κ; z)) + arg(U(3κ; z))]

+δn2 [−2arg(U(2κ; z)) + arg(U(κ; z)) + arg(U(3κ; z))] = pπ,

p = 0,±1, . . . , n = 1, 2.
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We mention that the behaviour of both the quantities Im(εnκ) and
Re(εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))
−ε3κ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z)))

= α(z)
[
δn1|U(κ; z)||U(3κ; z)|

×Re (exp {i [−3arg(U(κ; z)) + arg(U(3κ; z))]})
+ δn2|U(κ; z)||U(3κ; z)| ×
×Re (exp {i [−2arg(U(2κ; z))+arg(U(κ; z)) + arg(U(3κ;z))]})],
n = 1, 2, (19)

plays an essential role in the process of third harmonic generation.
We mention that the impact of a strong electromagnetic field

with an amplitude ainc
κ even in the absence of a weak field ainc

2κ = 0
(where U(2κ; z) = 0) induces a nontrivial component of the nonlinear
dielectric permittivity at the frequency 2κ. Figures 4(c), (d) show that
the existence of nontrivial values Re(ε2κ) 6= Re(ε(L)) and Im(ε2κ) 6= 0
is caused by the amplitude and phase characteristics of the fields
U(κ; z) and U(3κ; z). Moreover, the nonlinear component of the
dielectric permittivity, which is responsible for the variation of Im(εnκ)
(and Re(εnκ − ε3κ)), does not depend on the absolute value of the
amplitude of the field at the double frequency |U(2κ; z)|, see (19)
and (18). Thus, even a weak field includes a mechanism for the
redistribution of the energy of the incident wave packet which is
consumed for the scattering process and the generation of waves, cf.
the dynamics of the surfaces #0 with #2/3 in Figure 4.

The scattering and generation properties of the nonlinear
structure in the ranges ainc

κ ∈ [1, 24], ainc
2κ = 2

3ainc
κ and ϕκ = 0◦ of

the parameters of the incident field are presented in Figures 5&6(a).
Figure 5 shows the same dependencies as Figure 6(a) but with the
additional parameter ainc

2κ . So it is possible to track the dynamics of
the scattering, generation and energy characteristics of the nonlinear
layer under the influence of an incident wave package consisting of a
strong and a weak magnetic field with amplitudes ainc

κ and ainc
2κ , resp.

The graphs in Figure 6 show the dynamics of the scatter-
ing (Rκ[ϕκ, ainc

κ , ainc
2κ ], Tκ[ϕκ, ainc

κ , ainc
2κ ], R2κ[ϕκ, ainc

κ , ainc
2κ ], T2κ[ϕκ, ainc

κ ,
ainc

2κ ]) and generation (R3κ

[
ϕκ, ainc

κ , ainc
2κ

]
, T3κ

[
ϕκ, ainc

κ , ainc
2κ

]
) properties

of the structure.
In the resonant range of wave scattering and generation

frequencies, i.e., κscat := κinc = κ and κgen = 3κ, resp., the dynamical
behaviour of the characteristic quantities depicted in Figure 6 has the
following causes. The scattering and generation frequencies are close to
the corresponding eigen-frequencies of the linear (α = 0) and linearised
nonlinear (α 6= 0) spectral problems. Furthermore, the distance
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(a) (b)

(c) (d)

Figure 5. The scattering and generation properties of the nonlinear
structure in dependence on

[
ϕκ, ainc

κ , ainc
2κ

]
for ϕκ = 0◦: (a) Rκ, Tκ

(#11, #12), (b) R2κ, T2κ (#21, #22), (c) W3κ/Wκ, R3κ, T3κ (#3,
#31, #32), (d) W (Error).

between the corresponding eigen-frequencies of the spectral problems
with α = 0 and α 6= 0 is small. Thus, the graphs in Figure 6(a)
can be compared with the dynamical behaviour of the branches of the
eigen-frequencies of the spectral problems presented in Figure 6(b).
The graphs of the eigen-fields corresponding to the branches of the
considered eigen-frequencies are shown in Figures 6(e), (f).

Let us denote by

Qκn := − Re(κn)
2Im(κn)

(20)

the Q-factors of the eigenoscillations of the spectral problem (14) at
the frequencies κn ∈ Ωnκ ⊂ Hnκ, see [7, 16] and Figure 6(c). In the
numerical experiments, the function Q13(ainc

nκ ) := Qκ1(a
inc
nκ )/Qκ3(a

inc
nκ )

of the relative Q-factor of the eigenoscillations is of particular interest,
see Figure 6(d). For an increasing amplitude of the exciting field,
an increase of the generated energy in the higher harmonics is
accompanied by a monotonic decrease of the relative Q-factor of the
eigenoscillations, see Figures 6(a) and 6(d).

Figure 6(b) illustrates the dispersion characteristics of the linear
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) The curves Rκ (#1), Tκ (#2), R2κ (#3), T2κ (#4),
R3κ (#5), T3κ (#6), W3κ/Wκ (#7) for ϕκ = 0◦; (b) the curves
κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the
complex eigen-frequencies Re(κ(L)

1 ) (#3.1), Im(κ(L)
1 ) (#3.2), Re(κ(L)

3 )
(#4.1), Im(κ(L)

3 ) (#4.2) of the linear problem (α = 0) and Re(κ(NL)
1 )

(#5.1), Im(κ(NL)
1 ) (#5.2), Re(κ(NL)

3 ) (#6.1), Im(κ(NL)
3 ) (#6.2) of

the linearised nonlinear problem (α = −0.01) for ϕκ = 0◦; the Q-
factors of eigenoscillations of the spectral problem at α = −0.01,
κinc = 0.375, ϕκ = 0◦, κn = κ

(NL)
n : (c) Qκ1 (#1) and (d) Qκ3

(#3), Qκ1/Qκ3 (#13); the graphs of the eigen-fields of the layer for
ϕκ = 0◦, ainc

κ = 20: (e) the linear problem (α = 0,): |U(κ(L)
1 ; z)|

with κ
(L)
1 = 0.3749822 − i 0.02032115 (#1), |U(κ(L)

3 ; z)| with κ
(L)
3 =

1.124512 − i 0.02028934 (#2), (f) the linearised nonlinear problem
(α = −0.01): |U(κ(NL)

1 ; z)| with κ
(NL)
1 = 0.3949147 − i 0.02278218

(#1), |U(κ(NL)
3 ; z)| with κ

(NL)
3 = 1.168264− i 0.02262382 (#2).
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(α = 0) and the linearised nonlinear (α = −0.01) layer εnκ =
ε(L) +ε

(NL)
nκ , n = 1, 2, 3. The nonlinear components of the permittivity

at the scattering (excitation) frequencies κscat := κinc = κ and the
generation frequencies κgen := 3κ depend on the amplitude ainc

κ and
the angle of incidence ϕκ of the incident field. This is reflected in the
dynamics of the behaviour of the complex-valued eigen-frequencies of
the linear and the linearised nonlinear layer.

We start the discussion of the results of our calculations with
the comparison of the dispersion relations given by the branches
of the eigen-frequencies (curves #3.1, #3.2 and #5.1, #5.2) near
the scattering frequency (curve #1, corresponding to the excitation
frequency) and (curves #4.1, #4.2, #6.1, #6.2) near the oscillation
frequency (line #2) in the situations presented in Figure 6(b). The
graph #5.1 lies above the graph #3.1 and the graph #6.1 above
the graph #4.1. That is, decanalising properties (properties of
transparency) of the nonlinear layer occur if α < 0.

Comparing the results shown in Figure 6(a) and Figure 6(b) we
note the following. The dynamics of the change of the scattering
properties Rκ, Tκ of the nonlinear layer (compare the behaviour
of curves #1 and #2 in Figure 6(a)) depends on the magnitude
of the distance between the curves #3.1 and #5.1 in Figure 6(b).
Decanelising properties of the layer occur when α < 0. A previously
transparent (Figure 6(a)) or reflective (Figure 6(b)) structure loses its
properties. It becomes transparent and the reflection and transmission
coefficients become comparable. The greater the distance between the
curves #4.1 and #6.1 (see Figure 6(b)), the greater the values of R3κ,
T3κ, W3κ/Wκ, characterising the generating properties of the nonlinear
layer, see Figure 6(a).

The magnitudes of the absolute values of the eigen-fields shown in
Figures 6(e), 6(f) correspond to the branches of the eigen-frequencies
of the linear and the linearised nonlinear spectral problems, see
Figure 6(b). The curves in Figures 6(e), 6(f) are labeled by #1 for an
eigen-field of type H0,0,4 and by #2 for an eigen-field of type H0,0,10.
The loss of symmetry in the eigen-fields with respect to the z-axis in
Figure 6(f) is due to the violation of the symmetry (w.r.t. the axis
z = 0) in the induced dielectric permittivity at both the scattering
(excitation) and the oscillation frequencies, see Figure 4.

4.2. A Single-layered Structure with a Positive Value of the
Cubic Susceptibility

In this subsection we present and discuss results of the numerical
analysis of scattering and generation properties as well as the eigen-
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modes of the dielectric layer with a positive value of the cubic
susceptibility of the medium. The electrodynamical properties of a
nonlinear canalising layer are depicted in the Figure 7– Figure 11 for
the case of a constant cubic susceptibility α(z) := +0.01.

The results shown in Figure 7 allow us to track the dynamical
behaviour of the quantity W3κ/Wκ characterising the ratio of the
generated and scattered energies. Figure 7 shows the dependence of
W3κ/Wκ on the angle of incidence ϕκ and on the amplitude ainc

κ of the
incident field for different relations between ainc

2κ and ainc
κ . It describes

the portion of energy generated in the third harmonic by the nonlinear
layer when a plane wave at the excitation frequency κ and with the
amplitude ainc

κ is passing the layer under the angle of incidence ϕκ. It
can be seen that the weaker incident field at the frequency 2κ leads
to an increase of W3κ/Wκ in comparison with the situation where the
structure is excited only by a single field at the basic frequency κ.
For example, in Figure 7 the maximum value of W3κ/Wκ and the
value W (Error) are reached at the following parameters [ainc

κ , ainc
2κ , ϕκ]:

W3κ/Wκ = 0.08753, W (Error) = −1.98292 · 10−9, [ainc
κ = 9.93, ainc

2κ =
0, ϕκ = 53◦] . . . graph #0 and, taking into consideration the weak field
at the double frequency, W3κ/Wκ = 0.13903, W (Error) = −0.01692,
[ainc

κ = 9.93, ainc
2κ = 1

3ainc
κ , ϕκ = 53◦] . . . graph #1/3 (a); W3κ/Wκ =

0.03265, W (Error) = −8.53239 · 10−9, [ainc
κ = 8, ainc

2κ = 0, ϕκ = 42◦]
. . . graph #0 and, taking into consideration the weak field at the double
frequency, W3κ/Wκ = 0.1864, W (Error) = −0.04625, [ainc

κ = 8, ainc
2κ =

2
3ainc

κ , ϕκ = 50◦] . . . graph #2/3 (b).
The numerical analysis of the processes displayed in Figure 8(a)

by the curves #3 in the range of angles ϕκ ∈ (66◦, 79◦) and #4 in the
range of angles ϕκ ∈ (62◦, 82◦) did not lead to the convergence of the
computational algorithm. The value W3κ/Wκ = 0.3558 for ainc

κ = 14,

(a) (b)

Figure 7. The portion of energy generated in the third harmonic:
(a) ainc

2κ = 1
3ainc

κ , (b) ainc
2κ = 2

3ainc
κ .
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ainc
2κ = 0 and ϕκ = 66◦ (see the graph #3 in Figure 8(a)) indicates

that W3κ is 35.58% of Wκ. This is the maximum value of W3κ/Wκ

that has been achieved in the case of a single incident field at the basic
frequency κ.

The right diagram in Figure 8 displays some graphs characterising
the scattering and generation properties of the nonlinear structure.
Graph #0.0 illustrates the value of the linear part ε(L) = 16 of the
permittivity of the nonlinear layered structure. Graphs #n.1 and
#n.2 show the real and imaginary parts of the permittivities at the
frequencies nκ, n = 1, 2, 3. The figure also shows the absolute values
|U(κ; z)|, |U(2κ; z)| of the amplitudes of the full scattered fields at the
frequencies of excitation κ, 2κ (graphs #1, #2) and |U(3κ; z)| of the
generated field at the frequency 3κ (graph #3). The values |U(nκ; z)|
are given in the nonlinear layered structure (|z| ≤ 2πδ) and outside it
(i.e., in the zones of reflection z > 2πδ and transmission z < −2πδ).
Here W (Error) = −5.782328 · 10−3, i.e., the error in the energy balance
is less than 0.58% (b).

The nonlinear parts ε
(NL)
nκ of the dielectric permittivity at each

frequency nκ depend on the values Unκ := U(nκ; z), n = 1, 2, 3,

of the fields. The variation of the nonlinear parts ε
(NL)
nκ of the

dielectric permittivity for increasing amplitudes ainc
κ and ainc

2κ of the
incident fields are illustrated by the behaviour of Re(εnκ[ainc

κ , ainc
2κ , z])

and Im(εnκ[ainc
κ , ainc

2κ , z]) at the frequencies nκ in Figure 9 for the case
ainc

2κ = 1
3ainc

κ . The quantities Im(εnκ) take both positive and negative
values along the height of the nonlinear layer (i.e., in the interval

(a) (b)

Figure 8. The portion of energy generated in the third harmonic:
(a) #1 ,. . . , ainc

κ = 1, #2, . . . , ainc
κ = 9.93, #3, . . . , ainc

κ = 14, #4, . . . ,
ainc

κ = 19 for ainc
2κ = 0, some graphs describing the properties of the

nonlinear layer for ϕκ = 60◦, ainc
κ = 14 and (b) ainc

2κ = 1
3ainc

κ : #0.0, . . . ,
ε(L), #1, . . . , |U(κ; z)|, #2, . . . , |U(2κ; z)|, #3, . . . , |U(3κ; z)|, #n.1,
. . . , Re(εnκ), #n.2, . . . , Im(εnκ).
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z ∈ [−2πδ, 2πδ]), see Figures 9(b), (d), (f). For given amplitudes
ainc

κ and ainc
2κ , the graph of Im(εnκ[ainc

κ , ainc
2κ , z]) characterises the loss of

energy in the nonlinear layer at the excitation frequencies nκ, n = 1, 2,
caused by the generation of the electromagnetic field of the third
harmonic. Such a situation arises because of the right-hand side of (7)
at the triple frequency and the generation which is evoked by the right-
hand side of (7) at the basic frequency. From Figures 9(b), (d), (f)
we see that small values of ainc

κ and ainc
2κ induce a small amplitude

of the function Im(εnκ), i.e., |Im(εnκ)| ≈ 0. The increase of ainc
κ

(a) (b)

(c) (d)

(e) (f)

Figure 9. Graphs characterising the nonlinear dielectric permittivity
in dependence on [ainc

κ , ainc
2κ , z] for ϕκ = 60◦ and ainc

2κ = 1
3ainc

κ :
(a) Re(εκ), (b) Im(εκ), (c) Re(ε2κ), (d) Im(ε2κ), (e) Re(ε3κ),
(f) Im(ε3κ).
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corresponds to a strong incident field and leads to the generation of
a third harmonic field U(3κ; z), and the increase of ainc

2κ changes the
behaviour of εnκ (compare the surface #0 with the surfaces #1/3 and
#2/3 in Figure 9. Figures 9(b), (d), (f) show the dynamical behaviour
of Im(εnκ). It can be seen that Im(ε3κ) = 0, whereas at the same
time the values of Im(εnκ), n = 1, 2, may be positive or negative along
the height of the nonlinear layer, i.e., in the interval z ∈ [−2πδ, 2πδ],
see (18). The zero values of Im(εnκ), n = 1, 2, are determined by
the phase relations between the scattered and the generated fields in
the nonlinear layer, namely at the basic frequency κ by the phase
relation between U(κ; z), U(3κ; z), and at the double frequency 2κ by
the phases of {U(nκ; z)}n=1,2,3, see (18):

δn1 [−3arg(U(κ; z)) + arg(U(3κ; z))]
+δn2 [−2arg(U(2κ; z)) + arg(U(κ; z)) + arg(U(3κ; z))] = pπ,

p = 0,±1, . . . , n = 1, 2.

As in the previous subsection we see that the behaviour of both the
quantities Re(εnκ) and Im(εnκ) (see (19)) plays an essential role in the
process of third harmonic generation.

We mention that the impact of a strong electromagnetic field
with an amplitude ainc

κ even in the absence of a weak field ainc
2κ = 0

(where U(2κ; z) = 0) induces a nontrivial component of the nonlinear
dielectric permittivity at the frequency 2κ. Figure 9(c) shows that the
existence of nontrivial values Re(ε2κ) 6= Re(ε(L)) and Im(ε2κ) 6= 0 is
caused by the amplitude and phase characteristics of the fields U(κ; z)
and U(3κ; z). Moreover, the nonlinear component of the dielectric
permittivity, which is responsible for the variation of Re(εnκ − ε3κ)
and Im(εnκ), does not depend on the absolute value of the amplitude
of the field at the double frequency |U(2κ; z)|, see (19) and (18). Thus,
even a weak field includes a mechanism for the redistribution of the
energy of the incident wave packet which is consumed for the scattering
process and the generation of waves, cf. the dynamics of the surfaces
#0 with #1/3 in Figure 9.

The scattering and generation properties of the nonlinear
structure are presented in Figures 10&11. Figure 10 shows the same
dependencies as in Figures 11(a), (b) but with the additional parameter
ainc

2κ so that it is possible to track the dynamics of the scattering,
generation and energy characteristics of the nonlinear layer under the
influence of an incident wave package consisting of a strong and a weak
magnetic field with amplitudes ainc

κ and ainc
2κ , resp. The top left diagram

in Figure 11 shows the dynamics of the scattering (Rκ[ϕκ, ainc
κ , ainc

2κ ],
Tκ[ϕκ, ainc

κ , ainc
2κ ], R2κ[ϕκ, ainc

κ , ainc
2κ ], T2κ[ϕκ, ainc

κ , ainc
2κ ]) and generation

(R3κ[ϕκ, ainc
κ , ainc

2κ ], T3κ[ϕκ, ainc
κ , ainc

2κ ]) properties of the structure as well
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(a) (b)

(c) (d)

Figure 10. The scattering and generation properties of the nonlinear
structure in dependence on

[
ϕκ, ainc

κ , ainc
2κ

]
for ϕκ = 60◦: (a) Rκ, Tκ

(#11, #12), (b) R2κ, T2κ (#21, #22), (c) W3κ/Wκ, R3κ, T3κ (#3,
#31, #32), (d) W (Error).

as the graph of W3κ[ϕκ, ainc
κ , ainc

2κ ]/Wκ[ϕκ, ainc
κ , ainc

2κ ] (see Figure 7(a)) for
ϕκ = 60◦ and ainc

κ = 9.93.
In the resonant range of wave scattering and generation

frequencies, i.e., κscat := κinc = κ and κgen = 3κ, resp., the dynamical
behaviour of the characteristic quantities depicted in Figures 10&11
has the following causes. The scattering and generation frequencies
are close to the corresponding eigen-frequencies of the linear (α = 0)
and linearised nonlinear (α 6= 0) spectral problems. Furthermore, the
distance between the corresponding eigen-frequencies of the spectral
problems with α = 0 and α 6= 0 is small. The graphs of the eigen-fields
corresponding to the branches of the considered eigen-frequencies are
shown in Figures 11(e), (f).

The second row in Figure 11 depicts the Q-factors Qκ1 , Qκ3

(see (20)) and the quantities Qκ1(a
inc
nκ )/Qκ3(a

inc
nκ ), 1

3Im[κ3(ainc
nκ )]/Im[κ1

(ainc
nκ )]. We see that the increase in the amplitude of the incident field

leads to an increase in the Q-factor of the triple frequency, whereas in
the behaviour of the Q-factor of the basic frequency a local minimum
is observed, see Figure 11(c). The decrease of Qκ1 at the left-hand
side of its local minimum can be correlated with the energy spent on
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(a) (b)

(c) (d)

(e) (f)

Figure 11. (a) The curves Rκ (#1), Tκ (#2), R2κ (#3), T2κ (#4),
R3κ (#5), T3κ (#6), W3κ/Wκ (#7) for ϕκ = 60◦, (b) the curves
κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the
complex eigen-frequencies Re(κ(L)

1 ) (#3.1), Im(κ(L)
1 ) (#3.2), Re(κ(L)

3 )
(#4.1), Im(κ(L)

3 ) (#4.2) of the linear problem (α = 0) and Re(κ(NL)
1 )

(#5.1), Im(κ(NL)
1 ) (#5.2), Re(κ(NL)

3 ) (#6.1), Im(κ(NL)
3 ) (#6.2) of the

linearised nonlinear problem (α = +0.01) for ϕκ = 60◦; the Q-factors
of eigenoscillations of the spectral problem at α = +0.01, κinc = 0.375,

ϕκ = 60◦, κn = κ
(NL)
n : (c) Qκ1 (#1) and Qκ3 (#3), Qκ1/Qκ3 (#13) and

(d) 1
3Im(κ3)/Im(κ1) (#2); the graphs of the eigen-fields of the layer

for ϕκ = 60◦, ainc
κ = 14: (e) the linear problem (α = 0): |U(κ(L)

1 ; z)|
with κ

(L)
1 = 0.3829155 − i 0.01066148 (#1), |U(κ(L)

3 ; z)| with κ
(L)
3 =

1.150293 − i 0.01062912 (#2), (f) the linearised nonlinear problem
(α = +0.01): |U(κ(NL)

1 ; z)| with κ
(NL)
1 = 0.3705110 − i 0.01049613

(#1), |U(κ(NL)
3 ; z)| with κ

(NL)
3 = 1.121473− i 0.009194824 (#2).
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the generation of the third harmonic. The reduction of Qκ1 starts
in the region of canalisation of energy (see #1, where Figure 11(a)).
The maximal generation (see #7 in Figure 11(a)) is achieved at the
minimum of Qκ1 (see #1 in Figure 11(c) or #13 in Figure 11(d)). Note
that in our case study we observe that Qκ1/Qκ3 ≈ 1

3Im(κ3)/Im(κ1),
see #13 and #2 in Figure 11(d).

Figure 11(b) illustrates the dispersion characteristics of the linear
(α = 0) and the linearised nonlinear (α = +0.01) layer εnκ =
ε(L) + ε

(NL
nκ , n = 1, 2, 3. The nonlinear components of the permittivity

at the scattering (excitation) frequencies κscat := κinc = κ and the
generation frequencies κgen := 3κ depend on the amplitude ainc

κ and
the angle of incidence ϕκ of the incident field. This is reflected in the
dynamics of the behaviour of the complex-valued eigen-frequencies of
the linear and the linearised nonlinear layer.

We start the analysis of the results of our calculations with
the comparison of the dispersion relations given by the branches
of the eigen-frequencies (curves #3.1, #3.2 and #5.1, #5.2) near
the scattering frequency (curve #1, corresponding to the excitation
frequency) and (curves #4.1, #4.2, #6.1, #6.2) near the oscillation
frequency (line #2) in the situations presented in Figure 11(b). The
graph #5.1 lies below the graph #3.1 and the graph #6.1 below the
graph #4.1. That is, canalising properties (properties of transparency)
of the nonlinear layer occur if α > 0. This case is characterised by
the increase of the angle of transparency of the nonlinear structure
at the excitation frequency with an increasing amplitude of the
incident field. The analysis of the eigen-modes of Figure 11(b)
allows us to explain the mechanisms of the canalisation phenomena
(transparency) (see Figure 11(a) (graph #1)) and wave generation (see
Figure 11(a) (graphs #5, #6)).

Comparing the results shown in Figure 11(a) and Figure 11(b)
we note the following. The intersection of the curves #1 and #5.1
in Figure 11(b) defines certain parameters, in the neighborhood of
which the canalisation effect (transparency) of the nonlinear structure
can be observed in Figure 11(a). For example, in Figure 11(b) the
curves #1 and #5.1 intersect at ainc

κ = 9.5, also here the curve #5.2
achieves a local maximum. Near this value, we see the phenomenon
of canalisation (transparency) of the layer in Figure 11(a). At the
point of intersection of the curves #2 and #6.1, the graph #5.2
starts to decrease monotonically in some interval. The intersection
of the curves #2 and #6.1 defines the parameter ainc

κ = 12.6, which
falls into the range [9.5, 13.6] of values of the amplitudes at which
the curve #5.2 is monotonically decreasing. This leads to a shift in
the imaginary part of the eigen-frequency of the scattering structure
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(graph #5.2) with respect to the eigen-frequency of the generating
structure (graph #6.2). The magnitude of the shift depends on the
distance between the curves of #6.2 and #5.2 at the given value
ainc

κ . The maximal distance between the graphs #6.2 and #5.2 is
achieved at the local minimum of the graph #5.2 at ainc

κ = 13.6. Right
from this point, i.e., with an increasing amplitude ainc

κ , the distance
between the graphs #6.2 and #5.2 shows no significant change. The
maximum value of the generation is achieved at an amplitude close
to the intersection of curves #2 and #6.1, but shifted to the point
of the local minimum of the curve #5.2, see R3κ, T3κ, W3κ/Wκ in
Figure 11(a) and Figure 7(b).

Figures 11(e), (f) present the characteristic distribution of the
eigen-fields corresponding to the branches of the eigen-frequencies
under consideration. The graphs of the eigen-fields of type H0,0,4 are
labeled by #1, the graphs of the eigen-fields of type H0,0,10 by #2.

The numerical results presented in this paper were obtained using
an approach based on the description of the wave scattering and
generation processes in a nonlinear, cubically polarisable layer by a
system of nonlinear integral Equation (11), and of the corresponding
spectral problems by the nontrivial solutions of (14). We have
considered an excitation of the nonlinear layer defined by the
condition (15). For this case we passed from (11) to (12) and
from (13) to (14) by the help of Simpson’s quadrature rule. The
numerical solution of (12) was obtained using the self-consistent
iterative algorithm ([5, 6]). The problem (14) was solved by means
of Newton’s method. In the investigated range of parameters, the
dimension of the resulting systems of algebraic equations was N = 301,
and the relative error of calculations did not exceed ξ = 10−7.

5. CONCLUSION

We presented results of a computational analysis based on a
mathematical model of resonance scattering and generation of waves on
an isotropic nonmagnetic nonlinear layered dielectric structure excited
by a packet of plane waves in a self-consistent formulation, where the
analysis is performed in the domain of resonance frequencies [2, 5, 6].
Here, both the radio [9] and optical [12] frequency ranges are of
interest. The wave packets consist of both strong electromagnetic fields
at the excitation frequency of the nonlinear structure (leading to the
generation of waves) and of weak fields at the multiple frequencies
(which do not lead to the generation of harmonics but influence on
the process of scattering and generation of waves by the nonlinear
structure). The model reduces to a system of nonlinear boundary-
value problems of Sturm-Liouville type or, equivalently, to a system of
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nonlinear integral equations. The solution of these nonlinear problems
was obtained rigorously in a self-consistent formulation and without
using approximations of the given field, slowly varying amplitudes etc..

The approximate solution of the nonlinear problems was obtained
by means of solutions of linear problems with an induced nonlinear
dielectric permeability. The analytical continuation of these linear
problems into the region of complex values of the frequency parameter
allowed us to switch to the analysis of spectral problems. In the
frequency domain, the resonant scattering and generation properties of
nonlinear structures are determined by the proximity of the excitation
frequencies of the nonlinear structures to the complex eigen-frequencies
of the corresponding homogeneous linear spectral problems with the
induced nonlinear dielectric permeability of the medium.

We presented a collection of numerical results that describe
interesting properties of the nonlinear permittivities of the layers as
well as their scattering and generation characteristics. In particular,
for a nonlinear single-layered structure with decanalising properties,
the effect of type conversion of generated oscillations was observed.

We were able to show the characteristic dynamical behaviour
of the relative Q-factor of the eigenmodes and the energy of higher
harmonics generated by canalising as well as decanalising nonlinear
layers. For an increasing amplitude of the exciting field, an increase
of the generated energy in the higher harmonics is accompanied by a
monotonic decrease of the relative Q-factor of the eigenoscillations.

The results demonstrate the possibility to control the scattering
and generating properties of a nonlinear structure via the intensities
of its excitation fields. They also indicate a possibility of designing
a frequency multiplier and other electrodynamical devices containing
nonlinear dielectrics with controllable permittivity.
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