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Abstract—The analysis and design of the multi-element coupled lines,
in conjunction with the junction discontinuity effect, is presented, and
its applicability in high power rf regime is discussed. Junctions are
usually employed to connect two different coupled elements, which
gives rise to undesirable reactance, i.e., junction discontinuity effect.
These effects are found prominent in the high power coupled lines for
HF and VHF applications because of its large structural dimensions.
The design and simulation of 3-element, 8.34 ± 0.2 dB coupled line
section rated for 38 to 112 MHz and 200 kW has been performed.
The simulated results are significantly deviated from the theoretically
calculated ones where the discontinuity effect is usually ignored. A
generalized theoretical procedure is developed to take into account the
effect of junction discontinuity at the designing stage. The theory
is applied to the 3-element 8.34 ± 0.2 dB coupled-line section, and
simulation is performed by using standard Ansoft HFSS software. The
HFSS simulation results are in close agreement with the theoretical
predictions.

1. INTRODUCTION

The multi-element coupled lines are used in the development of many
components for rf and microwave systems such as balanced mixer,
phase correlator, balanced amplifier, balanced modulator, attenuator,
power measurements, antenna array networks. One of its most popular
applications is the development of strip-line based 3 dB broadband
hybrid coupler in HF and VHF range of frequencies. These 3 dB hybrid
couplers are used as power combiner/divider or to protect the rf source
by coupling the reflected power with the isolated port, i.e., terminated
with the dummy load [1–3].
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The hybrid coupler also has an application in tokamak plasma
fusion research where rf power is introduced with the help of multiple
coaxial transmission lines and antennae. Plasma load impedance
continuously varies, because this rf power is reflected back to the
generator, and at certain level it can damage the generator. In order to
avoid the reflection, 3 dB hybrid coupler in certain configuration is used
so that the reflected power is transmitted to the isolated port at which
the dummy load is connected. The ion cyclotron resonance heating
(ICRH) system of tokamak uses continuous wave radio frequency
(cwrf) of 10 to 110MHz and 100 kW onward (up to tens of MW).
The ratings depend upon geometry of the tokamak, desired plasma
parameters and toroidal magnetic field at the center of tokamak vessel.
The broadband 3 dB hybrid coupler in ICRH system is used to divide
the rf power coming from the source and to protect the rf source
by coupling of reflected power with dummy load [4]. Single quarter-
wavelength coupled-line based hybrid coupler works in narrow band of
frequencies and has limited applications. The multi-octave bandwidth
can be achieved by means of cascading several quarter-wavelength
elements called multi-element coupler. In an earlier work, Cristal
and Young [5] have given a theoretical approach for the designing of
symmetrical TEM mode multi-element coupler. The theory leads to
explicit expression for essential parameters, viz., even- and odd-mode
impedances for the elements, and these are tabulated for the 3, 5, 7
and 9 elements coupled lines. The tabulated parameters have been
theoretically obtained for several decades of bandwidth.

It is planned to develop a 3 ± 0.2 dB hybrid coupler rated for
38 to 112 MHz and 200 kW using two 8.34 ± 0.2 dB coupled-lines
sections in tandem consisting of 3 cascaded elements in each section.
Each element of 8.34 dB coupled section is designed with Cristal
tabulated parameters and simulated by using Ansoft High Frequency
Structure Simulator software (HFSS.14) of 14th version. To achieve
the required 8.34 ± 0.2 dB coupling, these three element are arranged
in a certain configuration and connected through the coupled strip-
line junction. The resulting structure is simulated again by using
software HFSS. The simulated results are found significantly deviated
from the calculated values based on Cristal theory of multi-element
coupled line design. Cristal theory holds well for perfect design
and yields ideal performance. However, the theory does not take
into consideration the unavoidable junction discontinuity effect. The
HFSS software takes into account all practical aspects including the
effect of junction discontinuity. The junctions contribute to the
reactance between various quarter-wavelength elements and therefore
degrade the performance of the system. Although degradation in
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return loss and isolation due to effect of discontinuity in coupled
strip-line is reported [6–8] earlier, this effect on the coupling has not
been considered yet. In general, compensation techniques are used
after fabrication if junction discontinuity effects are not considered
at designing stage. The method of compensation for discontinuities
utilizes additional components such as capacitor and open stub [6–10].
Commercially available lumped high-power rf capacitors are large in
size and lossy. Connecting shunt capacitor in coupled line affects the
coupling, and therefore compensation is also needed in the coupling
gap. If open stubs are used, high electric field exists on edges that
may result in arcing. Thus, traditional approach is not suitable for the
development of high power wide-band hybrid coupler.

The junction discontinuity effect depends on junction length in
addition to even- and odd-mode impedances. The deviation becomes
significant in the high-power application because of larger structural
dimensions. The junction length can be extended up to λ/25,
corresponding to center frequency, and hence the performance gets
deteriorated at extremes of the frequency band. This necessitates the
parametric evaluation of junction discontinuity effect in the device.

Here, we report a general theoretical procedure where an
analytical equivalence of junction discontinuity effect is derived for
the known junction parameters. The equivalent parameters of
junction discontinuity effect are incorporated in Cristal theoretical
design parameters for 3-element, 8.34 ± 0.2 dB coupled line section.
The coupling is calculated using standard procedure where the
effect of junction discontinuity is included. In order to get an
ideal performance, i.e., given by Cristal theory one needs to add
compensation corresponding to junction discontinuity. In the process
to verify the obtained results using modified theory (viz. cristal
theory modified by restitution the effect of junction discontinuity
effect), HFSS simulation is performed, and results are found in good
agreement.

Section 2 describes the analysis of the coupled lines using Cristal
parameters. Concept, design and simulation of the designed 3-element,
8.34 dB coupled-line section is explained in Section 3. Theory of
junction discontinuity effect on multi-element coupled-line performance
is given in Section 4. The modified theory for the multi-element
coupled lines is illustrated in Section 5. Application of the modified
theory in the design of 3-element, 8.34±0.2 dB coupled section is shown
in Section 6. Results and discussion of the modified theory for the
design and development of multi-element coupled line are discussed in
Section 7, and conclusions are given in Section 8.
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2. ANALYSIS OF COUPLED LINES

2.1. Single Element Coupled Line

The hybrid coupler shown in Figure 1 consists of two identical lines
1–2 and 3–4 with uniform electrical spacing over electrical length θ.
Here,

Z0eZ0o = Z0. (1)

where Z0e and Z0o represent the even- and odd-mode impedance of
coupled lines. Signals emerging from the four ports can be given as [11]

A1 =
1
2

[Γ0e + Γ0o] ,

A2 =
1
2

[Γ0e − Γ0o] ,

A3 =
1
2

[T0e + T0o] ,

and A4 =
1
2

[T0e − T0o] .

(2)

A1, A2, A3 and A4 represent return loss, output, coupling and
isolation of coupled lines where ports are terminated into matched load
impedance. For the two-port network, Γ0e and Γ0o are the reflected
wave amplitudes for the even and odd modes, respectively, while T0e

and T0o are transmitted wave amplitudes for the even and odd modes,
respectively.

The transmission coefficient T and reflection coefficient Γ are given
by the following equation

Γ =
At + Bt − Ct −Dt

At + Bt + Ct + Dt
,

T =
2

At + Bt + Ct + Dt

(3)

Figure 1. Schematic of quarter wave coupled section.
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where, At, Bt, Ct and Dt are transmission matrix parameter of the
coupled elements. Γ and T represent transmission and reflection
coefficients. Using Equations (2) and (3), A1, A2, A3 and A4 for the
matched coupled lines can be calculated as

A1 = 0,

A2 =
2

2 cos θ + j (Z0e + 1/Z0e) sin θ
,

A3 =
j (Z0e − 1/Z0e) sin θ

2 cos θ + j (Z0e + 1/Z0e) sin θ
,

and A4 = 0.

(4)

2.2. Coupled Line Section with Three Elements

Schematic diagram of the symmetrical 3-element coupler is shown in
Figure 2 where extreme elements are identical. These three elements
are named as B, A, B, where A1, A2, A3, A4 and B1, B2, B3, B4

are the return loss, output, coupling and isolation of element-A and
element-B, respectively. To retain the perfect voltage standing wave
ratio (VSWR) and isolation properties, each element has the same
effective characteristic impedance.

√
Z0eAZ0oA =

√
Z0eBZ0oB = 1. (5)

where Z0eA, Z0eB and Z0oA, Z0oB are normalized even- and odd-mode
impedances of element-A and element-B, respectively.

Initially, amplitude of emerging signal for each section is
computed, and its combination for the multi-element coupler is solved
using graphs network theory. The signal flow graph of the cascaded
three coupled-elements are shown in Figures 3(a) and (b).

These two graphs are identical and represent the forward- and
backward-wave propagation. In perfectly matched condition, port-4 is
isolated (a4 = 0), and resulting signal flow graph is shown in Figure 4.

Figure 2. Schematic of 3-elements, 8.34 dB coupled line section.
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(a)

(b)

Figure 3. Graphic representation of the 3-elements, 8.34 dB coupled
line section. (a) Forward-wave, (b) backward-wave.

Figure 4. Reduced signal flow graph.

The coupled output b3 in terms of the incident wave a1 can be
derived as follows,

b3 = jB3 · e−jθ + e−jθ · jA3 · e−jθ · e−jθ

+e−jθ · e−jθ · jB3 · e−jθ · e−jθ · e−jθ

= jB3 · e−jθ + jA3 · e−j3θ + jB3 · e−j5θ. (6)

The overall coupling b3 of the three cascaded elements can be analyzed
by making use of Equation (6) for the known coupling of element-A
and element-B, i.e., A3 and B3.

The Cristal [5] table for 8.34 ± 0.2 dB, 3-element coupled-lines
section gives the normalized even-mode impedance for element-A as
Z0eA = 1.7848 and for element-B as Z0eB = 1.07434. Using these
values in Equation (4), A3 and B3 are calculated. Now, the overall
coupling b3 for 8.34 ± 0.2 dB, 3-element coupled-lines section using
Cristal tabulated parameter is analyzed and plotted using MATLAB
software as shown in Figure 5. The result shown in Figure 5
represents the Cristal theoretical coupling for the 8.34 ± 0.2 dB, 3-
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Figure 5. Characteristic of 3-elements, 8.34 dB coupled line section
using Cristal theory, where coupling is plotted for 0 to π.

element coupled-lines section where the two extremes are equal and
show ideal performance that one would like to achieve after fabrication
of coupled-line section.

3. CONCEPT, DESIGN AND SIMULATION

In this section, the design and simulation of 8.34 ± 0.2 dB coupled
section rated for 38 to 112MHz and 200 kW are presented. Multi-
octave bandwidth can be achieved by means of cascading several
quarter-wavelength elements called multi-element coupler. Coupling
coefficient of the middle element is kept higher in proportion to the
number of total element used in section. As the number of cascaded
elements is increased, coupling gap of the middle element becomes
narrow that reduces the power handling capability. Three elements
namely B, A and B as shown in Figure 2 are designed to provide
sufficient coupling gap which is essential for desired power rating.

Coupling coefficient of each element can be given by

CA =
(

Z2
0eA − 1

Z2
0eA − 1

)
=

(
1− Z2

0oA

1− Z2
0oA

)
(7)

CB =
(

Z2
0eB − 1

Z2
0eB − 1

)
=

(
1− Z2

0oB

1− Z2
0oB

)
. (8)

From Cristal table Z0eA = 1.7848 and Z0eB = 1.07434 are used in
Equation (7), and CA = 0.5222 and CB = 0.07074 are calculated
corresponding to 6.123 dB and 22.896 dB, respectively. Dimensions
of element-A and element-B are calculated for CA and CB by using
known equations [4, 12, 13]. The coupled strip-line junctions are used
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to join these elements for achieving 8.34± 0.2 dB coupling and further
simulated with HFSS software.

3.1. Simulation of the Designed Model Using HFSS

The model used for the simulation of the 8.34± 0.2 dB coupled section
consisting of 3-cascaded elements is shown in Figure 6. The rectangular
strip-line central conductors are arranged in a particular configuration
and placed in the grounded metallic enclosure of dimension 310 cm×
60 cm × 12 cm. Air within the grounded metallic enclosure is used
as dielectric. The holding studs for the inner strip conductor and
other transition, i.e., required for practical aspect, are avoided so
that junction discontinuity effect can be analyzed independently.
The length of each element is taken to be 100 cm, i.e., quarter
wavelength at center frequency 75 MHz. For the given configuration,
junction length of 5 cm is provided in each element. In the first
step, the designed elements A and B are simulated independently,
and their coupling performances are shown in Figures 7 and 8. The
illustrated performances are verified for calculated values of 6.123 dB
and 22.896 dB at the center frequency.

In the next step, 50 Ω coupled strip-line junction is physically
employed to connect these three elements to achieve 8.34 ± 0.2 dB
coupling, and the simulation is performed again. The simulated

Figure 6. HFSS simulated model of 3-elements, 8.34 dB coupled line
section.
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Figure 9. Using HFSS simulated performance of 3-elements, 8.34 dB
coupled line section.

coupling and output performances are illustrated in Figure 9.
As explained in the previous section, both the maxima of the

coupling or output parameters should be equal in the prescribed
bandwidth. In HFSS simulation results, both the maxima at upper and
lower ends of the frequency band are found unequal, and performances
are significantly deteriorated from the theoretical prediction. This
anomaly does not exist in case of element-A and element-B since the
simulated couplings are in close agreement to calculated values. This
attributes to the reactive effect of junction discontinuity.
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4. THEORY OF JUNCTION DISCONTINUITY

The coupled lines have always characterized by their even- and odd-
mode behavior. The even- and odd-mode analysis of the junction
along with element-A and element-B has been performed. In this
case, junction represents the coupled transition between element-A and
element-B. The even- and odd-mode impedances of the junction are
taken as

Z0eA > Zj0e > Z0eB, Z0oA < Zj0o < Z0oB.

where, Zj0e and Zj0o represent the even- and odd-mode impedances
of junction. Schematic of junction with coupled elements A and B is
shown in Figure 10.

(a) (b)

Figure 10. Schematic of junction between two coupled lines. (a) Even
mode, (b) odd mode.

4.1. Even Mode Analysis of Junction with Element-A

In Figure 10(a), input impedance at point-Q, i.e., Zin(eAQ) is given as

Zin(eAQ) = Zj0e
Z0eB + jZj0e tanβl

Zj0e + jZ0eB tanβl

≈ Zj0e
Z0eB + jZj0eβl

Zj0e + jZ0eBβl
for βl ≤ π/6. (9)

where, Zj0e > Z0eB, l ≤ λ/25 and βl ¿ 1, which implies Z0eBβl ≪ 1.
Therefore, Zin(oAQ) is approximated as,

Zein(eAQ) ≈ Z0eB + jZj0eβl (10)

Above analysis shows that junction discontinuity behaves as series
inductance of Zjoeβl/v with element-A in even mode.

Junction length l in terms of wavelength λ at center frequency f0

and arbitrary frequency f can be written as.

l =
λ0

m0
=

λ

m
⇒ m = m0

(
f0

f

)
. (11)
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where m0 and m represent the wavelength to junction length ratio at
f0 and f , respectively. Now, from Equations (10) and (11), inductive
reactance jXjeA due to junction with element-A can be written as

jXjeA =
j2πZj0e

m0

(
f

f0

)
=

j2πZj0e

m0

(
θ

θ0

)
=

4jZj0eθ

m0
. (12)

where θ and θ0 = π/2 are the electrical lengths of the coupled element
at variable frequency f and at center frequency f0, respectively.

4.2. Odd Mode Analysis of Junction with Element-A

From Figure 10(b), odd-mode admittance at point-Q, i.e., Yin(oAQ) is
given by,

Yin(oAQ) = Yj0o
Y0oB + jYj0o tanβl

Yj0o + jY0oB tanβl
≈ Y0oB + jYj0oβl. (13)

where, Yj0o > Y0oB and βl ¿ 1, which implies Y0oBβl ≪ 1.
Form Equation (13), it can be noted that junction discontinuity

behaves as shunt capacitance of Zj0el/v with element-A in odd mode.
The odd-mode admittance YjoA at frequency f is derived as

jYjoA =
j2πYj0o

m0

(
f

f0

)
(14)

where Yj0o = Zj0e is put in Equation (14)

jYjoA =
j2πZj0e

m0

(
θ

θ0

)
=

4jZj0eθ

m0
(15)

From Equations (12) and (15), series inductance and shunt capacitance
LjeA and CjoA for the even and odd mode for the junction discontinuity
are derived as.

LjeA = CjoA =
Zj0e

m0f0
(16)

Considering the junction discontinuity effect, the even and odd mode
equivalence of element-A has been shown in Figure 11.

Therefore, even- and odd-mode transmission matrix for element-A
is written as[

AAe′ BAe′
CAe′ DAe′

]
=

[
1 jXjeA

0 1

] [
cos θ jZ0eA sin θ
j sin θ
Z0eA

cos θ

] [
1 jXjeA

0 1

]
(17)

Considering Z0oA = 1/Z0eA, transmission matrix for odd mode is
written as.[

AAo′ BAo′
CAo′ DAo′

]
=

[
1 0

jXjoA 1

] [
cos θ j sin θ

Z0eA

jZ0eA sin θ cos θ

] [
1 0

jXjoA 1

]
. (18)
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(a) (b)

Figure 11. Equivalent circuit of the coupled element-A. (a) Even
mode, (b) odd mode.

where AAe′ , BAe′ , CAe′ , DAe′ and AAo′ , BAo′ , CAo′ , DAo′ are the even-
and odd-mode transmission matrix parameter of element-A including
discontinuity effect.

Using Equations (17), (18) and (2), the emerging signals from the
ports of element-A including junction is derived as.

A1′= 0,

A2′=
j sin θ

(
Z0eA− 1

Z0eA

)
+jXjeA

(
2 cos θ− jXjeA sin θ

Z0eA

)

2 (1−jXjeA) cos θ−j
(
Z0eA− 1

Z0eA
(1+jXjeA)2

) ,

A3′=
2

2 (1−jXjeA) cos θ−j
(
Z0eA+ 1

Z0eA
(1+jXjeA)2

)

and A4′= 0.

(19)

where, A1′ , A2′ , A3′ and A4′ are return loss, output, coupling and
isolation of element-A including the effect of junction discontinuity.

4.3. Even Mode Analysis of Junction with Element-B

The junction discontinuity effect with element-B is also analyzed using
the same procedure as that for element-A. As shown in Figure 10(a),
input admittance at point-P , i.e., Yin(eBP ), is given as

Yin(eBP ) = Yj0e
Y0eA + jYj0e tan βl

Yj0e + jY0eA tan βl

≈ Yj0e
Y0eA + jYj0eβl

Yj0e + jY0eAβl
for βl ≤ π/6. (20)
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where, Yj0e > Y0eA, l ≤ λ/25 and βl ¿ 1, which implies Y0eAβl ≪ 1.
Therefore, Yin(eBP ) is approximated as,

Yin(eBP ) ≈ Y0eA + jYj0eβl. (21)

Therefore, junction discontinuity in even mode behaves as shunt
capacitance with element-B. The shunt admittance YjeB can be
written as

jYjeB =
4jθ

m0Zj0e
. (22)

4.4. Odd Mode Analysis of Junction with Element-B

In Figure 10(b), input impedance at point-P , i.e., Zin(eBP ), is given as

Zin(eBP ) = Zj0o
Z0oA + jZj0o tanβl

Zj0o + jZ0oA tanβl

≈ Zj0o
Z0oA + jZj0oβl

Zj0o + jZ0oAβl
Z0oA + jZj0o tanβl. (23)

where, Zj0o > Z0oA, l ≤ λ/25 and βl ¿ 1, which implies jZ0oAβl ≪ 1.
Therefore, Zin(eBP ) is approximated as

Zin(eBP ) ≈ Z0oA + jZj0oβl. (24)

Therefore, junction discontinuity in odd mode behaves as series
inductance with element-B. The series reactance XjoB is derived as

jXjoB =
4jθ

m0Zj0e
. (25)

From Equations (22) and (25), the series inductance and shunt
capacitance due to junction discontinuity are derived as

LjoB = CjeB =
1

m0Zj0e1f0
. (26)

where, LjoB and CjeB are inductance and capacitance in odd and even
mode with element-B due to junction discontinuity. The equivalent
circuit of element-B with junction discontinuity effect is given in
Figure 12.

Therefore, even- and odd-mode transmission matrix for element-B
can be written as
[
ABe′ BBe′

CBe′ DBe′

]
=

[
1 jYj0eB

0 1

] [
cos θ jZ0eB sin θ
j sin θ
Z0eB

cos θ

][
1 jYj0eB

0 1

]
. (27)
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(a)(b)

Figure 12. Equivalent circuit of element-B. (a) Even mode, (b) odd
mode.

Considering Z0oB = 1/Z0eB transmission matrix for odd mode is
written as[

ABo′ BBo′
CBo′ DBo′

]
=

[
1 0

jXj0eB 1

] [
cos θ j sin θ

Z0eB

jZ0eB sin θ cos θ

] [
1 0

jXj0eB 1

]
. (28)

where ABe′ , BBe′ , CBe′ , DBe′ and ABo′ , BBo′ , CBo′ , DBo′ are the even-
and odd-mode transmission matrix parameters of element-B including
the effect of junction discontinuity.

The amplitude and phase of emerging signals from the ports of
element-B by using Equations (27), (28) and (3) are derived as

B1′= 0,

B2′=
j sin θ

(
Z0eB− 1

Z0eB

)
+jYj0eB

(
2 cos θ− jYj0eB sin θ

Z0eB

)

2(1−jYj0eB) cos θ−j
(
Z0eB− 1

ZeB
(1+jYj0eB)2

) ,

B3′=
2

2 (1−jYj0eB) cos θ−j
(
Z0eB+ 1

Z0eB
(1+jYj0eB)2

)

and B4′= 0.

(29)

where, B1′ , B2′ , B3′ and B4′ are return loss, output, coupling and
isolation of element-B including the effect of junction discontinuity.

By using Equation (6), amplitude of coupling for 3-element,
8.34 dB coupled line section including junction discontinuity effect is
written as

b3′ = jB3′ · e−jθ + jA3′ · e−j3θ + jB3′ · e−j5θ. (30)

Coupling for element-A, element-B and 3-element coupled-line section
by using Equations (19), (29) and (30) are plotted using MATLAB
and shown in Figures 13, 14 and 15.

From Figures 13, 14 and 15, one can conclude the following facts.
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Figure 13. Calculated coupling
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(i) In Figure 13, after including the junction discontinuity effect,
coupling of element-A increases to the left and decreases to the
right of prescribed frequency band, where center frequency is
shifted towards left with reduced frequency band.

(ii) In Figure 14, after including the junction discontinuity effect,
coupling of element-B decreases to the left and increases to the
right of prescribed frequency band, where center frequency is
shifted towards right with extended frequency band.

(iii) The resultant effects of element-A and element-B are observed in
coupling performance of 3-element, 8.34± 0.3 dB coupled section.

(iv) Coupling performance of 8.34 ± 0.3 dB section is deviated from
the Cristal theoretical results. The deviation is found of the same
manner as simulated result shown in Figure 9.
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The effect due to variation of junction length λ/m0 is shown in
Figure 16. In this case, coupling of the designed 3-element, 8.34±0.3 dB
coupled-line section is found increasing in the left half and decreasing
in the right half from the calculated value. The deterioration depends
on even- and odd-mode impedances of the junction. The deterioration
may exist in the opposite manner if the choice of even- or odd-mode
impedances for junction are within different boundary conditions. The
above mentioned procedure can be followed in both the criteria. The
magnitude of deterioration in coupling depends on the junction length.
Therefore, junction length should be minimized.

5. MODIFIED THEORY OF COUPLED LINE DESIGN
WITH JUNCTION DISCONTINUITY

The modified theory for the design of coupled lines including junction
parameter is presented in this section. In the previous section, reactive
behavior due to junction parameters is descried which is to be taken
into consideration at design stage. The superposition of the even
and odd impedances of a coupled-lines is always constant and follows
Z0eZ0o = 1. Therefore, the impedance matching of an element
including junction can be made by modifying any one of the modes,
which may be either even or odd mode.

5.1. Modification Used in Matching of Element-A

A small increment in the length of the quarter-wave coupled element
behaves inductive in odd mode and capacitive in even mode whereas
characteristic impedance remains the same. This fact may be utilized
for the matching of element-A including junction. In the present case,
length of element-A is increased to add capacitance in even mode so
that the inductive effect of the junction discontinuity is countered.
Schematic of element-A with the small increments in length εA is shown
in Figure 17.

In Figure 17, even-mode input admittance Yin(eR) at point-R is
given as

Yin(eR) = Y0eA
Y0 + jY0eA tan (π/2 + βεA)
Y0eA + jY0 tan (π/2 + βεA)

= Y0eA
Y0 + jY0eA cotβεA

Y0eA + jY0 cotβεA
. (31)

substituting characteristic admittance Y0 = 1, we get

Yin(eR) = Y0eA
1− jY0eA cotβεB

Y0eA − j cotβεA
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= Y0eA
βεA − jY0eA

Y0eAβεA − j
valid for the ε < π/6. (32)

Now, it can be simplified as

Yin(eR) = Y 2
0eA

β2ε2A + 1
β2ε2AY 2

0eA + 1
+ jY0eAβεA

1− Y 2
0eA

β2ε2AY 2
0eA + 1

. (33)

Here, Y0eA < 1, εA < 1, β < 1 gives Y 2
0eAβ2ε2A ≪ 1. This gives,

Yin(eR) = Y 2
0eA + jεAβY0eA(1− Y 2

0eA). (34)

This can also be written as

Yin(eR) =
Y 2

0eA

Y0
+

jεAβY0eA

(
1− Y 2

0eA

)

Y0
. (35)

The above equation represents quarter wave admittance transformer
with series inductance. This implies that a small increment in length
of an element behaves as shunt capacitance of value εAY0eA(1−Y 2

0eA)/v
in the even mode. In case of odd mode, impedance ZineR at point-R
is given as

ZineR = Z2
0oA + jβεAZ0oA

(
1− Z2

0oA

)
. (36)

Thus, a small increment in length of an element behaves as series
inductance of value βεAY0eA(1 − Y 2

0eA)/v in odd mode. Series

(a)

(b)

Figure 17. Schematic of the of element-A with small increments in
length in (a) even mode, (b) odd mode.
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inductance in odd mode and shunt capacitance in even mode for small
increment in length of an element are found equal. Hence,

jY0eA = jX0oA = jβεAY0eA

(
1− Y 2

0eA

)
. (37)

The even and odd mode equivalence of the modified element-A along
with the junction discontinuity effect has been shown in Figure 18.

From Figure 18, in matched condition one can write,

Z0eA =
√

XjeA

Y0eA
. (38)

Value of εB by using Equations (12) and (38) can be derived as

εA =
4Z0eAZj0eθ

m0β
(
Z2

0eA − 1
) . (39)

Figure 18. Matching of element-A by varying length.

5.2. Modification Used in Matching of Element-B

A small decrement in the length of the quarter-wave coupled element
behaves capacitive in odd mode and inductive in even mode whereas
characteristic impedance remains the same. This fact may be utilized
for the matching of element-B including junction. In the present case,
length of element-B is decreased to add inductance in even mode so
that the capacitive effect of the junction discontinuity is countered.
Schematic of element-B with the small decrement in length εB is shown
in Figure 19. In Figure 19(a), input admittance Yin(eS) at point-S is
given by

Yin(eS) = Y0eB
Y0 + jY0eB tan (π/2− βεB)
Y0eB + jY0 tan (π/2− βεB)

≈ Y0eB
βεB + jY0eB

Y0eBβεB + j
valid for the ε < π/6. (40)
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(a)

(b)

Figure 19. Schematic of the of element-B with small decrement in
length. (a) Even mode, (b) odd mode.

Now, above equation is simplified as

Yin(eS) = Y 2
0eB

β2ε2B + 1
β2ε2BY 2

0eB + 1
+ jY0eBβεB

Y 2
0eB − 1

β2ε2BY 2
0eB + 1

. (41)

Here, Y0eB < 1, εB ¿ 1, β ¿ 1 gives Y 2
0eBβ2ε2B ≪ 1. This gives

Yin(eS) = Y 2
0eB − jβεBY0eB

(
1− Y 2

0eB

)
. (42)

This also can be written as

Yin(eS) =
Y 2

0eB

Y0
− jβεBY0eB

(
1− Y 2

0eB

)

Y0
. (43)

The above equation represents quarter wave admittance transformer
with series inductance. This implies that a small increment in length of
an element behaves as shunt inductance of value 1/βεBY0eB(Y 2

0e2−1)v
in the even mode. In case of odd mode, impedance ZinoS at point-S is
given as

ZinoS = Z2
0oB − jβεBZ0oB

(
1− Z2

0oB

)
. (44)
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Figure 20. Matching of element-B by varying length.

Figure 21. Schematic of the modified stepped 3-element coupled
section.

Thus, a small decrement in length of an element behaves as series
capacitance of value 1/βεBZ0oB(1 − Z2

0oB)v in odd mode. Series
capacitance in odd mode and series inductance in even mode for a
small decrement in length of an element are found equal. Hence,

jX0oB = jY0eB = jβεBZ0oB

(
1− Z2

0oB

)
. (45)

The even and odd mode equivalent to the modified element-B along
with the junction discontinuity effect is shown in Figure 20.

The junction discontinuity in even mode behaves as shunt
capacitance CjeB1 with element-B and decrease in length of element-B
adding inductance L0eB to counter the junction discontinuity effect. In
resonance condition

2πf
√

L0eBCjeB =
√

X0oBYjeB = 1. (46)

Value of εB by using Equations (22) and (46) can be derived as

εB =
4θ

m0βZj0eY0eB

(
1− Y 2

0eB

) . (47)

The above analysis has been used for the design of a 3-element coupled-
line section as shown in Figure 21. Modifications, i.e., εA and εB,
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Figure 22. Reduced signal flow graph for the modified 3-element
8.34± 0.2 coupled lines section.

are required in the length of element-A and element-B to counter the
reactive effect of junction discontinuity.

From Figure 22, coupled signal b3m for the modified 3-element
coupled-line section can be written as

b3m = jB3′ ·e−j(θ+θa)+jA3′ ·e−j(3θ+2θb−θa)+jB3′ ·e−j(5θ+3θb−2θa). (48)

where, θa and θb are electrical lengths corresponding εA and εB and
given as

θa = βεa and θb = βεb. (49)

6. APPLICATION OF MODIFIED THEORY IN DESIGN
OF 3-ELEMENT, 8.34 ± 0.2 dB COUPLED SECTION

The 8.34 ± 0.2 dB coupled section uses element-A and element-B
of even-mode impedance Z0eA = 1.7848 and Z0eA = 1.07434, i.e.,
normalized with Z0 = 50 Ω. The strip-line junctions of even-mode
impedance Zj0e = 1.312 and length λ0/80 at center frequency 75 MHz
are employed to connect element-A and element-B. By putting these
values in Equations (47) and (39), εA and εB are calculated as

εA =
4× 1.71848× 1.312θ

80× β × (1.718482 − 1)
.

where θ = θ0 = π/2 and β = 2π/λ0 at center frequency. That gives

εA =
4× 1.71848× 1.312× (π/2)

80× (2π/λ0)× (1.718482 − 1)
= 0.014429λ0.

Now,

εB =
4× (π/2)

80 (2π/λ0)× 1.312× 0.93× (1− 0.932)
= 0.07587λ0.



46 Yadav, Kumar, and Kulkarani

Now making use of Equation (49), θa and θb can be calculated as

θa =
(

2π

λ

)
(0.01342λ0)=(2× 0.01342π)

(
λ0

λ

)
=(0.02684π)

(
θ

θ0

)

using same procedure θb = (0.14118π)
(

θ

θ0

)
.

where θ0 = π/2. Using Equation (48), b3m is calculated and plotted
using MATLAB and is shown in Figure 23.

As shown in Figure 23, the coupling performance using modified
theory is found in agreement to the ideal coupling using Cristal theory,
which is desired where coupling including junction discontinuity effect
is found much deviated. To verify the effectiveness of the modified
theory, the calculated modification is incorporated in HFSS simulation
model, and simulation is performed. The perspective comparison of
coupling and output S-parameters obtained from the HFSS simulation
and theocratically calculated parameters using modified theory is
shown in Figures 24 and 25, where effectiveness of the modified theory
is proven.

Note: — Junction discontinuity effect is derived in terms of
capacitance or inductance values. These derived values are also
useful for the previous method, where junction discontinuities effect
is compensated using capacitor or open stub. Therefore, junction
discontinuity analysis is also useful for other available compensation
techniques. Modified theory is a simple approach by which junction
discontinuity effect can be compensated without increasing the structure
complexity.
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Figure 23. Comparison of the calculated coupling of the 3-element,
8.34± 0.3 dB coupled line section using MATLAB.
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coupling results obtained from
HFSS simulation and modified
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put results obtained from HFSS
simulation and modified theory.

7. RESULTS AND DISCUSSION

Junction discontinuity effect is comprehensively investigated while
designing 3-element, 8.34± 0.2 dB coupled-line section. Coupling and
output S-parameters obtained from HFSS simulation are seen deviated
from the expected results due to junction discontinuity effect. The
left and right extremes in coupling performance are found 7.56 dB
and 8.87 dB as shown in Figure 9 whereas its magnitude decreases
continuously. This effect is also observed in the output S-parameters
where magnitude is found increasing in the prescribed band. The left
and right extremes of the output parameters are found −0.835 dB
and −0.63 dB as shown in Figure 9. Both the maxima of the
coupling and output S-parameters should be equal in the prescribed
bandwidth whereas these are seen unequal due to the effect of junction
discontinuity. The simulated coupling performance for element-A and
element-B as shown Figures 7 and 8 are found in close agreement to the
calculated values, i.e., 6.15 dB and 22.54 dB. This shows that element-
A and element-B are perfectly designed. Therefore, undesirable effect
of the junction discontinuities is confirmed.

A generalized theoretical procedure has been developed where
analytical equivalence of junction discontinuity effect is derived for the
known parameters. The equivalent of junction discontinuity parameter
is incorporated into Cristal theoretical tabulated parameters for 3-
element, 8.34± 0.2 dB coupled-line section and coupling S-parameters
are calculated as shown in Figure 15. The calculated left and right
maxima of coupling parameter of 3-element coupled-line section are
deviated from the Cristal theoretical results, and deviation is found in
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the same manner as simulated results, shown in Figure 9.
To include the junction discontinuity parameter at the designing

stage, a modified theory has been developed. The 3-element, 8.34 ±
0.2 dB coupled-line section is designed by using modified theory, and
the calculated results are shown in Figure 23. Both the maxima,
i.e., approximately 8.25 dB, are found equal, and the result verifies
the Cristal equal ripple theory outcomes. The software HFSS is
used to simulate 8.34 ± 0.2 dB coupled-line section, which is designed
using modified theory. In simulated coupling performance as shown
in Figure 24, left and right maxima are found 8.15 dB and 8.1 dB,
respectively. In output performance, left and right maxima are found
−0.74 dB and −0.765 dB, respectively, as shown in Figure 25. The
HFSS simulation results are found in close agreement to expected
results.

8. CONCLUSION

Junction discontinuity effect on multi-element coupled-lines perfor-
mance and its diminution is presented using a novel theoretical ap-
proach. The reactive effect of junction discontinuity is derived and in-
corporated with even- and odd-modes analysis of the coupled element
where the negative effect of junction discontinuity on S-parameters
of 3-element coupled-lines section is presented and verified with the
HFSS simulation result. In this theory, equivalent parameters of junc-
tion discontinuity effect for each of the elements are derived in terms of
capacitance and inductance. The derived parameters are used in char-
acterization of coupled elements independently where various aspects
can be explored for compensation of this effect. This theory can also
be generalized for n-element coupled-line section. Using the developed
theoretical approach, junction parameters can be included in Cristal
theory where tabulated even-mode impedances of coupled elements can
be optimized for specified junction parameter. It is expected that the
modified theory will help in the design of high power hybrid couplers.
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