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REQUIRED NUMBER OF OTA ANTENNAS IN THE
MULTI-PROBE TEST SYSTEM
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Abstract—The number of OTA antennas of the multi-probe over-
the-air (OTA) test system should be large enough for accurate OTA
testing yet not too large due to the increasing cost. In this work,
the required number of OTA antennas is studied using the spatial
correlation function. Some key issues are discussed.

1. INTRODUCTION

The multiple-input multiple-output (MIMO) system has drawn
considerable attention due to its enhancement of the spectral
efficiency in multipath environments [1]. Opposite to the real-
life measurements, over-the-air (OTA) tests in controlled (emulated)
multipath environments are fast, repeatable and cost-effective [2].
There exist three types of OTA test systems, i.e., the two-stage OTA
system [3], the reverberation chamber (RC) based OTA system [4],
and the anechoic chamber (AC) and the fading emulator based multi-
probe system [5]. The two-stage OTA system requires measuring the
antenna pattern in an AC and then using the measured antenna pattern
together with the fading emulator for conductive measurement. The
availability of external antenna ports on the device under test (DUT)
and the assumption that the external RF (radio frequency) cable has
little effect on the actual antenna of the DUT make the two-stage
OTA system less preferred than the other two OTA systems. The
RC based OTA system has the lowest cost among the three OTA
systems, yet it is usually limited to a special reference environment (i.e.,
isotropic scattering environment). The multi-probe system can flexibly
emulate channels with different angular distributions. Therefore, it is
particularly suitable for MIMO-OTA testing [5–9].
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Nevertheless, many probes (or OTA antennas) of the multi-probe
system are needed for an accurate measurement and each OTA antenna
has to be connected to one port of the channel emulator, which
increases the cost of the multi-probe system. As a result, there is an
urgent need for determining the required number of OTA antennas for
the multi-probe system with certain targeted measurement accuracy.
Two common performance metrics for the multi-probe system are
the spatial correlation function and the synthesized plane wave [6–
8]. Unfortunately, analyses based on the two different metrics tend to
result in different required numbers of OTA antennas [9].

In this work, effort is exerted in the investigation of the required
number of OTA antennas. Specifically, we present an analysis for
determining the required number of OTA antennas based on the spatial
correlation function. The resulting required number of OTA antennas
is in agreement with that obtained using the spherical wave expansion
method based on the synthesized plane wave [9]. Thus, this work
helps provide a unified required number of OTA antennas for the
multi-probe OTA test system. Moreover, the required number of
OTA antennas presented in [9] is an immediate result of applying the
spherical wave expansion of the synthesized plane wave; analyses such
as the decay rate of the synthesized error have been omitted. This work
also provides discussions on correlations between the expanded modes
(and therefore the possibility of using even fewer OTA antennas yet
with different placements of the OTA antennas for emulating different
angular distributions) and the decay rate of the synthesized error of
the spatial correlation function.

2. ANALYSIS

Most multi-probe OTA test systems are in two-dimensional (2D)
configuration due to the cost constraint. Thus, this work will focus on
the 2D multi-probe system. For analysis simplicity, we first consider
the single-polarization case. The obtained required number of OTA
antennas can be extended to the dual-polarization case by simply
doubling it [9]. Assuming the far field condition is satisfied in the
testing region of the 2D multi-probe system, the (true) multipath field
to be emulated can be expressed as

F (x) =

2π∫

0

α (φ) exp (jx · k) dφ (1)

where φ is the angle of arrival, α(φ) the random complex-valued gain
in the angle of arrival, x the spatial position, k = (k, φ) in the polar
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form, k = 2π/λ with λ denoting the wavelength, and · the dot product.
The power angular spectrum (PAS) is

P (φ) =
E [α (φ) α ∗ (φ)]

2π∫

0

E [α (φ) α ∗ (φ)] dφ

(2)

where the superscript * denotes the complex conjugate. The spatial
correlation function is defined as

ρ (x1,x2) =
E [F (x1) F ∗ (x2)]√

E [F (x1) F ∗ (x1)]E [F (x2) F ∗ (x2)]
(3)

where x1 and x2 are two spatial positions between which the spatial
correlation function is evaluated. Assuming uncorrelated scattering
(US) [1] and combining (1)–(3), the spatial correlation boils down to

ρ (∆x) =

2π∫

0

P (φ) exp (j∆x · k) dφ (4)

where the spatial distance ∆x = x1 − x2.
The plane wave exp(j∆x · k) can be expanded using the Jacobi-

Anger identity

exp (j∆x · k) =
∞∑

n=−∞
jnJn (k∆x) exp [jn (ϕ− φ)] (5)

where ∆x · k = k∆x cos(ϕ− φ) with ϕ denoting the angle between x1

and x2, and Jn is the Bessel function of the first kind with order n.
Substituting (5) into (4),

ρ(∆x) =

2π∫

0

P (φ)
∞∑

n=−∞
jnJn(k∆x) exp [jn(ϕ− φ)]dφ

=
∞∑

n=−∞
jnJn(k∆x)P̃n exp(jnϕ) (6)

where

P̃n =

2π∫

0

P (φ) exp (−jnφ) dφ (7)

is the nth Fourier series coefficient of the PAS.
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Similarly, using the Jacobi-Anger identity, the multipath field can
be expanded as

F (x) =
∞∑

n=−∞
jnJn (k∆x) α̃n exp (jnθ) (8)

where θ is the angle of x and

α̃n =

2π∫

0

α (φ) exp (−jnφ) dφ (9)

represents the nth Fourier series coefficient of the random angular
gain α(φ). In a 2D single-polarized multi-probe OTA system with
K = 2N + 1 OTA antennas, the emulated multipath field can be
expressed as

F̂ (x) =
N∑

n=−N

jnJn (k∆x) α̃n exp (jnθ). (10)

Substituting (2) and (9) into (7), after a few arrangements, one
obtains

P̃n =

E




2π∫

0

α (φ) exp (−jmφ) dφ

2π∫

0

α ∗ (φ) exp (−j(n−m)φ) dφ




E




2π∫

0

α (φ) exp (−jmφ) dφ

2π∫

0

α ∗ (φ) exp (jmφ) dφ




=
E

[
α̃mα̃m−n∗

]

E [α̃mα̃m∗] . (11)

Thus, P̃n is the correlation coefficient of α̃n in (8) or (10). This implies
that α̃n are uncorrelated only for the uniform APS case and that for
a particular non-uniform APS, in theory less than K OTA antennas
are needed to emulate the multipath field. The latter corresponds
to, e.g., the Karhunen-Loève (KL) expansion [10] of the multipath
field to yield uncorrelated coefficients. However, the KL expansion for
each APS requires a distinct placement of the OTA antennas, which
is impractical in OTA tests where the OTA antennas are usually fixed
and uniformly placed along a circle. Hence, this work uses the Jacobi-
Anger expansion which does not require different placements of OTA
antennas for emulating different APSs. Note that the Jacobi-Anger
expansion in (8) or (10) corresponds to the 2D spherical wave expansion
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similar to [9]. Thus, the required number of OTA antennas based on
the reflectivity level of the synthesized plane wave,

ε = max





∣∣∣F̂ (x)− F (x)
∣∣∣

max {F (x)}



 , (12)

will be the same as that in [9]. Instead, we focus on the required
number of OTA antennas based on the spatial correlation function in
this work.

Similar to (10), the emulated spatial correlation function can be
expressed as

ρ̂ (∆x) =
N∑

n=−N

jnJn (k0∆x)P̃n exp (jnϕ) . (13)

As pointed out in [6], for the measurement-based evaluation of the
spatial correlation function, different results may occur when the
spatial sampling points are limited on a line or on a circle. To avoid
this problem, the whole test zone with a radius of r0 is sampled in this
work. Specifically, we define the normalized mean square error of the
emulated spatial correlation function as

ξ =

E




r0∫

0

2π∫

0

|ρ̂ (∆x)− ρ (∆x)|2 rdϕdr




E




r0∫

0

2π∫

0

|ρ (∆x)|2 rdϕdr




(14)

where the expectation is taken over the random variable P̃n.
Substituting (6) and (13) into (14) and exchanging the order of
integration and expectation,

ξ =

r0∫

0

2π∫

0

∑

|n|>N

J2
n (kr)E

[∣∣∣P̃n

∣∣∣
2
]
rdϕdr

r0∫

0

2π∫

0

∞∑
n=−∞

J2
n (kr)E

[∣∣∣P̃n

∣∣∣
2
]

rdϕdr

. (15)

As can be seen from (7), P̃n is independent of ϕ and E[|P̃n|2] =
2π∫
0

E[P (φ)P ∗ (φ)]dφ is independent of n. Thus, the term E[|P̃n|2]
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in both the numerator and denominator of (15) cancels each other.
Note that replacing ∆x with r gives no difference due to the double

integration and that
∞∑

n=−∞
J2

n(kr) = 1. Therefore, (15) boils down to

ξ =

2

r0∫

0

∑

n>N

J2
n (kr)rdr

r2
0

/
2

. (16)

The factor of 2 appears because
∑
|n|>N J2

n(kr) = 2
∑

n>N J2
n(kr). As

can be seen, ξ does not depend on the PAS. Hence, the required number
of OTA antennas obtained based on ξ is valid for any PAS (which
is desirable in that the multi-probe OTA system is able to emulate
channels with different PASs).

By virtue of the properties of the Bessel function, the summation
term in the integral in (16) is upper bounded by

ς =
∑

n>N

J2
n (kr) ≤

∑

n>N

(kr/2)2n

(n!)2

=
(kr/2)2(N+1)

[(N + 1)!]2
∑

n≥0

[(N + 1)!]2 (kr/2)2n

[(N + n + 1)!]2
= η(N) (17)

where ! denotes the factorial operator. Since, for an integer n1,∑
n≥0

[(N +1)!]2/[(N +n+1)!]2 ≥ ∑
n≥0

[(N +n1 +1)!]2/[(N +n+n1 +1)!]2,

η(N + n1)
η(N)

=
(kr/2)2n1 [(N + 1)!]2

[(N + n1 + 1)!]2

∑

n≥0

[(N + n1 + 1)!]2(kr/2)2n

[(N + n + n1 + 1)!]2

∑

n≥0

[(N + 1)!]2(kr/2)2n

[(N + n + 1)!]2

≤ (kr/2)2n1 [(N+1)!]2

[(N+n1+1)!]2
=

(kr/2)2n1

[(N + 2) . . . (N+n1+1)]2
<

(
kr

2N

)2n1

. (18)

The last inequality in (18) follows because (N + 2) . . . (N + n1 + 1) >
Nn1 . When N is larger than kr, η(N + n1)/η(N) < (1/2)2n1 , namely,
ζ decays exponentially.

Moreover, it can be easily checked by numerical calculation that∑
n>N

J2
n(kr) = (1− ∑

|n|≤N

J2
n(kr))/2 is negligible for N = dkre (i.e.,

the smallest integer that is larger than kr). This implies that the
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mean square error of the emulated spatial correlation function (16) is
negligible.

To be accurate over the whole test zone, the required number of
OTA antennas is chosen to be

Ksp = 2N + 1 = 2 (dkr0e+ n1) + 1. (19)

Note that n1 is needed to ensure different level of accuracies and to
be consistent with the spherical expansion approach in [9], according
to which, n1 ranges from 0 to 10 in practice depending o the desired
accuracy.

It should be noted that the above analysis is for the single
polarization case. For the dual-polarized multi-probe OTA system,
the required number of OTA antennas is [9],

Kdp = 2Ksp = 4 (dkr0e+ n1) + 2. (20)

Equation (20) is identical to the required number of OTA antennas
derived in [9] based on the spherical wave expansion of the synthesized
plane wave.

3. SIMULATION

We resort to simulations for verifying the analysis. To that end, we
assume single-polarized uniform angular distribution with a coherence
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Figure 1. Comparison of the required number of OTA antennas and
the number of uncorrelated samples on a circle for the single-polarized
uniform angular distribution case.
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distance of λ/2 [1]. Travelling on a circle with a radius of r0, the
maximum number of uncorrelated samples is

Nind =
⌈

2r0 sin(π/Nc)Nc

λ/2

⌉
+ 1 (21)

where Nc is chosen to be larger than Nind for a given r0 (i.e., 0.2 m) over
the whole frequency range (i.e., 500 ∼ 3000MHz), e.g., Nc = 50. The
derivation of (21) is quite intuitive: the number of λ/2 (uncorrelated
samples) is obtained by dividing the summation of all the piece-wise
linear distances between consecutive platform positions by λ/2 plus
one. As mentioned in Section 2, required number of OTA antennas for
the single-polarization case equals the number of uncorrelated modes
(samples). Fig. 1 shows the comparison of (21) and (19) with n1 = 0.
As expected, the derived required number of OTA antennas equals that
of uncorrelated samples on a circle (i.e., the two curves overlap each
other).

4. CONCLUSION

In this work, by expanding the spatial correlation function using
the Jacobi-Anger identity, the required number of OTA antennas is
derived. The required number of OTA antennas is universal for the
emulation of different APSs using the multi-probe OTA test system.
The number of OTA antennas has been studied either using the spatial
correlation function or the synthesized plane wave in literature [7–9].
However, approaches based on the two metrics tend to yield different
results. The required number of OTA antennas derived in this work
(based on the spatial correlation function) is in agreement with that
derived by performing spherical wave expansion of the plane wave in [9].
Hence, this work provides a unified required number of OTA antennas
for the multi-probe OTA test system. Moreover, the required number
of OTA antennas derived in [9] is an immediate result of the spherical
wave expansion; information like the decay rate of the synthesized error
is not available. In this work, key issues such as correlations between
the expanded modes and the decay rate of the synthesized error of the
spatial correlation function are also discussed.
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