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Abstract—Two dimensional (2D) radar coincidence imaging is an
instantaneous imaging technique which can obtain 2D focused high-
resolution images using a single pulse without the limitation to the
target relative motions. This paper extends the imaging method
to three dimensions. Such a three-dimensional (3D) radar imaging
technique does not rely on Doppler frequency for resolution and has
an extremely short imaging time (shorter than a pulse width), resulting
in two remarkable properties: 1) it does not require the relative
rotation between targets and radar; 2) it can considerably avoid the
image blurring in processing noncooperative targets without motion
compensation. 3D radar coincidence imaging consequently can derive
high-quality images for either the targets that are stationary with
respect to radars or the ones in maneuvering 3D rotations. The
validity of the proposed imaging technique is confirmed by numerical
simulations.

1. INTRODUCTION

Various radar imaging techniques are developed to extract 3D
target shape information. The interferometric synthetic aperture radar
imaging employs multiple antennas with different heights, where the
third dimension of the target image is obtained via the phase difference
of different ISAR images [1]. The snapshot imaging technique in [2]
derives target 3D images via the processing of fusing multiple 2D ISAR
images in different view angles. The 3D imaging algorithms in [3] are
proposed for the near field turning table targets with the knowledge of
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the target motions through the measurements. Despite the different
forms 3D radar imaging takes, most of the methods are based on the
range-Doppler (RD) principle, where target information is derived via
the processing of measuring range and changes in range [4]. This
imaging principle requires the relative rotation between targets and
radars to produce high azimuth resolution unless the radar system has
a considerably large-scale antenna array to accomplish large aspect-
angle variation [5]. Therefore, the synthetic aperture radar imaging
technique is widely employed which is effective to derive high azimuth
resolution via target relative rotation during the coherent integration
time (CIT). Then another well-known requirement comes out that the
target relative motion should be uniform during the CIT [5]. Obviously,
it affects the applicability of imaging the noncooperative targets in
complex maneuvers. The noncooperative motion yields time-varying
Doppler frequency which destroys the Fourier-based imaging formation
and would badly blur the images beyond recognition [6]. A long
CIT (or a large aspect-angle integration) indeed provides the desired
resolution, but meanwhile the nonuniform space sampling will produce
smeared images which are difficult to be refocused even though various
motion compensation algorithms are applied [6–8].

In consideration of aforementioned reasons, our recent work in [9]
developed an instantaneous 2D imaging technique: radar coincidence
imaging, which was motivated by classical coincidence imaging in
optical systems [10]. Such an imaging method can obtain high-
resolution well-focused images using just a single pulse without the
limitation to target relative motion. Radar coincidence imaging
resolves target scattering centers via the processing of measuring
the independent waveforms of their echoes, which is quite different
from conventional radar imaging methods based on the RD principle.
Therefore, the method does not rely on Doppler frequency for
resolution and has a considerably short imaging time. Consequently,
radar coincidence imaging can achieve high imagery quality either
for stationary targets or for maneuvering ones. Then the extension
of this imaging method to three dimensions will potentially present
the advantages as well. However, 3D scenario makes distinct
differences in both the signal model and the conditions to perform
such an imaging technique. Therefore, this paper develops 3D radar
coincidence imaging which can provide target 3D images using a single
pulse without the requirement for the knowledge of target motion
parameters. Furthermore, the proposed 3D imaging method can
achieve high-quality images for both the targets that are stationary
with respect to radars and the ones in 3D maneuvering rotations.

The remaining sections are organized as follows. Section 2
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analyzes the basic principles of the proposed imaging method.
Section 3 shows the examples of 3D radar coincidence imaging.
Section 4 concludes the work.

2. BASIC PRINCIPLES

The essence of radar coincidence imaging is to produce the signals
presenting time-space independence in the detecting area. That is,
the detecting signals in different positions or at different time instants
are independent with each other. Such detecting signals will make
target scattering centers within a beam reflect echoes of independent
waveforms. Then the coincidence processing will extract the target
scattering spatial distribution from the receiving signal.

As shown in Fig. 1, 3D radar coincidence imaging employs an array
of N transmitters and a receiver. Generally, target location can be
firstly estimated by current detection and localization techniques [11–
13], which is defined as the center of the imaging region. Then an
XY Z coordinate is built at the center of the imaging region labeled as
I. The position vectors of the n-th transmitter and the receiver are Rn

and Rr, respectively (the imaging process is discussed within a radar
pulse and then based on the stop-and-shoot model targets are assumed
to be stationary during the very short observation interval [11]). Stn(t)
is the transmitting signal of the n-th transmitter. Here the imaging
region I is required to be discretized to L imaging cells and every
imaging cell is approximately regarded as its own centre, expressed
as I = {rl}L

l=1, rl being the position vector of the l-th imaging cell
center. Then the detecting signals distributed in the imaging region
is denoted as SI(r, t), where r is the position vector of an arbitrary
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Figure 1. Geometry of 3D radar coincidence imaging.
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imaging cell within I. To produce the time-space independent SI(r, t)
via single transmitting, the transmitting signals are supposed to be
group-orthogonal and time-independent [9], expressed as,

RT (n1, n2; t1, t2)=
∫

Stn1(t−t1)Stn2(t−t2)dt=δ(t1−t2) ·δ(n1−n2) (1)

where Stn(t) = rect( t
Tp

) · stn(t), stn(t) is the envelope function and Tp

the pulse width. Then the detecting signal SI(r, t) is,

SI(r, t) =
N∑

n=1

Stn

(
t− |r−Rn|

c

)
(2)

The self-correlation of SI(r, t) turns out to be,

RI

(
r, r′; τ, τ ′

)
=

∫
SI(r, t− τ)S∗I

(
r′, t− τ ′

)
dtdt

=
N∑

n=1

N∑

n′=1

RT

(
n, n′;

|r−Rn|
c

+ τ,
|r′ −R′

n|
c

+ τ ′
)

=
N∑

n=1

δ
(|r−Rn| − |r′ −Rn| − c

(
τ ′ − τ

))
(3)

If the target range |Rn| is much larger than the target size we
have the approximation |r−Rn| = |Rn| − r · Dn [4], where Dn

is the unit direction vector of Rn and is expressed as Dn =
(cos θn cosϕn, cos θn sinϕn, sin θn)T , herein θn and ϕn being the pitch
angle and the azimuth angle. Then, (3) becomes,

RI

(
r, r′; τ, τ ′

)
=

N∑

n=1

δ
(
DT

n∆r− c∆τ
)

(4)

where ∆τ = τ ′ − τ , and ∆r = r′ − r = (∆x,∆y, ∆z)T . Obviously, the
value of RI(r, r′; τ, τ ′) is determined by the relationship between c∆τ
and {DT

n∆r}N
n=1. In 2D case, RI(r, r′; τ, τ ′) can reach its maximum

only when ∆r = 0, ∆τ = 0 if there exist more than two transmitters [9].
In 3D case, we analyze the possible results through the following
equation.




cos θ1 cosϕ1 cos θ1 sinϕ1 sin θ1

cos θ2 cosϕ2 cos θ2 sinϕ2 sin θ2
...

...
...

cos θN cosϕN cos θN sinϕN sin θN


 ·

(∆x
∆y
∆z

)
=




c∆τ
c∆τ

...
c∆τ


 (5)
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where we denote the coefficient matrix of (5) with D. Note that the
transmitters we employed for 3D radar coincidence imaging are more
than 3, i.e., N > 3, and the N transmitters are noncollinear leading to
the noncoplanar {Dn}. Thus rank(D) = 3. Without loss of generality,
we choose the first four rows to calculate the fourth-order determinant
of the corresponding augmented matrix of (5), labeled as D̃. Then we
have

det
(
D̃

)
= c∆τ · [(D1 −D2)×D3 ·D4 + (D3 −D4)×D1 ·D2] (6)

where “×” and “·” denote the outer product and the inner
product, respectively. For simplicity, we use the denotation of
Θ = [(D1 −D2)×D3 ·D4 + (D3 −D4)×D1 ·D2]. When Θ = 0,
rank(D̃) = rank(D) = 3. Then the Equation (5) has a nonzero solution
when ∆τ 6= 0. It indicates that RI(r, r′; τ, τ ′) can reach its maximum,
namely N , when ∆r 6= 0, ∆τ 6= 0.

Let us focus on the case of Θ 6= 0.

• When ∆τ = 0, det(D̃) = 0, leading to rank(D̃) = rank(D) =
3. Thus, the equation has the unique solution of 0, which
indicates RI(r, r′; τ, τ ′) can reach its maximum of N only under
the condition of ∆r = 0, ∆τ = 0.

• When ∆τ 6= 0, det(D̃) 6= 0, leading to rank(D̃) = 4 6= rank(D).
Thus, the equation has no solution, which indicates no ∆r can
make RI(r, r′; τ, τ ′) reach its maximum of N when ∆τ 6= 0.

Therefore, on condition that Θ 6= 0, RI(r, r′; τ, τ ′) can reach its
maximum only when ∆r = 0, ∆τ = 0. Actually, this condition
is tractable to be achieved. For example, we consider 4 antennas
where three of them are set to have the same pitch angle for
simplicity, i.e., θ1 = θ2 = θ3. Then, we have, Θ = 4 cos2 θ1(sin θ1 −
sin θ4) sin ϕ2−ϕ1

2 · sin ϕ3−ϕ2

2 · sin ϕ3−ϕ1

2 . Because the direction vectors
are different from each other, then ϕ1 6= ϕ2 6= ϕ3, leading to
sin ϕ2−ϕ1

2 · sin ϕ3−ϕ2

2 · sin ϕ3−ϕ1

2 6= 0. Thus, Θ 6= 0 will be guaranteed
when θ1 6= (θ4 or π − θ4) 6= ±π/2.

Based on the analysis above, we define the property as follows.
Property 1:

(Dk −Dl)×Dm ·Dn + (Dm −Dn)×Dk ·Dl 6= 0, m 6= n 6= k 6= l

When property 1 holds RI(r, r′; τ, τ ′) can reach the maximum of
N only on condition that ∆r = 0, ∆τ = 0. Especially, if the antenna
number is big, for example N = 10, the result of (4) could be viewed
as an approximate delta function,

RI

(
r, r′; τ, τ ′

) ∼ Nδ
(
r− r′, τ ′ − τ

)
(7)
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Figure 2. The spatial distribution of the LFM signals. (a) The spatial
distribution in XY plane. (b) The spatial distribution in XZ plane. (c)
The spatial distribution in Y Z plane. (d) The spatial self-correlation
in XY plane. (e) The spatial self-correlation in XZ plane. (f) The
spatial self-correlation in Y Z plane.

Thus (7) indicates that the detecting signal with the characteristic
of approximate time-space independence can be generated in three
dimensions, which is the essence to perform 3D radar coincidence
imaging. To look into the spatial distribution of such detecting signals,
we illustrate the SI(t, r) at an arbitrary instant in an imaging region
I which is 10 km away from the radar system. Herein the group-
orthogonal and time-independent transmitting signals are generated
via imposing the zero-mean Gaussian-noise modulation on amplitude,
expressed as,

Stn(t) = An (t) exp [j (2πft + φ)] · rect
(

t

Tp

)
(8)

where f is the carrying frequency and φ the initial phase. {An(t)}N
n=1

is the mutual-independent Gaussian-noise, where RA(n1, n2; t1, t2) =
δ(n1 − n2, t1 − t2). Then, RT (n1, n2; t1, t2) = exp[j2πf(t2 − t1)] ·
RA(n1, n2; t1, t2) = δ(n1 − n2, t1 − t2). Additionally, for the sake
of comparison, we also depict the detecting signals produced by the
linear frequency modulated (LFM) signal which is an instance of
the coherent signals. Fig. 2 and Fig. 3 illustrate the instantaneous
spatial distribution of the detecting signals in the XY, XZ, and YZ
plane, and their respective self-correlation is also given. Clearly, signal
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Figure 3. The spatial distribution of the time-independent signals.
(a) The spatial distribution in XY plane. (b) The spatial distribution
in XZ plane. (c) The spatial distribution in Y Z plane. (d) The spatial
self-correlation in XY plane. (e) The spatial self-correlation in XZ
plane. (f) The spatial self-correlation in Y Z plane.

distribution generated by the LFM waveforms exhibits marked spatial
correlation. By contrast, time-independent waveforms can produce the
detecting signals that fluctuate incoherently versus positions.

Then, we express the receiving signal as the superposition of
SI(r, t),

Sr(t) =
L∑

l=1

σlSI

(
rl, t− |rl −Rr|

c

)
(9)

where σl is the scattering coefficient of the l-th imaging cell, and for
the imaging cell without target scattering center σl = 0. Particularly,
the coincidence imaging formulism needs a reference signal [14], which
can be structured as,

S (r, t) = SI

(
r, t− |r−Rr|

c

)
(10)

Obviously, the reference signal S(r, t) is just the transform of SI(r, t)
with an additional time-delay induced by the propagation to the
receiver. Then, (9) becomes,

Sr(t) =
L∑

l=1

σlS (rl, t) (11)
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Therefore, the scattering coefficient σx of an arbitrary imaging cell rx

can be explicitly obtained via the correlation between the receiving
signal and S(rx, t),

∫
Sr (t) S∗ (rx, t)dt =

L∑

l=1

σl ·RI

(
rl, rx;

|rl −Rr|
c

,
|rx −Rr|

c

)

∼
L∑

l=1

σl ·Nδ (rl − rx) = N · σx (12)

That is,

σx ∼ 1
N

∫
Sr (t) S∗ (rx, t)dt (13)

Since the detecting signal SI(r, t) or S(r, t) can be computed according
to the known transmitting waveforms, the scattering coefficient of every
imaging cell will be extracted from the receiving signal as denoted
in (13). Obviously, the higher time-space independent degree the
detecting signals present, the better resolution this correlation can
provide. Thus, the 3D target image can be obtained as long as the
transmitting signals can generate the time-space independent detecting
signals by satisfying the condition in (1).

The essence of 3D radar coincidence imaging consists in that the
superposition of multiple transmitting signals with the characteristic
of time-independence and group-orthogonality increases the variety
of detecting-signal spatial distribution, so that the scattering centers
within a beam reflect echoes of different waveforms associated with
their respective locations. As well known, the 3D imaging techniques
based on the RD principle generally employs coherent signals and
resolves target scattering centers by extracting the differences of time-
delay and Doppler gradient in their echoes. However, for the proposed
imaging method, scattering center echoes do not just differ from
each other upon time-delay or Doppler frequency, and above all their
waveforms are highly different which provides alternative information
for distinguishing themselves. Especially, this resolvable feature does
not need aspect-angle integration or large-scale antenna array, which
could be achieved using only a single returned pulse. Due to the
very short imaging time, the influence of the target noncooperative
motion on imagery qualities will be considerably reduced. In addition,
3D radar coincidence imaging does not require target rotation for
resolution. Therefore, high-quality images could be derived for either
noncooperative targets or stationary ones.

Note that the perfect point-to-point relationship as denoted in (13)
depends on the highly time-space independent detecting signals, which
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is mainly achieved by the time-independent transmitting signals.
However, the complete time-independence denoted as (1) is almost
impossible for either simulation data or actual radar signal. Thus,
the incompletely time-independent transmitting signal would degrade
the spatial independence of the detecting signal. As shown in Fig. 3,
despite the spatial incoherence the signals on adjacent positions remain
correlated to a certain extent and it is far from the desired spatial
independence as required in (7). It has been demonstrated in [9]
that the time-independent degree of microwave transmitting signals
is inadequate to extract the target scattering coefficient with high
resolution. Consequently, only the correlation between Sr(t) and S(r, t)
cannot generate a high resolution for radar coincidence imaging.

Therefore, a parameterized approach is employed to rebuild target
images, which is less restricted by the independence of detecting
signals. The approach utilizes the relationship between the receiving
signal and the reference signal as denoted in (11) to structure a radar
coincidence imaging equation, given as follows.

Sr = S · σ


Sr(t1)
Sr(t2)

...
Sr(tK)


 =




S(r1, t1) S(r2, t1) . . . S(rL, t1)
S(r1, t2) S(r2, t2) . . . S(rL, t2)

...
... . . .

...
S(r1, tK) S(r2, tK) . . . S(rL, tK)


 ·




σ1

σ2
...

σL




(14)

where S is the reference signal matrix, Sr the vector of the receiving
signal, and σ the unknown vector of the scattering coefficient. The
coincidence imaging equation will have a unique solution on condition
that S is nonsingular. Hence, the time samples firstly should not
be less than the imaging cells. Then the columns and the rows
of S basically represent the detecting signals in different positions
and at different instants. Thus, the row rank and the column rank
of S are determined by the independence of the detecting signal in
time and space, respectively. Therefore, the time-space independence
characteristic denoted in (7) would ensure a full-rank SL×L, based on
which σ can be uniquely recovered.

After the analysis above, we now summarize the imaging scheme
as follows.

Step 1. Estimate the location of the target center and define it as
the center of the imaging region.
Step 2. Discretize the imaging region to form I = {rl}L

l=1.
Step 3. Compute the reference signal {S(rl, t)}L

l=1.
Step 4. Draw out L samples from {S(rl, t)}L

l=1 in time domain to
form SL×L.
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Step 5. Draw out L samples from Sr(t) at the same sample points
to form Sr.
Step 6. Solve the equation Sr = S · σ.

Obviously, the image-reconstruction or the achievement of
resolution depends on whether the coincidence imaging equation can be
solved. Therefore, an explicit resolution is determined by quantitative
solvable conditions. However, as well known, there have not been
applicable criterions to evaluate such conditions or the resolution of
the parameterized method in existing approaches. Thus, as a special
subject, this unsolved problem is a focus in our current work.

3. RESULTS USING PHANTOMS

In this section, several examples are designed to demonstrate the
imaging results of the proposed method. Herein we use an N -
transmitter 1-receiver array, which consists of 6 antennas, as shown in
Fig. 4. The positions of the radar array and the imaging region satisfy
property 1. The transmitting signals used for simulation are denoted
in (8). In consideration of noise impact in practical experiments, the
imaging equation is rewritten as Sr = S · σ + n, where n is modeled
as white noise. The signal-noise-ratio (SNR) is 20 dB. Other detailed
parameters are given in Table 1.

For experiments of RD imaging techniques, the resolution can be
clearly given according to bandwidth and beam width or coherent
integration angle. As explained in the last section, however, a
theoretical resolution of radar coincidence imaging is difficult to be
provided. Nevertheless we try to analyze the resolution in this specific
experiment scenario through numeric results. Note that radar antennas
and imaging region are definite in the experiment. In this case, the
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Table 1. System parameters of the phantom experiments.

Description Parameter Value
Average transmitted power Pt 10W

Antenna gain K 20 dB
Receiver sensitivity Smin −90 dBm

Pulse repetition frequency PRF 600 Hz
Carrier frequency fc 9.5GHz

Pulse width Tp 50µs
Bandwidth B 1GHz

Sampling frequency fs 2GHz

detecting signals in the imaging region thus have been fixed. Then
while the imaging cell gets smaller the independence of the signals from
adjacent imaging cells is decreased and the incoherency of S becomes
worse. Finally S will turn to be singular when the imaging-cell size
decreases to a certain critical value. Therefore, this critical size of the
imaging cell can be viewed as the resolution in this specific phantom.
Fig. 5 depicts rank of S versus the imaging-cell size. To keep the real
scale of target images, the imaging cell is set to have the equivalent
height, length and width, denoted as lc.

Based on the results of Fig. 5, a nonsingular S can be ensured
if lc ≥ 0.09 m in the experiment. Then the target model is shown
in Fig. 6. As depicted in Fig. 4, the target has translational motion
along with Z-axis, labeled as v, and also has 3D rotations along with
the X-axis, Y -axis and Z-axis, which are denoted as ωx, ωy and ωz,
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Figure 5. Rank of the reference signal matrix versus the imaging cell
size.
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Figure 7. The noise-free imaging result of the stationary target.
(a) The 3D view. (b) The vertical view. (c) The side view.

respectively. The target will be imaged in four scenes. They are,
scene1: the target is stationary in noise-free environment; scene2: the
target is stationary and SNR is 20 dB; scene3: the target motion
is uniform and SNR is 20 dB, where v = 300t, and ωx = ωy =
ωz = 10t; scene4: the target motion is nonuniform and SNR is
20 dB, where v = 300t + 50t2, and ωx = 10t + 10t2 + 20t3 + 20t4,
ωy = 11t + 15t2 + 25t3 + 25t4, ωz = 8t + 10t2 + 35t3 + 25t4. Here the
rotations are all referred in angle measurement.

As mentioned in the imaging scheme, target initial position and
its first-order translational velocity are estimated firstly to obtain the
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Figure 8. The imaging result of the stationary target when SNR =
20dB. (a) The 3D view. (b) The vertical view. (c) The side view.

target location, where the estimation precision is 70%. Then the
imaging region is set to 10 m×10 m×10m = 1000m3, and is discretized
to 20 × 20 × 20 = 8000 imaging cells with lc = 0.5m. A single pulse
provides TP × fs = 100000 time samples, from which we can choose
8000 samples to form the square matrix S. Since lc = 0.5m ≥ 0.09m,
S thus is nonsingular. Then the scattering-coefficient vector can be
uniquely recovered as σ = S−1Sr, where the inverse matrix S−1 is
estimated with the Matlab function “inv”.

The imaging method implementation mainly consists of two parts,
i.e., computing the detecting signals to obtain the reference signal
matrix S and recovering the target image via computing σ = S−1Sr.
On a single PC processor with 2.33 GHz CPU and 2GB of memory,
2 minutes are needed to compute the detecting signals, and 6 seconds
are needed to recover the target image. The imaging results from
scene1 to scene4 are shown in Fig. 7–Fig. 10.

As shown in Fig. 7, the estimation of the target scattering coef-
ficients and positions are basically correct in noise-free environment.
In the presence of white noise, the recognizable target image is also
obtained, as shown in Fig. 8. By contrast, the noise-free recovery gives
better estimation of the scattering coefficients. Then in Fig. 9 the tar-
get is well imaged when it is in uniform motions. It indicates that 3D
radar coincidence imaging does not rely on the Doppler frequency gen-
erated by target relative rotation. Especially, the fine imagery quality
is maintained even when the target is involved in marked noncooper-
ative rotation, as shown in Fig. 10. Herein, we use 8000 consecutive
samples. Thus, the imaging time (the time of observing the target) is
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Figure 9. The imaging result of the uniformly moving target when
SNR = 20dB. (a) The 3D view. (b) The vertical view. (c) The side
view.
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Figure 10. The imaging result of the maneuvering target when SNR
= 20 dB. (a) The 3D view. (b) The vertical view. (c) The side view.

8000/fs = 4µs. Due to this very short imaging time, the effect of the
high-order motion components is highly decreased. Thus, the nonuni-
form rotation here does not blur the imaging result even though these
high-order components are not compensated. Therefore, the imaging
results above indicate that the 3D radar coincidence imaging method
can derive high-quality 3D reconstruction for both stationary targets
and maneuvering ones.
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4. CONCLUSION

This paper proposes a 3D radar coincidence imaging method which can
provide target 3D images using a single pulse without the requirement
for motion parameter knowledge. This method can derive high-quality
images either for the targets which are stationary with respect to radars
or for the ones in 3D maneuvering rotations. The validity and the
applicability of the proposed method are demonstrated in simulations.
For the future study, to provide a theoretical resolution of 3D radar
coincidence imaging might be of the most interest. In addition, the
imaging performance under different SNR conditions, the antenna
array design as well as the computation complexity are worth of further
considerations.
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