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Abstract—We present a theory to describe the transient and steady
state behaviors of the active modes of a photonic crystal with active
constituents (active photonic crystal). Using a couple mode model,
we showed that the full vectorial Maxwell-Bloch equations describing
the physics of light matter interaction in the active photonic crystal
can be written as a system of integro-differential equations. Using
the method of moments and the mean value theorem, we showed that
the system of integro-differential equations can be transformed to a
set of differential equations in slow time and slow spatial scales. The
slow time (spatial) scale refers to a duration (distance) that is much
longer than the optical time period (lattice constant of the photonic
crystal). In the steady state, the slow scale equations reduce to a
nonlinear matrix eigenvalue problem, from which the nonlinear Bloch
modes can be obtained by an iterative method. For cases, where the
coupling between the modes are negligible, we describe the transient
behavior as an one-dimensional problem in the spatial coordinate, and
the steady behaviors are expressed using simple analytical expressions.

1. INTRODUCTION

Photonic crystals (PCs) [1, 2] with active constituents [active PCs] have
profound applications such as ultrafast and low threshold lasers, and
implementation of nonlinear optical switching effects [3–11]. Active
PCs are also used as band edge lasers [12–18]. Band edge lasers
provide large area, coherent single mode operations with stable lasing
wavelengths. They also provide a mean to tailor the laser beam
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shape [17], and control the polarization mode of the laser [18].
Examples of the active constituents used in PC include quantum
dots [8–10, 19–21], Erbium ions [22, 23], organic dyes [24, 25], and active
semiconductor materials [12–16].

The physics of semiclassical light-matter interaction in the active
PCs can be described using the coupled Maxwell-Bloch equations. The
coupled Maxwell-Bloch equations can be solved using a finite difference
time domain (FDTD) method by directly discretizing the time and the
space [26–28]. However, the direct discretization of the Maxwell-Bloch
equation is computationally ineffective, since it will result in very fine
spatial and time grids. For an example, the time grid for an optical
simulation has to be smaller than the optical time period, which is
on the scale of femtoseconds. However, typical electronic transitions
occurs on much slower time scale (i.e., on the order picoseconds [29–
31]). On the other hand, the spatial grid in the direct discretization
has to be smaller than the lattice constant of the PC. However, one is
normally interested to know how the light evolves in distances that are
much longer than the lattice constant of the PC, so that on can decide
on the length of the required PC for lasing etc.. Therefore, the slow
scale [time and spatial scales that are much longer than the optical
time period and the lattice constant of the PC, respectively] versions
of Maxwell-Bloch equations are extremely useful. In addition to the
efficient spatial and time discretization, the slow scale formulation is
powerful to provide deep analytical insights. An attempt to derive
the slow scale Maxwell-Bloch equations was made in Ref. [32], using
a multiscale perturbation theory for the E-polarization (electric field
is perpendicular to the periodic plane) of a two-dimensional (2D) PC.
This multiscale perturbation analysis is a scalar formulation, and valid
for near threshold operating condition, where the electric field is small.

In a time independent framework, Maxwell-Bloch equations for
the active PC reduce to the time independent Maxwell equation [also
called as master equation in PC literatures [2]) with an active dielectric
constant. The time independent Maxwell equation with the active
dielectric constant has been solved using a couple wave model [33–36],
and a couple mode model [37, 38], and the existence of Nonlinear Bloch
modes have been shown. In the couple wave model, the electric field,
the periodic dielectric constant, and the periodic gain are expanded
in term of plane waves, and only plane waves with significant Fourier
coefficients are retained, to formulate coupled wave equations for the
electric field. The number of coupling waves varies with the problem.
In 1D PCs, two coupling waves are normally used [33], and in 2D square
lattice PCs at Γ point, eight coupling waves have been used [34–36].
The couple wave model is only valid for active PCs with very weak
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dielectric modulations and small active perturbations. In the couple
mode model, however, the active mode is formulated as a result of
a coupling of various modes of a backbone PC, where the backbone
PC has a passive and a linear dielectric constant. In Refs. [37, 38],
the couple mode model is formulated for scalar version of Maxwell
equation [i.e., valid for 1D PC and E-polarization of 2D PC], and it
is shown that the couple mode model can be solved as a nonlinear
eigenvalue problem. In contrast to the couple wave model, the couple
mode model is exact, and thus can handle active PCs of large dielectric
modulations and large active dielectric perturbations.

In this paper we give a consistent formulation for both time
dependent and time independent problem by extending the couple
mode model into the time dependent and a vectorial framework. We
show the couple mode model in the time dependent framework give
rises to a system of integro-differential equations. Using the method of
moments [39–42], and the mean value theorem [43] we transform the
system of integro-differential equations to a set of differential equations,
in which all the dynamic quantities varies on the slow time, and slow
spatial scales. The slow scale equations contain the spatially averaged
information on the fast scale which is of relevance to the evolution of the
active mode on the slow scale. By invoking a small field approximation,
we also show that our slow scale equation recaptures the result of
multiscale expansion theory [32], in the vicinity of a near threshold
operation.

In the steady state, the slow scale equations reduce to a nonlinear
matrix eigenvalue problem. The nonlinear eigenvalue problem can be
solved by an iterative procedure to obtain the nonlinear Bloch modes
in an infinite active PC, or the lasing modes in a finite sized active PC.
Further, we also show that the nonlinear matrix eigenvalue problem
reduces to a simple nonlinear integral problem under a single mode
assumption. Our formulation also accurately reproduces the time
independent results of the couple mode model which is previously
proposed for the specialized case of E-polarization in a 2D PC [37, 38].

The presented model can handle active PC with large dielectric
modulations and large active perturbation. In contrast to the previous
formulations [32, 37, 38], where only scalar version of Maxwell equation
is considered, in the present formulation we consider the full vectorial
problem with anisotropic dipole moments, and therefore can be used to
accurately treat i) H-polarization of 2D PC, ii) 3D PC iii) membrane of
PC and PCs with defect: using a supercell, iv) PCs with quantum dots
of specific orientation and shapes: this is handled with an anisotropic
dipole moment v) finite size PCs: this is handled with a cavity leakage
term.
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Our paper is organized as follows. In Section 2 we present the
general equations describing the physics of light-matter interaction
in an active PC. Section 3 outlines the equations for the dynamic
quantities: electric field, polarization and population inversion density,
in the slow time scale. In Section 4, we formulate the dynamic
equations in both slow time and slow spatial scales. Section 5 presents
the results of Section 4 in the adiabatic limit. In Section 6 we derive
the steady state results, and finally in Section 7, we give summary and
conclusion for the paper.

2. GENERAL EQUATIONS

In this section we will outline the general equations that describe the
physics of semiclassical light-matter interaction in an active PC.

We model the active constituents as two level dopants. The active
dopants are doped in a backbone PC having a linear and frequency
independent dielectric constant ε(r). Maxwell equations for such a
system reduce to a nonlinear wave equation of the form

∇×∇× ~E(r, t) +
ε(r)
c2

∂2~E(r, t)
∂t2

+µo

{
σ(r)

∂~E(r, t)
∂t

+ A(r)
∂2~Preal(r, t)

∂t2

}
= 0, (1)

where the real quantities r, t, ~E(r, t), ~Preal(r, t), σ(r), µo and c are
position vector, time, electric field, polarization, conductivity, vacuum
permeability, and the speed of light respectively. The distribution of
the active dopants is described by the dimensionless function, A(r).
The function A(r) equals to 1 if r pointing towards the position of
the active dopant, and zero otherwise. For an example, in a 2D PC of
periodic dielectric cylinders, if the cylinders are actively doped, then
A(r) = 1 for r vectors within the cylinder, and A(r) = 0 for r vectors
outside the cylinder.

The two level dopant is modeled with a resonant frequency ω0, and
with a dopant density of NT . The population inversion density and the
polarization of the two level system can be written in term of density
matrix elements, ρ11, ρ22, ρ12, and ρ21. If we define ~P(r, t) = d0NT ρ21,
where d0 is the dipole moment of the dopant, then the polarization can
be written as ~Preal(r, t) = ~P(r, t) + ~P∗(r, t). The dynamics of ~P can
be obtained from the dynamics of ρ21 [29], and it is

∂~P(r, t)
∂t

= −iω0
~P(r, t)−

~P(r, t)
T2

− id2
0

~
N(r, t)ŝ~E(r, t), (2)
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where T2 is the polarization relaxation time, and ŝ~E(r, t) =
d0[d0 · ~E(r, t)]/d2

0 with ŝ is a second rank tensor. The matrix ŝ
accounts for the anisotropic response of the dipole with respect to
the electric field. If the dipole aligns parallel to the electric field,
then ŝ is an unit identity matrix. For the cases of quantum dots
and nanocrystals with fixed shapes and orientations [with respect
to the underlying PC structure], the dipole moment may not be
parallel to the electric field [44], and thus anisotropic form of ŝ is
necessary. The equation of motion for the population inversion density,
N = NT (ρ22 − ρ11), is

∂N(r, t)
∂t

= −N(r, t)−N0

T1
− 2i

~
~E(r, t) ·

[
~P(r, t)− ~P(r, t)∗

]
, (3)

where T1 is the population decay time, and N0 is the population
inversion density created by the external pumping.

Before proceeding further, let’s introduce the slow and the fast
scales of time and space, which are relevant to the evolutions of the
active modes. The fast time scale refers to a duration on the order
of the optical period of the light [i.e., 2π/ω, where ω is the frequency
of the light], and slow time scale refers to a duration that is much
longer than 2π/ω. On the other hand, the fast spatial scale refers to a
distance on the order of the PC’s lattice constant, and the slow spatial
scale refers to a distance that is much longer than the PC’s lattice
constant.

In Section 3 we will outline the evolution of the dynamic quantities
(electric field, polarization and population inversion density) on the
slow time scale. In Section 4 the evolution of the dynamic quantities
in both slow time and slow spatial scales will be described.

3. EQUATIONS ON THE SLOW TIME SCALE

The population inversion decay time is usually very long compared to
the time period of the light [29–31]. This tells us that the population
inversion density [i.e., N(r, t) in Eq. (3)] does not vary on the fast time
scale, and the amplitudes of polarization and electric field will change
slowly in time (i.e., on the slow time scale). This section will outline
the equations for slowly varying (in time) envelopes of the electric field
and the polarization vectors.

Let’s assume an harmonic time dependence, and define slowly
varying envelopes (i.e., on the slow time scale) E(r, t) and P(r, t)
using,

~E(r, t) = E(r, t)e−iωt + c.c, (4)
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and
~P(r, t) = P(r, t)e−iωt, (5)

respectively. With the definitions in Eqs. (4)–(5) and neglecting the
second order terms of the time derivative, we can write Eqs. (1)–(3) in
the rotating wave approximation as,

∇×∇×E(r, t)− ω2

c2
ε(r)E(r, t)

=
{

2iω

c2
ε(r)

∂

∂t
+iµoωσ(r)

}
E(r,t)+µoA(r)

{
2iω

∂

∂t
+ω2

}
P(r,t), (6)

∂P(r, t)
∂t

=
(iΩ−1)P(r, t)

T2
− id2

0

~
ŝN(r, t)E(r, t), (7)

∂N(r, t)
∂t

= −N(r, t)−N0

T1
− 2i

~
[E∗ ·P−c.c] , (8)

where Ω = (ω − ω0)T2. Eqs. (7)–(8) are the Bloch equations for the
two level dopants [29–31].

Equations (6)–(8) constitute to dynamic equations for the electric
field, polarization and population inversion density in the slow time
scale. In the following section, we will develop equations for these
dynamic quantities in both slow time and slow spatial scales.

4. EQUATIONS ON THE SLOW TIME AND SPATIAL
SCALES

In this section we will derive equations for the electric field, polarization
and population inversion density on the slow time and the slow spatial
scales. Unless explicitly stated, in the rest of the paper, we will use
the term “slow scale” to denote “slow time and slow spatial scales”.

Consider the following ansatz for the slowly varying time envelope
of the electric field,

E(r, t) =
∑

n

En(r, t)~φn(r), (9)

where we have assumed, the envelope is given by a linear combination
of Bloch modes of a backbone PC structure, ~φn(r), with the expansion
coefficients, En(r, t). En(r, t) is assumed to vary on the slow scale, and
the Bloch mode ~φn(r) varies on the fast spatial scale. The letter in
the subscript of ~φn(r) is used as a labeling index of the mode. The
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mode with the label-n is the solution to the time independent version
of Eq. (1) with A(r) = σ(r) = 0,

∇×∇× ~φn(r)− [
ω2

n/c2
]
ε(r)~φn(r) = 0, (10)

where ωn is the backbone PC’s mode frequency. The modes
of the backbone PC satisfy the orthogonality condition, 〈~φ∗m(r) ·
ε(r)~φn(r)〉uc = δnm, where 〈. . .〉uc = (1/V )

∫
unit cell

(. . .)d3r, and V is the

unit cell volume. In PCs each Bloch mode with the label-n is identified
with a unique set of symmetry representation and band index. There
are two kinds of symmetries in the PC [45–50], namely translational
symmetry and point group symmetry. The symmetry representation
for the translational symmetry is simply the Bloch wavevector in the
first Brillouin zone (BZ), and the symmetry representation for the point
group symmetry is usually denoted with the Mulliken’s symbols such
as A1, A2, B1, B2 etc. [50, 51]. It is worth to note that only modes
with the same symmetry representations couple to each other, and
therefore in the summation of Eq. (9), only modes of the backbone PC
with the same wavevectors and the same symmetry representations for
the point group symmetry need to be kept.

Let’s define a slow scale electric field vector as E =
[E1, E2, E3, . . .]T . This vector contains the expansion coefficients En

which vary on the slow scale. Note that E also can be considered
as an array of electric field mode amplitudes, where the modes are
referred to those of the backbone PC. Therefore, for a multimode
lasing in an active PC, the evolution of various lasing modes can
be tracked using the vector E. Consistent with the definition of
E, we will define a slow scale polarization vector as P̄ , containing
the projections of P onto the subspace spanned by the modes of
the backbone PC [a mathematical definition will be given later].
As we will show, the equations connecting P̄ and E will be in a
similar form to the one connecting P and E (i.e., Bloch Eqs. (7)–
(8)). Consistent with the vectorial definitions for the slow scale electric
field and the slow scale polarization vectors, we will encounter matrix
representation for the slow scale population inversion density ˆ̄N , and
in the adiabatic limit, we will encounter a matrix representation for
the slow scale susceptibility ˆ̄X . In the adiabatic limit, we will show
that,the relationship between the slow scale polarization and the slow
scale electric field vectors can be simply written in a familiar form as
P̄ = ε0

ˆ̄XE.
We can derive the equation of motion for E by substituting Eq. (9)

into Eq. (6), and neglecting the second order terms. The equation of
motion for E is (see Appendix A for the details of the mathematical
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derivation).
(

ˆ̄D + Îu
∂

∂t

)
E +

ω

2

{
ˆ̄γ + i∆̂

}
E = − 1

ε0

(
∂

∂t
− i

ω

2

)
ÎuP̄ , (11a)

where Îu is a unit identity matrix. The above equation contain
quantities (identified with a bar “−” on top) that represent the
averaged information on the fast spatial scale which is of relevance
to the evolution of the active modes on the slow scale. The definition
for the quantities P̄ , ˆ̄D, ˆ̄γ and ∆̂ are as follows.

The quantity P̄ = [P̄1, P̄2, P̄3, . . .]T in Eq. (11a) is defined as a
slow scale polarization vector. The definition for the vector element
P̄m is

P̄m =
〈
A(r)~φ∗m(r) ·P =

〉
uc

, (11b)

The matrix element of the operator ˆ̄D is v̄mn · ∇. The j-th Cartesian
component of v̄mn [see Eq. (A2)] is

v̄j
mn = i

c2

2ω

〈
φ∗jm

(
∂lφl

n

)
+

(
φ∗lm∂l

)
φj

n − 2φ∗lm∂jφl
n

〉
uc

, (11c)

where we assumed a summation over the repeated indices. The
expression for the diagonal element v̄mm represents the actual group
velocity of the m-th mode. This group velocity expression, which is in
general applicable for any 3D inhomogeneous dielectric structure, has
been verified with respect to the one obtained using k ·p perturbation
theory [see Appendix B for details]. In Eq. (11a), the matrix elements
of ∆̂ and ˆ̄γ have the following definitions:

∆mn =
[(

ω2
m/ω2

)− 1
]
δmn, (11d)

γ̄mn =
1

ε0ω

〈
~φ∗m(r) · σ′(r)~φn(r)

〉
uc

. (11e)

In Eq. (11e), σ′(r) = σ(r)+κmδmn, where additional losses [apart from
the material loss, σ(r)] such as scattering and output losses associated
with the mode-m is phenomenologically included via the cavity leakage
parameter κm. An estimation of κm for a finite sized PC with a length
L along the direction q̂ is [32, 50],

κm =
2
cL
|q̂.v̄mm|2 . (11f)

A single mode assumption can be applied if the gain lineshape
function of the active dopant is very narrow compared to the frequency
distribution of the backbone PC’s modes. In this assumption, we
neglect the couplings between neighboring modes, and hence Eq. (9)
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can be written in only one mode. In the single mode assumption,
Eq. (11a) can be reduced to a scalar equation as

(
v̄ · ∇+

∂

∂t

)
E +

ω

2
{γ̄ + i∆} E = − 1

ε0

(
∂

∂t
− i

ω

2

)
P̄ (11g)

where v̄ = v̄mm, E = Em, γ̄ = γ̄mm, ∆ = ∆mm, and P̄ = P̄m. Note
that spatial variation of E in Eq. (11g) only occurs on the direction
of the group velocity. By a coordinate transformation we can show
that the directional derivative v̄ · ∇ in Eq. (11g), can be written as
∂/∂Z, where the Z-axis is parallel to the direction of the group velocity.
Therefore, Eq. (11g) constitute to an one dimensional problem in the
spatial direction of the group velocity.

Equations (7), (8) and (11a) form a system coupled differential
equations of mixed spatial scales. The bridge between the fast spatial
scale [Eqs. (7)–(8)] and the slow spatial scale [Eq. (11a)] differential
equations are provided by the integral definition of the slow scale
polarization vector [P̄ ] in Eq. (11b). In order to have a complete
set of equations in which all the dynamic quantities vary on the slow
scale, we have to formulate Eqs. (7) and (8) in term of P̄ and the
slow scale version of the population inversion density. One easy way
to accomplish this task is by spatially integrating Eqs. (7)–(8) over
an unit cell of the PC, and we will show that, this procedure will not
completely remove the dependence on the fast spatial scale.

Firstly, let’s dot product A(r)~φ∗m(r) to Eq. (7). The result can be
casted in a vector form as

∂P
∂t

=
(iΩ− 1)P

T2
− id2

0

~
AŜNE, (12)

where the vector element of P is Pm = A(r)~φ∗m(r) ·P and the matrix
element of Ŝ is Smn(r) = ~φ∗m(r) · ŝ~φn(r). Integrating Eq. (12) over the
unit cell of the PC, we obtain the equation of motion for the slow scale
polarization vector P̄ as

∂P̄
∂t

=
(iΩ− 1)P̄

T2
− id2

0

~
ˆ̄NE, (13)

where now we have a matrix representation for the slow scale
population inversion density, ˆ̄N = 〈AŜN〉uc. Note the striking
similarity between Eqs. (7) and (13). One can simply arrive at Eq. (13)
by simply replacing the fast scale dynamic quantities E, P and ŝN with
the slow scale version of the quantities E, P̄ , and ˆ̄N .

We can try to get an equation for the slow scale population
inversion density matrix [ ˆ̄N ] by performing the operation, 〈AŜ(. . .)〉uc
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to Eq. (8), and using the ansatz in Eq. (9). The resulting equation will
be,

∂ ˆ̄N
∂t

= −
ˆ̄N −

〈
AŜ

〉
uc

N0

T1
− 2i

~

[∑
m

E∗m
〈
PmŜ

〉
uc
− c.c

]
(14)

However, as we can see from Eq. (14), this procedure introduces a new
dynamic variable 〈P̄mŜ〉uc. In order to evaluate this variable in which
Pm = A(r)~φ∗m(r) · P, one still required to use the dynamic equation
for P [Eq. (7)], which is on the fast spatial scale. In the following we
will illustrate three methods to overcome this, and generate complete
system of equations in the slow scale. These methods are the method
of mean field approximation, the method of moments, and the method
of small field approximation.

4.1. Mean Field Approximation

Applying the mean value theorem [43] to the integral 〈PmŜ〉uc in
Eq. (14), yields 〈PmŜ〉uc = ζ̂〈Pm〉uc = ζ̂P̄m, where ζ̂ is the mean
value of the matrix Ŝ. With the mean value theorem, Eq. (14) can be
rewritten as,

∂ ˆ̄N
∂t

= −
ˆ̄N −

〈
AŜ

〉
uc

N0

T1
− 2i

~
ζ̂

[E∗ · P̄ − c.c
]
. (15)

With the above equation and Eqs. (11a) and (13), we have a complete
system of self-consistent equations in the slow quantities, E, P̄ , and
ˆ̄N . For numerical evaluations, one has to approximate ζ̂. Although,
this could be done in various ways, a simplest approximation would be
ζ̂ ≈ 〈Ŝ〉uc.

4.2. The Method of Moments

Another method to transform a system of integro-differential equations
such as a system of Eqs. (7)–(8), and (11a) to a set of differential
equations is the method of moments [39–42]. Here, we will use
this method to generate a set of differential equations in which all
the dynamic quantities vary on the slow scale. For a simplicity of
mathematics,we will illustrate the method of moments under a single
mode assumption.

The single mode dynamic equation for the slow scale electric field
is given by Eq. (11g). To derive dynamic equations for the slow scale
polarization and the slow scale population inversion density, let’s start
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with the unaveraged equations, Eqs. (12) and (8). These equation for
a single mode become

∂P
∂t

=
(iΩ− 1)P

T2
− id2

0

~
ASNE

∂N

∂t
= −N −N0

T1
− 2i

~

[
E∗~φ∗ ·P− c.c

]

where ~φ = ~φm and S = Smm. Define the k-th moment of P and N
as P̄(k) = 〈SkP〉uc and N̄ (k) = 〈ASk+1N〉uc, where k is a positive
integer. We can obtain the equations of motions for these moments by
performing the operations 〈Sk[. . .]〉uc and 〈ASk+1[. . .]〉uc to the above
equations. The resulting equations of motions are

∂P̄(k)

∂t
=

(iΩ− 1)P̄(k)

T2
− id2

0

~
N̄ (k)E , (16)

∂N̄ (k)

∂t
= −N̄

(k) − 〈
ASk+1

〉
N0

T1
− 2i

~

[
E∗ · P̄(k+1) − c.c

]
. (17)

Equations (16)–(17) constitute to a system of infinite hierarchy of
equations in the slow scale quantities P̄(k) and N̄ (k). Using the moment
definitions, we can see that the slow scale polarization P̄ is simply the
zeroth moment of P (i.e., P̄ = P̄(0)), and it is coupled to the higher
order moments of P and N for all values of k > 0 [i.e., P̄ = P̄(0)

is coupled with N̄ (0), N̄ (0) is coupled with P̄(1), P̄(1) is coupled with
N̄ (1), N̄ (1) is coupled with P̄(2), and so on].

One can always truncate the infinite hierarchy of equations
in (16)–(17) to a finite number of equations by noticing that Sk is
small for a large value of k. This can be easily noticed for isotropic
dipole moments [i.e., ŝ is a unit matrix], where we have Sk = φ2k

m .
Using the normalization condition 〈εφ2

m〉uc = 1 with ε being a positive
function, we have φ2

m < 1, and thence Sk → 0 for k → ∞. As we
will show in Section 6, in the steady state, the hierarchy of moment
equations [Eqs. (16)–(17)] will simply reduce to a Binomial series in
Sk.

Equations (11g), (16) and (17) form a self-consistent formulation
of differential equations in the slow scale quantities E , P̄(k) and N̄ (k).
Note that the formulation based on the method of moments is exact if
one takes the limit k →∞, under the single mode assumption.

4.3. Small Field Approximation

Here, we will assume a near threshold operation, where the electric
field is small and N ≈ N0. We will show that under the single mode
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assumption, this approximation yields the same results with the one
obtained using the multiscale perturbation theory [32],

With N = N0, the single mode version of Eq. (12) becomes

∂P
∂t

=
(iΩ− 1)P

T2
− id2

0

~
N0ASE

Let’s postulate an ansatz P = ASp, where p is a quantity that depends
on both time and space. If we substitute this ansatz into the above
equation, we will arrive at ∂p/∂t = (iΩ − 1)p/T2 − (id2

0/~)N0E, for
which the right hand side, has no dependence on the fast spatial scale,
and thus shows that p varies only on the slow scale. Therefore, for
operations near the threshold condition, we can write approximately
write P = ASp. Thus, by averaging P, we have P̄ = 〈AS〉ucp. With
this factorization of P̄, we can write Eqs. (13)–(14) for a single mode
as

∂p

∂t
=

(iΩ− 1)p
T2

− id2
0

~
n̄E (18)

∂n̄

∂t
= − n̄−N0

T1
− 2i

~
β[E∗p− c.c], (19)

where n̄ = N̄/〈AS〉uc and β = 〈AS2〉uc/〈AS〉uc. These equations
are in exact agreement with the results of the multiscale perturbation
theory for the E-polarization of the 2D PC doped with the dopants
of isotropic dipole moments [32]. Note that for the isotropic dipole
moments, β = 〈Aφ4

m〉uc/〈Aφ2
m〉uc.

Throughout this paper, we assume a constant value for the
population inversion created by the pumping, N0. (i.e., a continuous
wave pumping). It is straightforward to generalize N0 to N0(t) to
include the time dependence, and thus allow modeling of step and
pulsed pumping conditions. In the slow scale formalism, when a pulsed
pumping condition is used, N0(t) must be replaced with the averaged
version, (1/T )

∫ t+T
t N0(t′)dt′, with T = 2π/ω is the optical time period.

5. SLOW SCALE EQUATIONS IN ADIABATIC LIMIT

Assuming the polarization relaxation time is very fast compared to
the population decay time [i.e., adiabatic approximation [29–31]), we
can neglect the slow variation of the polarization amplitude [i.e.,
∂P/∂t ≈ 0], and re-write Eq. (7) as

P(r, t) = ε0χ(r, t)ŝE(r, t), (20)

where the dynamic susceptibility is defined as χ(r, t) = g Ω−i
1+Ω2 N(r, t)

with the constant g = d2
0T2/ε0~ representing the maximum of the
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imaginary part of the susceptibility (and thus the maximum gain)
per unit dopant density. Using Eqs. (9) and (20), we can show
that in the adiabatic limit, the equation for the population inversion
density [Eq. (8)] becomes,

∂N(r, t)
∂t

= −N(r, t)−N0

T1
− E · ŜE∗

T1Is (1 + Ω2)
N(r, t), (21)

where the constant Is = ~2/(4d2
0T1T2) represents the saturation

intensity [29–31]. Since χ is directly proportional to N , the dynamic
equation for χ can be obtained from Eq. (21) by multiplying with
g Ω−i

1+Ω2 . The resulting equation is

∂χ(r, t)
∂t

= −χ(r, t)− χ0

T1
− E · ŜE∗

T1Is(1 + Ω2)
χ(r, t), (22)

where χ0 = gN0 [Ω− i]/(1 + Ω2).
One can see that in adiabatic limit, the dynamic equations only

involves two dynamic quantities, electric field and population inversion
density. Instead of the population inversion density, one can also use
the susceptibility to formulate the dynamics of the system. In the
following we will derive dynamic equations for the electric field and
susceptibility in the slow scale.

If we dot product A(r)~φ∗m(r) to Eq. (20), perform averaging over
an unit cell of the PC, and then write the results in a vector form, we
can show that the slow scale electric field and polarization vectors are
related through

P̄ = ε0
ˆ̄XE (23)

where ˆ̄X = 〈AŜχ〉uc is defined as the slow scale susceptibility matrix.
For the single mode assumption, Eq. (23) reduces to a scalar equation
P̄ = ε0X̄ E with X̄ = 〈ASχ〉uc. We also can show this result by letting
Eq. (16) for k = 0, to zero, and noticing that P̄ = P̄(0) and N̄ = N̄ (0).
With the result in Eq. (23), the equation of motion for the slow scale
electric field vector [Eq. (11a)] becomes,(

D̂ + Îu
∂

∂t

)
E =

ω

2

{
i ˆ̄X − ˆ̄γ − i∆̂

}
E. (24a)

Equation (24a) is a continuity equation describing the slow evolution
of the electric field in the time and space, with the presence of loss
and gain. Note that the real and imaginary parts of ˆ̄X in Eq. (24a),
are responsible for the frequency and gain of the laser oscillation,
respectively. The single mode version of Eq. (24a) is(

v̄ · ∇+
∂

∂t

)
E =

ω

2
{
iX̄ − γ̄ − i∆

} E , (24b)
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which is an one dimensional problem in the spatial direction of the
group velocity [see Eq. (11g)].

Equations (22) and (24a), and the integral definition of ˆ̄X =
〈AŜχ〉uc forms a system of integro-differential equations with mixed
spatial scales in the adiabatic limit. Note that χ in Eq. (22) varies
on the fast spatial scale and E in Eq. (24a) varies on the slow spatial
scale. The bridge between the two equations is provided by the integral
definition of ˆ̄X , which washes away the fast spatial variation from χ.

In the following we will use the method of mean field
approximation, and the method of moments to obtain self-consistent
formulations of the dynamic equations in the slow scale for the
adiabatic limit.

5.1. Mean Field Approximation

In order to describe ˆ̄X = 〈AŜχ〉uc, let’s perform the operation
〈AŜ[. . .]〉uc to Eq. (22) to obtain

∂ ˆ̄X
∂t

= −
ˆ̄X − χ0

〈
AŜ

〉
uc

T1
−

〈
AŜE · ŜE∗χ

〉
uc

T1Is(1 + Ω2)

Applying the mean value theorem to the integral 〈AŜE ·ŜE∗χ〉uc in the
above equation, we have 〈AŜE ·ŜE∗χ〉uc = E ·ζ̂E∗〈AŜχ〉uc = (E ·ζ̂E∗) ˆ̄X .
Consequently, we obtain the equation of motion for the slow scale
susceptibility matrix from the above equation as

∂ ˆ̄X
∂t

= −
ˆ̄X − χ0

〈
AŜ

〉
uc

T1
− E · ζ̂E∗

T1Is (1 + Ω2)
ˆ̄X . (25)

With Eqs. (24a) and (25) we have a self-consistent formulation of the
dynamic equations in the slow scale for the adiabatic limit, under the
mean field approximation.

5.2. The Method of Moments

Let’s extend the results of the method of moments presented in
Section 4.2, to the adiabatic limit. The adiabatic condition ∂P/∂t = 0,
implies ∂P̄(k)/∂t = 0 for all values of k in Eq. (16) [recall that
P̄(k) = 〈Sk(A~φ∗ ·P)〉uc]. Thus in the adiabatic limit, we have

P̄(k) = ε0X̄ (k)E , (26)
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where X̄ (k) = g Ω−i
1+Ω2 N̄ (k) = g Ω−i

1+Ω2 〈ASk+1N〉uc = 〈ASk+1χ〉uc. By
substituting Eq. (26) [for k + 1] into Eq. (17), and multiplying the
resulting equation with g Ω−i

1+Ω2 , we can show that,

∂X̄ (k)

∂t
= −X̄

(k) − χ0

〈
ASk+1

〉
uc

T1
− E2

T1Is (1 + Ω2)
X̄ (k+1). (27)

Equation (27) represents a system of infinite hierarchy of coupled
moment equations, and together with Eq. (24b) form a self-consistent
formulation of the dynamic equations in the slow scale, under the single
mode assumption. The slow scale susceptibility can be obtained as the
first moment of χ [i.e., X̄ = X̄ (0) = 〈ASχ〉uc].

Note that, as in Section 4.2, the infinite hierarchy of equations
defined in (27), can be terminated to obtain finite number of equations
by noticing that the higher order moments of χ should be small.

6. STEADY STATE EQUATIONS

For a non-growing and a non-decaying mode amplitude in both time
and space [i.e., E is independent of r and t], we require the right hand
side of Eq. (24a) to be zero. This results in

{
i ˆ̄X ss − ˆ̄γ − i∆̂

}
E = 0. (28)

Here, we have written the steady state ˆ̄X as ˆ̄X ss. The steady state
mode amplitudes are therefore, can be found from the null space of
the matrix i ˆ̄X ss − ˆ̄γ − i∆̂. Using the matrix elements, Eq. (28) can be
written in a symmetrized form as (after some rearrangement),

∑
n

δmn + X̄ ss
mn + iγ̄mn

ωmωn
(ωnEn) =

1
ω2

(ωmEm) . (29)

In writing the above equation we used ∆mn = [(ω2
m/ω2)− 1]δmn

[Eq. (11d)]. Recall the definition of ˆ̄X ss = 〈AŜχss〉uc in Eqs. (28)–
(29). The exact steady state value of χ can be found from Eq. (22)
as,

χss = gN0
Ω− i

1 + Ω2 + E · ŜE∗/Is

This leads to

ˆ̄X ss = gN0

〈
AŜ

Ω− i

1 + Ω2 + E · ŜE∗/Is

〉

uc

. (30a)
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Now let’s compare Eq. (30a) with the results of the mean field
approximation, and the method of moments. By letting Eq. (25) to
zero, we can show that mean field approximation yields

ˆ̄X ss
MF = gN0

〈
AŜ

〉
uc

Ω− i

1 + Ω2 + E · ζ̂E∗/Is

. (30b)

The mean field approximation simply replaces AŜ (in the numerator of
Eq. (30a)) and Ŝ (in the denominator of Eq. (30a)) with the averaged
versions 〈AŜ〉uc and ζ̂. To compare the method of moment, which is
derived under the single mode assumption, let’s first write Eq. (30a)
for a single mode. The single mode version of Eq. (30a) is

X̄ ss = gN0

〈
AS

Ω− i

1 + Ω2 + E2S/Is

〉

uc

. (30c)

To get a steady state description from the method of moments, let’s
equate Eq. (27) to zero. This yields a recursive equation,

X̄ (k) = χ0

〈
ASk+1

〉
uc
− E2

Is(1 + Ω2)
X̄ (k+1).

Starting from k = 0, and recursively using the above equation for
higher values of k, we can show that the steady state susceptibility
from the method of moments X̄ ss

mm can be written as,

X̄ ss
mm = X̄ (0) =

∑

k

〈
ASχ0

[
− E2S

Is(1 + Ω2)

]k
〉

uc

. (30d)

The right hand side of Eq. (30d) is a Binomial series in the powers
of the electric field, and will converge for |E2S/Is| < 1. If we assume
k → ∞, use the definition χ0 = gN0[Ω − i]/(1 + Ω2), and move the
average out of the summation in Eq. (30d), we can readily verify that
the method of moment reproduces the exact result in Eq. (30a).

Equation (29) is a nonlinear eigenvalue problem, with eigenvalues,
1/ω2, and eigenvectors, [ω1E1, ω2E2, ω3E3, . . .]T . The nonlinearity
comes from the fact, X̄ ss

mn [Eq. (30a)] depends on the eigenvalue
and the eigenvectors in Eq. (29). The nonlinear eigenvalue
problem [Eq. (29)] can be numerically solved using a self-consistent
iterative procedure [52], to obtain the nonlinear Bloch modes (i.e., the
steady state modes of the active PC [37]). One also can use Eq. (29)
to evaluate the lasing characteristic [i.e., frequency, threshold, and the
intensity] of a finite sized PC. The lasing mode in a finite sized PC
is usually the Nonlinear Bloch modes at the photonic band edge [12–
18]. This is because, the loss term in Eqs. (28)–(29) depends on the
cavity leakage rate [see Eqs. (11e) and (11f)], and therefore depends on
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the group velocity. Modes at the photonic band edges will have small
group velocity. Small group velocity will yield small cavity leakage
rate [Eq. (11f)] and thus, we can expect the corresponding threshold
for the modes close to the photonic band edge should be smaller, than
those of the modes far from the photonic band edge.

The result for the steady state obtained in this section, generalizes
and simplifies the resultin Refs. [37, 38], which is obtained using the
scalar formulation for the specific case of E-polarization in a 2D PC.
The vectorial nature of the current formulation allows one to consider
time independent analysis of variety of new cases that cannot be
modeled using the scalar formulation such as

i) H-polarization of 2D PC,
ii) 3D PC,
iii) membrane of PC and PCs with defect: In this case, the unit cell

is actually a supercell,
iv) PCs with quantum dots of specific orientation and shapes: this

can be handled with the matrix s̃,
v) finite size PCs: this is handled with the cavity leakage term κm.

Previous formulation does not take advantage over the symmetry
of the bands for the given wavevector in the formulation. In the
previous formulation, the summation in Eq. (29) includes Bloch modes
of all bands for a given wavevector. However, as we have mentioned
in Section 4, the coupling of modes of the same wavevector but with
different symmetry representations for the point group symmetry are
zero. Therefore, the summation in Eq. (37) only should include Bloch
modes of the same wavevector and the same symmetry representations
for the point group symmetry. This will result in much smaller matrices
to solve. Furthermore, the numerical solution to Eq. (29) with the
exact version of X̄ ss

mn [i.e., Eq. (30a) and also in Refs. [37, 38] requires
integration at each iteration step, since the unknown quantity E is
inside the integral [see Eq. (30a)]. Performing integration at each
iterative step is computationally time demanding. One can use the
approximate version [i.e., Eq. (30b)] in which E is separated from the
integration, and this is numerically much effective to handle.

6.1. Steady State Results under a Single Mode Assumption

In this section we present the results of the steady state under the single
mode assumption. The results in this section serve as an approximation
for the nonlinear matrix eigenvalue problem [Eqs. (28)–(29)].

The single mode version of Eq. (28) is iX̄ ss − γ̄ − i∆ = 0. With
γ̄ and ∆ being real quantities, this equation splits into two equations,
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Re(X̄ ss) = ∆ and Im(X̄ ss) + γ̄ = 0 which can be written as,

ω2
m

ω2
= 1 + gN0Ω

〈
AS

1 + Ω2 + E2S/Is

〉

uc

, (31)

γ̄ = gN0

〈
AS

1 + Ω2 + E2S/Is

〉

uc

, (32)

where the frequency of the backbone PC’s mode is ωm, and the
frequency of the Nonlinear Bloch mode is ω. In Eqs. (31)–(32), the
quantity N0 depends on the external pumping value. We can cancel
the term 〈. . .〉uc in the Eqs. (31)–(32) to show a cubic equation for ω,

(γ̄T2) ω3 + [1− (γ̄T2) ω0] ω2 − ω2
m = 0. (33)

If we simply replace the effective loss (i.e., the average loss) parameter
in the above equation with a bulk loss, then the resulting equation for
ω is in perfect agreement with the results of the first order semiclassical
theory for a spatially homogeneous active media [53].

Once ω is solved from Eq. (33), the rest of the unknowns can be
solved. For a threshold calculation we have E = 0, and the unknown
is N0 = Nth. For pumping level greater than the threshold level (i.e.,
N0 > Nth,m), the unknown is E .

The threshold population inversion density [Nth] can be found
from Eq. (32) by setting E = 0, as

Nth =
γ̄

g〈AS〉uc

(
1 + Ω2

)
. (34a)

If we define a dimensionless quantity g0 = gNT that characterize
the maximum gain [recall that NT is the total density of the active
dopants, and g = d2

0T2/ε0~ is the maximum of the imaginary part
of the susceptibility (and thus the maximum gain) per unit dopant
density], we can write Eq. (34) in an intuitive form as

Nth

NT
=

γ̄

ḡ
. (34b)

In Eq. (34b), we have casted the ratio of the threshold population
inversion density to the total population density as the ratio between
the effective loss [γ̄] to an effective gain, ḡ = g0〈AS〉uc

1+Ω2 . As we can see
from the expression for the effective gain, the effective gain depends
on g0 (which is a material property), the confinement of the backbone
PC’s mode in the active region of the unit cell (which is quantified
through 〈AS〉uc), and the deviation of the atomic resonant frequency
from the frequency of backbone PC’s mode [which is quantified through
Ω = (ω − ω0)T2].
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For a finite sized PC, the cavity leakage rate must be included in
the effective loss parameter. Using the estimation of the cavity leakage
rate in Eq. (11f), we can write the threshold population inversion
density for a finite sized PC as

Nth =
1 + Ω2

2cgL〈AS〉uc
|q̂ · v̄|2 , (34c)

In writing Eq. (34c), we have neglected the material loss. Eq. (34c)
shows that, the threshold population inversion density is small for
a small group velocity. Therefore, the photonic band edge modes
(which possesses smaller group velocities) will have smaller threshold
population inversion densities, and thus emerge as lasing modes.

From Eq. (33), we can see that the steady state mode frequency
does not depend on the pumping level, but it depends on γ̄, ω0, ωm

and T2 [i.e., parameters that control Nth]. One can expect increasing
the pumping, will increase the real part of the susceptibility, and
therefore the frequency of the active mode should change as a function
of pumping. The real part of the susceptibility depends on the steady
state population inversion density. In steady state, for pumping
level beyond the threshold value, increasing the pumping value will
not change the population inversion density significantly, however the
energy from the pumping will be used to generate more light (i.e., to
increase the steady state intensity) [29–31]. Therefore for in steady
state, the population inversion density is approximately equal to the
threshold population inversion density Nth, and therefore the steady
state frequency will depend on the parameters that control Nth [see
Eq. (34)].

The amplitude of the Nonlinear Bloch mode E , has to be solved
numerically from the nonlinear integral equation, Eq. (32). Defining
an intensity ratio as I = E2/Is, we can get an approximate value of
I, using the mean field approximation [Eq. (30b)] for the single mode
gain. Using Im(X̄ ss

MF ) + γ̄ = 0 we can show that

I = g
〈AŜ〉uc

γ̄ζ
(N0 −Nth) . (35)

6.2. Threshold Pumping and Steady State Intensity in
Three Level System

Population inversion cannot be created in a purely two level system.
Additional energy levels apart from the two radiating energy levels are
needed to create the realistic pumping mechanism. For this purpose,
two widely studied energy level configurations are three and four level
systems [29–31].
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For a discussion of a realistic pumping mechanism and the
corresponding threshold pumping, let’s consider PC structures with
active dopants of three energy levels [37]. The analysis can be easily
extended for active dopants with four levels. In a three level system, the
pumping will excite the dopants from level 1 to level 3. We assume the
excited dopant will decay very fast to level 2 (almost instantaneously).
As before, levels 2 and 1 remain as radiating energy levels. In this
system, N0, population inversion decay time, and saturation intensity
can be written as N0 = NT (ρ− 1)/(ρ + 1), T1/(ρ + 1), and Is(ρ + 1),
respectively [30, 31]. In these expressions, ρ stands for the ratio of the
pumping rate from level 1 to level 3, to the population decay rate from
level 2 to level 1. With this notations for the three level dopants, the
threshold pumping, ρth, with the help of Eq. (34b) can be shown to
be,

ρth =
ḡ + γ̄

ḡ − γ̄
= 1 + 2

∑

l≥1

(
γ̄

ḡ

)l

, (36)

For a finite ρth, Eq. (36) requires ḡ > γ̄ [i.e., the effective mode gain
must be larger than the effective mode loss]. Recall that ḡ and γ̄
depend on the parameters of the backbone PC (such as radius and
dielectric constant of rods). Therefore, the inequality ḡ > γ̄, will set
limits on the parameters of the backbone PC.

For an exact calculation of the steady state intensity ratio (I)
as a function of ρ, one has to numerically evaluate Eq. (32) with
N0 = NT (ρ − 1)/(ρ + 1). Approximate version of I can be obtained
from Eq. (35) as I = ḡ−γ̄

γ̄ζ [1 + Ω2](ρ− ρth).

7. CONCLUSION

In conclusion we have presented a theory to describe the transient and
steady state behaviors of the modes in an active PC. We model the
active constituents as two level atoms, and assumed the electric field in
the active PC can be expanded in term of modes of a backbone PC [i.e.,
a couple mode model], with the expansion coefficient varying slowly
in the time and spatial scales. We defined a slow scale electric field
vector [i.e., E] as an array of the expansion coefficients. The equation
of motion for E together with the Bloch equations forms a system
of integro-differential equations. Using the method of moments and
the mean value theorem, we showed the system of integro-differential
equations can be transformed to a set of differential equations in slow
time and slow spatial scales. In the adiabatic limit, the couple mode
model results in a familiar relationship P̄ = ε0

ˆ̄XE, where P̄ is the slow
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scale polarization vector and ˆ̄X the slow scale susceptibility matrix.
In steady state, the entire formalism reduces to a nonlinear matrix
eigenvalue problem. The nonlinear matrix eigenvalue problem can be
solved to obtain the Nonlinear Bloch modes in an infinite PC, or lasing
modes in a finite sized PC.

For cases, where the coupling between the modes are negligi-
ble [i.e., a single mode assumption], the transient equations can be
casted as an one dimensional problem in the spatial coordinate. Fur-
ther, in the steady state, we showed that the moment equations describ-
ing the transient behavior reduce to a Binomial series in the powers of
the electric field. The threshold population inversion density under a
single mode assumption is given by a formula which can be calculated
using the unit cell averaged parameters, and the steady state mode am-
plitude is described by a simple nonlinear integral equation. A partial
numerical illustration for the steady state results based on the single
mode assumption is given in Ref. [55].

This work provides a foundation for the transient and steady state
analysis of lasers and nonlinear Bloch modes in PC structures of all
dimensions. The presented theory can be easily extended for any active
and nonlinear perturbation with more than two levels, and can be used
in various investigations of nonlinear phenomena in PCs.

APPENDIX A.

To derive Eq. (11a), we start with Eq. (6). Using Eqs. (9)–(10), and
neglecting second order terms [31, 53], we can write Eq. (6) as

1
c2

∑
n

{
(ω2

n − ω2)ε(r)− i
ω

ε0
σ(r)− 2iωε(r)

∂

∂t

}
En(r, t)~φn(r)

+
∑

n

Vn(~φn, En) = µ0A(r)
(

2iω
∂

∂t
+ ω2

)
P, (A1)

where Vn = ∇En × ∇ × ~φn + (∇En)∇ · ~φn − (∇En · ∇)~φn. If we dot
product Eq. (A1) with ~φ∗m, and then perform spatial averaging over an
unit cell of the PC, we will arrive at Eq. (11a). In writing Eq. (A1), we
used the orthogonality relationship 〈~φ∗m(r) · ε(r)~φn(r)〉uc = δnm, and
the result 〈~φ∗m(r) · Vn(~φn, En)〉uc = −i2ω

c2
v̄mn · ∇En(r, t), where v̄mn is

defined in Eq. (11c). To prove this result, firstly note that the dot
product ~φ∗m(r) · Vn can be written as (∇En) · T mn using the identities
of vector calculus. Here the l-th Cartesian component of the vector
T mn is

T l
mn = φ∗lm

(
∂kφk

n

)
+

(
φ∗km ∂k

)
φl

n − 2φ∗km ∂lφk
n (A2)
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[written in the summation of repeated index convention], where the
superscript denotes the Cartesian component of the vector, and ∂k(∂l)
represents the partial derivative with respect to k (l)-th Cartesian
component. Finally by defining, v̄mn = i c2

2ω 〈T mn〉uc, we arrive at
〈~φ∗m(r) · V(~φn, En)〉uc = −2iω

c2
v̄mn · ∇En(r, t).

APPENDIX B.

In this appendix, we will show that the group velocity for the m-th
mode of the backbone PC can be written as v̄mm [see Eq. (11c) and
Appendix A]. In order to do this we will use k · p perturbation theory
which is in earlier has been used to derive group velocity expression
for 1D Bragg stacks [54].

Let start with Eq. (10), by identifying the mode of backbone PC
with a pair of indices to denote the Bloch wavevector, k, and band
index, n. If we write ~φk,n(r) = eik·ruk,n(r), then Eq. (10) can be
written in an operator form as

Hkuk,n(r) = ε(r)ω2
k,nuk,n(r), (B1)

where Hkuk,n(r) = c2(∇+ ik) × (∇+ ik) × uk,n(r). For a
small increment of q, in k, Eq. (B1) becomes Hk+quk+q,n(r) =
ε(r)ω2

k+q,nuk+q,n(r). Hk+q can be decoupled as Hk + Vk,q where

Vk,quk+q,n =c2 {iq× (∇+ik)+(∇+ik)× iq−q× q} × uk+q,n, (B2)

and Vk,q can be considered as a perturbing operator. Using the first
order time independent perturbation theory, we obtain,

ω2
k+q,n = ω2

k,n + 〈uk,n ·Vk,quk,n〉uc (B3)

We can expand the frequency in Taylor expansion as ωk+q,n = ωk,n +
q · vk,n + O(q2), where vk,n is the group velocity which can be found
using Eq. (B3) as,

v̄k,n =
1

2ωk+q,n
∇q〈uk,n ·Vk,quk,n〉uc

∣∣∣∣
q=0

(B4)

where the operator ∇q = q̂x(∂/∂qx) + q̂y(∂/∂qy) + q̂z(∂/∂qz).
Neglecting the second order terms of q, we can evaluate uk,n ·Vk,quk,n

as a function, ~φk,n(r). The resulting expression in a single index
notation [i.e., (k, n) ≡ n], is un · Vk,qun = ic2q · T nn where T nn

is defined in Eq. (A2). Using this result and the definition of group
velocity in Eq. (B4), it is straightforward to show v̄nn = i c2

2ω 〈T nn〉uc.
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