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Numerical Method of Computing the Impedance of a Twin High
Current Busduct of Rectangular Hollow Conductors

Joanna Kolanska-Pluska1, Pawel Jablonski 2, and Zygmunt Piatek3, *

Abstract—In this paper, a new numerical method of calculating the total impedance of a twin high
current busduct consisting of rectangular hollow busbar is proposed. The method is based on the integral
equation method and partial inductance theory. Results for impedance of this twin high current busduct
have been obtained, and the skin and proximity effects have also been taken into consideration. The
validation of the proposed method is carried out through Finite Element Method (FEM) and laboratory
measurements, and a reasonable level of accuracy is demonstrated.

1. INTRODUCTION

In the process of induction heating of metals the inductor is often powered by a single phase transmission
line in the form of rectangular hollow conductor. This allows simultaneous cooling the track with running
water flowing inside the phase conductors [1–4]. One example of the power systems with internal coil
in the induction hardened pipe loads is shown in Fig. 1.

Accurate calculation of impedance of the twin high current busduct and inductor is especially
important during parameter selection of supply source. There are many approximate methods of
determining the self and mutual inductance of rectangular busbar trunking system, e.g., described
in [5–16]. Their resistance with the skin effect can be determined using graphs given in [17] in the case
of hollow square copper tubes, only. The geometric mean distance method makes the self inductance
possible to determine for any hollow rectangular conductor but in the case of DC only [18]. There
is no analytical formula for the mutual inductance between two hollow rectangular busbars. So this
study paper describes a new numerical method of computing the total impedance (resistance, self and
mutual inductances) of a twin high current busduct of rectangular hollow conductors and the skin and
proximity effects are also taken into consideration.

2. ALGORITHM FOR DETERMINING THE TOTAL IMPEDANCE

Let us consider a system of two rectilinear profiled lines of rectangular cross-section and possibly
different lengths l1 and l2, made of non-ferromagnetic material of magnetic permeability µ0 and electrical
conductivity σ (Fig. 2).

Suppose that between the two ends of the twin feeder there are forced time-harmonic voltages of
complex values U 1 and U 2 and angular frequency ω. If I 1 is the current in the system, then

Z =
U1 − U2

I1

. (1)
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Figure 1. Induction heater setup: 1 — high current busduct (bandaged), 2 — inner inductor, 3 —
workpiece (heated cylindrical element).
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Figure 2. Computational model of rectangular hollow current busduct.

The impedance can be also found via electromagnetic field theory. The electric field at point X
has the potential part −∇V (X) and the induced part −jωA(X), and the resultant electric field equals

E(X) = −∇V (X)− jωA(X) (2)

with

A(X) =
µ0

4π

2∑

n=1

∫

νn

J(Y )dx2dy2dz2√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

(3)

where X = X(x1, y1, z1) is the point of observation, Y = Y (x2, y2, z2) is the source point, and νn is
the volume of n-th line, n = 1, 2.

Having regard to the Ohm’s law
J = σE (4)

and Equations (2) and (3), common integral equation [6, 7] is obtained:

1
σ
J(x1, y1, z1)+jω

µ0

4π

2∑

n=1

∫

νn

J(x2, y2, z2)dx2dy2dz2√
(x1 − x2)2 + (y1−y2)2 + (z1−z2)2

= −∇V (x1, y1, z1) (5)

In order to obtain the numerical solution of Equation (5), the volume of integration of individual
lines shall be divided into elements in the form of rectangular subbars. Due to specific shape of the
busbars, each of them can be considered as consisting of four bars making its walls (see Fig. 3).

Each bar is then divided into subbars, the cross section area of which is:

∆S(p) = ∆x(p)∆y(p) (6)
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Figure 3. Busduct division into bars (cross-section).

with

∆x(p) =
X

(p)
2 −X

(p)
1

N
(p)
x

, ∆y(p) =
Y

(p)
2 − Y

(p)
1

N
(p)
y

(7)

where (X(p)
1 , Y

(p)
1 ) and (X(p)

2 , Y
(p)
2 ) are coordinates of the left bottom and right top corners of the

cross-section of p-th subbar, p = 1, 2, . . . , 8, and N
(p)
x and N

(p)
y are the numbers of divisions of the

cross-section along directions x and y (see Fig. 4).
The domain of k-th subbar of p-th bar is denoted as ν

(p)
k . Let N (p) = N

(p)
x N

(p)
y be the total number

of subbars within each bar. The total current in each subbar, I
(p)
k , p = 1, 2, . . . , 8, k = 1, 2, . . . , N (p),

is assumed to have constant density as below

J(x1, y1, z1)|(x1,y1,z1)∈ν
(p)
k

=
I

(p)
k

∆S(p)
az1 (8)

where az1 is a unit vector in the direction of z1 axis.
In Equation (5), approximation (8) is substituted and the integral over regions ν1 and ν2 is expressed

as the sum of integrals over subbars ν
(p)
k . Then the equation is dotted with az1 and integrated over
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Figure 5. Parameters defining the position of two subbars; w1, w2, . . . , w12 determine coordinates of
opposite corner points of subbars (p, k) and (s, l)

subbar ν
(s)
l . As a consequence, the resulting equation can be written as follows:

R
(s)
l I

(s)
l + jω

8∑

p=1

N(p)∑

k=1

M
(s,p)
l,k I

(p)
k = U

(s)
l (9)

where

R
(s)
l =

l(s)

σ∆S(s)
(10)

is the DC resistance of subbar ν
(s)
l and

M
(s,p)
l,k =

µ0

4π

1
∆S(s)∆S(p)

∫

ν
(s)
l

∫

ν
(p)
k

dx1dy1dz1dx2dy2dz2√
(x1−x2)2+(y1−y2)2+(z1−z2)2

(11)

is the DC mutual inductance between subbars ν
(s)
l and ν

(p)
k .

Inductances M
(s,p)
l,k are expressed by sextuple integral, but they can be evaluated analytically [6, 7].

This is of particular importance if ν
(s)
l = ν

(p)
k (when the volume integral is calculated twice over the same

subbar), because then the integral becomes improper, and its numerical computation would therefore
be difficult.

By adopting the notation as shown in Fig. 5, sextuple integral (11) can be considered as a function
of nine variables

M
(
∆x(p), ∆x(s), ∆y(p),∆y(p), l(p), l(s), d

(p,s)
x(k,l), d

(p,s)
y(k,l), d

(p,s)
z(k,l)

)
=

µ0

4π

1
∆x(p)∆y(p)∆x(s)∆y(s)

×
∆x(p)∫

x1=0

∆y(p)∫

y1=0

l(p)∫

z1=0

d
(p,s)
x(k,l)

+∆x(s)∫

x2=d
(p,s)
x(k,l)

d
(p,s)
y(k,l)

+∆y(s)∫

y2=d
(p,s)
y(k,l)

d
(p,s)
z(k,l)

+l(s)∫

z2=d
(p,s)
z(k,l)

dx1dy1dz1dx2dy2dz2√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

, (12)
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where l(p), l(s) are the lengths of subbars, ∆x (p), ∆x (s), ∆y(p), ∆x (s) are the transverse dimensions of
the subbars, and d

(p,s)
x(k,l), d

(p,s)
y(k,l), d

(p,s)
z(k,l) are the offsets between the subbars along the axes x, y, z. These

symbols are defined in Figs. 4 and 5.
Function (12) of nine variables is an analytical function. In the considered busduct, d

(p,s)
z(k,l) = 0,

l(p) = l(s) = l. Furthermore, if we assume ∆x (p) = ∆x (s) = ∆x, ∆y(p) = ∆y(s) = ∆y, and denote
shortly dx for d

(p,s)
x(k,l) and dy for d

(p,s)
y(k,l), then the following function of five variables M(∆x, ∆y, l, dx, dy)

will be obtained:

M(∆x,∆y, l, dx, dy) =
µ0

4π

1
(∆x∆y)2

∆x∫

x1=0

∆y∫

y1=0

l∫

z1=0

dx+∆x∫

x2=dx

dy+∆y∫

y2=dy

l∫

z2=0

dx1dy1dz1dx2dy2dz2√
(x1−x2)2 + (y1−y2)2+(z1−z2)2

(13)
However, these simplifications are not crucial, because the accurate solution was obtained as a result of
complex integrations of formula (13), without any simplifying assumptions, in accordance to formula (20)
described in [6]:

M
(
∆x(p), ∆x(s),∆y(p),∆y(p), l(p), l(s), d

(p,s)
x(k,l), d

(p,s)
y(k,l), d

(p,s)
z(k,l)

)

=
µ0

4π

1
∆x(p)∆y(p)∆x(s)∆y(s)

4∑

i=1

4∑

j=1

4∑

k=1

(−1)i+j+k+1F (αi, βj , γk) (14)

where

α1 = d
(p,s)
x(k,l) −∆x(p), α2 = d

(p,s)
x(k,l) + ∆x(s) −∆x(p),

α3 = d
(p,s)
x(k,l) + ∆x(s), α4 = d

(p,s)
x(k,l),

β1 = d
(p,s)
y(k,l) −∆y(p), β2 = d

(p,s)
y(k,l) + ∆y(s) −∆y(p),

β3 = d
(p,s)
y(k,l) + ∆y(s), β4 = d

(p,s)
y(k,l),

γ1 = d
(p,s)
z(k,l) − l(p), γ2 = d

(p,s)
z(k,l) + l(s) − l(p),

γ3 = d
(p,s)
z(k,l) + l(s), γ4 = d

(p,s)
z(k,l)

(15)

and [6]

F (x, y, z) =
1
72

[F1(x, y, z) + F1(y, z, x) + F1(z, x, y)] (16)

where

F1(x, y, z) =
6
5
x2

(
x2−3y2

)√
x2+y2+z2−12x3yz tan−1 yz

x
√

x2+y2+z2

−3x
(
y4 − 6y2z2 + z4

)
ln

(
x +

√
x2 + y2 + z2

)
(17)

The self inductance is obtained in the singular case, when the subbars overlap themselves:

L(∆x,∆y, l) = lim
d
(p,s)
x(k,l)

→0

lim
d
(p,s)
y(k,l)

→0

lim
d
(p,s)
z(k,l)

→0

M
(
∆x,∆x,∆y, ∆y, l, l, d

(p,s)
x(k,l), d

(p,s)
y(k,l), d

(p,s)
z(k,l)

)
, (18)

which after evaluating the limits yields [6]:

L(∆x, ∆y, l) =
µ0

120π(∆x∆y)2
[F2(∆x,∆y, l) + F2(∆y, l,∆x) + F2(l, ∆x,∆y)] (19)
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where

F2(x, y, z) = 4x5 + 4
(
x4 − 3x2y2 + y4

)√
x2 + y2 + 4x2

(
x2 − 3y2

) √
x2 + y2 + z2

−40x3yz tan−1 yz

x
√

x2 + y2 + z2
+ 30x2y2z ln

√
x2 + y2 + z2 + z√
x2 + y2 + z2 − z

−5x


y4 ln

(√
x2 + y2 + z2 + x

)(√
x2 + y2 − x

)
(√

x2 + y2 + z2 − x
)(√

x2 + y2 + x
)

+z4 ln

(√
x2 + y2 + z2 + x

)(√
x2 + z2 − x

)
(√

x2 + y2 + z2 − x
)(√

x2 + z2 + x
)


 (20)

Since function (11) is known now, the system of integral Equation (5) can be discretized according to
Equation (9). Equations (10) and (11) yield the following matrix elements of the system of Equation (9):

Z
(s,p)
l,k = R

(s)
l δs,pδl,k + jωM

(s,p)
l,k (21)

where δi,j is Kronecker delta. The system of Equation (9) can now be rewritten in the form of

8∑

p=1

N(p)∑

k=1

Z
(s,p)
l,k I

(p)
k = U

(s)
l (22)

Equation (22) is solved with respect to currents I (p)
k . Therefore, the reverse matrix (admittance

matrix) shall be computed:

Y =
[
Y

(s,p)
l,k

]
=

[
Z

(s,p)
l,k

]−1
(23)

and thus, from Equation (22) it follows that:

I
(p)
k =

8∑

s=1

N(s)∑

l=1

Y
(s,p)
l,k U

(s)
l (24)

Total current in m-th busbar can be expressed by the formula

Im =
4m∑

p=4(m−1)+1

N(p)∑

k=1

I
(p)
k (25)

or by using Equation (24) in (25):

Im =
4m∑

p=4(m−1)+1

N(p)∑

k=1

8∑

s=1

N(s)∑

l=1

Y
(s,p)
l,k U

(s)
l (26)

The voltage U (s)
l for subbars belonging to the same busbar are as follows:

U
(s)
l =

{
U1 for 1 ≤ s ≤ 4
U2 for 5 ≤ s ≤ 8

(27)

Thus, Equation (26) can now be written as:

Im =
4m∑

p=4(m−1)+1

N(p)∑

k=1

2∑

n=1

4n∑

s=4(n−1)+1

N(s)∑

l=1

Y
(s,p)
l,k Un (28)
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After changing the order of summation it becomes:

Im =
2∑

n=1




4m∑

p=4(m−1)+1

N(p)∑

k=1

4n∑

s=4(n−1)+1

N(s)∑

l=1

Y
(s,p)
l,k


Un (29)

If we define

Y m,n =
4m∑

p=4(m−1)+1

N(p)∑

k=1

4n∑

s=4(n−1)+1

N(s)∑

l=1

Y
(s,p)
l,k (30)

then Equation (29) will take the form as follows:

Im =
2∑

n=1

Y m,nUn = Y m,1U1 + Y m,2U2 (31)

or after solving it with respect to U n:

Un =
2∑

m=1

Zm,nIm = Z1,nI1 + Z2,nI2 (32)

where [
Zm,n

]
=

[
Y m,n

]−1 (33)

According to Equation (1), the total impedance of the busduct equals then

Z =

[
Z1,1I1 + Z1,2(−I1)

]− [
Z2,1I1 + Z2,2(−I1)

]

I1

= Z1,1 + Z2,2 − Z1,2 − Z2,1 (34)

3. EXPERIMENTAL AND NUMERICAL VALIDATIONS

The computational model was verified using the busduct shown in Fig. 6. Table 1 shows the values of
geometric and supply parameters used during numerical simulations and experimental measurements.
The busduct was made of copper (σ = 56 MS/m).
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Figure 6. The busduct under consideration.

Table 1. Parameter values of the busduct under consideration.

l [mm] a [mm] h [mm] t [mm] x0 [mm]
2100 10 13,5 2 3
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The busduct was also modeled in Finite Element Method Magnetics (FEMM) software (Fig. 7),
which solves Helmholtz equation for vector magnetic potential using 2D finite elements [19].

In order to verify the computed total impedance of the busduct, also measurements were performed.
The busduct supplied the inductor of induction heater used in hardening the inner surfaces of cylindrical
charges (Fig. 8). During operation the system was cooled with water. The current and voltage were
measured with use of a digital recorder both on the input terminals of the system and the inductor
terminals. The total impedance was computed by Ohm’s law for the first harmonic of voltage and
current. The current was taken via Rogowski coil CWT 30 B.

The results of computations and measurements of the total impedance of the high-current busduct
under consideration are presented in Table 2.

As seen from Table 1, values of impedance evaluated with different methods and measured agree
on acceptable level of accuracy.

Figure 7. Cross-section of the conductors in FEMM.

Figure 8. Measurement setup for high-current busduct impedance: 1 — bandaged busduct, 2 —
heated element (workpiece), 3 — power inverter, 4 — supply, 5 — cooling pipes, 6 — Rogowski coil.

Table 2. The total impedance of the considered high-current busduct.

f [Hz] Proposed method FEMM Measurements

0 R=0.916 [mΩ] R=0.9156 [mΩ] −
50 Z =0.89+j0.26 [mΩ] Z =0.96+j0.20 [mΩ] Z =0.92+j0.23 [mΩ]

1000 Z =1.53+j3.96 [mΩ] Z =1.63+j3.83 [mΩ] Z =1.44+j5.77 [mΩ]

4400 Z =2.97+j15.23 [mΩ] Z =2.76+j12.69 [mΩ] Z =2.81+j16.19 [mΩ]

10000 Z =4.38+j30.18 [mΩ] Z =4.55+j28.47 [mΩ] Z =4.34+j28.03 [mΩ]
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4. CONCLUSIONS

This paper describes the method of computing the total impedance of a twin high current busduct of
rectangular hollow conductors. The busduct can be used to supply the inductor for induction heater.
Total impedance value of the busduct was computed, taking into account the effect of load-back, which
has particular meaning during the stage of designing and selecting parameters for the supply source.
Computations of impedance were performed for several values of frequency using formula (34). The
computational and experimental values of the total impedance stay in agreement on a reasonable level,
which is a confirmation of validity of the computational model presented in the paper.

REFERENCES
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