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Abstract—The multiplicatively regularized finite-element contrast
source inversion algorithm (MR-FEM-CSI) is used to solve the full-
vectorial three-dimensional (3D) inverse scattering problem. The
contrast and contrast-source optimization variables are located at
the centroids of tetrahedra within the problem domain; whereas the
electric field is expanded in terms of edge basis functions on the same
tetrahedra. A dual-mesh is created in order to apply the multiplicative
regularization. To handle large-scale problems the inversion algorithm
is parallelized using the MPI library, with sparse matrix and vector
computations supported by PETSc. The algorithm is tested using
experimental datasets obtained from the Institut Fresnel database.
A synthetic example shows that the technique is able to successfully
image moisture hot-spots within a partially filled grain bin.

1. INTRODUCTION

Microwave imaging (MWI) is a modality that quantitatively
reconstructs the electrical properties (i.e., the complex permittivity
and/or conductivity) of an object-of-interest (OI), thereby also
providing an estimate of the OI’s shape and location. Optimization
algorithms attempt to solve the associated inverse scattering problem
by choosing the electrical properties that minimize a cost functional
that incorporates the measured microwave field data and a model of
the physics. Regularization methods are required to deal with the
inherent ill-posedness of the problem. Common regularization methods
introduce either additive or multiplicative terms to the functional.

While the majority of MWI algorithms solve two-dimensional
(2D) problems, considerable effort has been applied to developing
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algorithms for three-dimensional (3D) applications. Recent work for
3D problems include: multiplicatively regularized (MR) Gauss-Newton
inversion (GNI) by Abubakar et al. [1], GNI combined with a discrete
dipole approximation (DDA) by Grzegorczyk et al. [2], holographic
3D MWI by Amineh et al. [3] and imaging using a hybrid iterative
inversion method that combines contrast source inversion (CSI) and
the conjugate-gradient method (CGM) by Mudry et al. [4]. The
fastest of the 3D algorithms, for breast cancer imaging, currently
seems to be GNI combined with the DDA where high efficiency is
obtained through specific assumptions made of the lossy background
medium. The state-of-the-art in 3D holographic imaging is limited
to qualitative reconstruction of the object-of-interest (OI) [3]. The
MR-GNI algorithm and the hybrid CSI-CGM algorithm require a
Green’s function as they solve integral-equation formulations of the
MWI problem; determining the Green’s function for complicated
imaging chamber boundaries and/or inhomogeneous backgrounds can
be complicated and computationally expensive [5]. This requirement
is circumvented by introducing sufficient loss into the background
medium such that the chamber walls are not “seen”. Of course this
limits the achievable dynamic range in the measurements which is
counter-productive in terms of achieving the best resolution. Whether
or not such solutions are beneficial to the imaging results is irrelevant
when dealing with applications where one does not have the ability to
introduce such a lossy medium, as is the case in the grain-bin imaging
application considered as an example herein. In these low-loss cases
the PEC boundaries of the chamber must be taken into account by the
model being used.

In this work we develop a 3D MWI algorithm that is applicable
to a wide variety of physical imaging systems: a finite-element (FEM)
based CSI algorithm. The CSI algorithm is a state-of-the-art technique
that has had much success solving nonlinear ill-posed electromagnetic
inverse scattering problems associated with microwave imaging [6].
Traditionally 3D CSI has been based on integral equation formulations
of Maxwell’s equations on a regular grid [7] and, similar to MR-
GNI, requires determining the appropriate Green’s function. An FEM
discretization of the problem enables arbitrary boundary conditions [8],
inhomogeneous background media [9] and variable mesh density [10]
to be built into the model directly. Recently, these benefits have
been shown for the 2D scalar [8, 9] and vector FEM-CSI [11, 12] using
synthetically generated as well as experimental data.

In this work, we discuss the development of 3D FEM-CSI. Our
implementation currently uses LU-decomposition which, while not
memory efficient, removes the need for robust pre-conditioners in
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iterative solution schemes. Parallelization of the algorithm using
PETSc provides a means for handling large problems and a mechanism
for a seamless transition to iterative schemes in the future [13]. Our
focus is the flexibility that comes with the use of FEM discretization of
the MWI problem. FEM-CSI is an invaluable tool for testing and/or
improving the design of MWI apparatus and for extending the range
of MWI applications; the latter is demonstrated by means of a novel
imaging application in the numerical results.

The paper is organized as follows: the mathematical problem
and its discretization using FEM are outlined in Section 2; the
description of the inversion algorithm, including a novel 3D dual-
mesh implementation of a multiplicative regularizer (MR), is given
in Section 3; the inversion results using synthetic and experimental
datasets are shown and discussed in Section 4; and the paper is
concluded in Section 5.

2. PROBLEM STATEMENT

An object-of-interest (OI), immersed in an inhomogeneous background
medium within an imaging domain D, is illuminated successively by
T sources of electromagnetic radiation at a single frequency f or at a
discrete set of frequencies. The OI and the background medium are
both assumed non-magnetic, i.e., µ = µ0 the permeability of free-space.
The contrast, χ, of the OI is defined as

χ(~r ) , εr(~r )− εb(~r )
εb(~r )

. (1)

Here εr and εb are, respectively, the complex permittivities of the
OI and background relative to the vacuum permittivity ε0, and ~r =
xx̂ + yŷ + zẑ is a 3D position vector in the Cartesian coordinates.
Outside D, χ ≡ 0.

For a transmitter t, the scattered field ~Esct
t due to the presence

of the OI is governed by the following vector wave equation inside a
computational domain Ω ⊇ D:

∇×∇× ~Esct
t (~r )− k2

b (~r ) ~Esct
t (~r ) = k2

b (~r ) ~wt(~r ). (2)

Here kb(~r ) = 2πf
√

µ0ε0εb(~r ) is the background wave-number, and
~wt(~r ) , χ(~r ) ~Et(~r ) is the contrast source variable where the total
field ~Et(~r ) = ~Einc

t (~r ) + ~Esct
t (~r ): the incident field ~Einc

t (~r ) is the field
in Ω due to sources that radiate in the presence of εb when the OI
is absent, i.e., χ = 0. The fields in this work are considered time-
harmonic with an exp(j2πfτ) time-dependency, where τ is the time
variable and j2 = −1.
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For a given set of boundary conditions (BCs), the vectorial partial
differential Equation (2) can be solved using FEM with the Rayleigh-
Ritz variational method [14]. The problem domain, Ω, is divided
into a mesh of N tetrahedral elements defined by a set of nodes
interconnected via E edges. Each edge is associated with linear vector
basis functions whose parameters are dependent on the geometry of
the mesh. The resulting FEM matrix equation is

Hb[Esct
t ] = ~Rb · ~wt. (3)

Here, the data vector Esct
t ∈ CE contains the scattered field values

along the edges of mesh tetrahedra, and ~wt ∈ CI is a column vector
that holds the contrast source spatial-vector fields located at the I
centroids inside the imaging domain D. The matrix Hb ∈ CE×E

is the FEM discretization matrix which depends on the BCs and
the background medium properties, while ~Rb ∈ CE×I is a matrix
dependent on the background medium properties and accounts for
projecting the contrast source variables in D onto the mesh edges in
Ω [11, 15]. Both matrices Hb and ~Rb are sparse and are independent
of the transmitters and object-of-interest. In the inversion algorithm,
they are constructed once, saved and recalled when necessary.

Given the contrast source variables ~wt, the scattered field along
edges is calculated as

Esct
t = H−1

b [~R · ~wt] = ~L[~wt] (4)

where ~L ∈ CE×I is the “inverse” FEM operator.

3. INVERSION ALGORITHM

Within the framework of the finite-element method, the discretization
of the CSI functional results in the following cost functional over the
discrete vectors χ and ~wt:

FCSI(χ, ~wt) = FS(~wt) + FD(χ, ~wt). (5)

Here the normalized data-error term FS(~wt) and the normalized
domain-error term FD(χ, ~wt) are given by

FS(~wt) =

∑
t

∥∥∥ ~E
sct,meas

t − ~MS,t
~L[~wt]

∥∥∥
2

S
∑

t

∥∥∥ ~E
sct,meas

t

∥∥∥
2

S

FD(χ, ~wt) =

∑
t

∥∥∥χ¯ ~E
inc

t − ~wt + χ¯ ~MD ~L[~wt]
∥∥∥

2

D
∑

t

∥∥∥χ¯ ~E
inc

t

∥∥∥
2

D

.

(6)
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For a transmitter t, ~E
sct,meas

t ∈ CRt is a vector of the measured
scattered field at Rt receiver locations per transmitter located on the
surface S, χ ∈ CI corresponds to a vector of the contrast values located

at the tetrahedra centroids in the domain D, and ~E
inc

t ∈ CI holds the
incident field vector values at the tetrahedra centroids in D.

The operators ~MS,t ∈ CRt×E and ~MD ∈ CI×E are interpolatory
matrix operators that transform field values calculated along the E
mesh edges to spatial-vector field values at either the location of the Rt

receivers on S or at the centroids of the tetrahedra inside the imaging
domain D.

At each iteration of the algorithm, two steps are performed
successively. First, the contrast source variables, ~wt, are updated by a
conjugate-gradient (CG) method with Polak-Ribère search directions;
here the contrast variables, χ, are held constant. The second step
involves updating χ analytically by minimizing the domain-error
functional; the contrast source variables and the domain-error term
normalization factor are assumed constant [16]. Additional details
about the formulation of FEM-CSI can be found in [8, 11, 15].

3.1. Multiplicatively Regularized CSI

The weighted L2-norm total variation multiplicative regularization
(MR) can be applied to the algorithm which we then refer to as MR-
FEM-CSI. With the MR term, the functional at the nth iteration is
written as [17]

Fn(χ, ~wt) = FMR
n (χ)×FCSI(χ, ~wt) (7)

where the regularization term is given by

FMR
n (χ) =

1
V

∫

D

∣∣∇χ
∣∣2 + δ2

n∣∣∣∇χ
n−1

∣∣∣
2
+ δ2

n

dv. (8)

Here V is the total volume of the domain D, and δ2
n =

FD(χCSI
n

, ~wt,n) Ā−1 is a steering factor in which Ā is the mean area
of the facets for tetrahedra in D.

With the introduction of MR into the functional, the update
procedure of the contrast variables must be modified. After calculating
the contrast variables in CSI, they are updated by a CG method using
Polak-Ribère search directions. The calculation of the search directions
now requires the evaluation of the spatial gradient and divergence of
the contrast, which is not straightforward due to the distribution of the
unknowns on an unstructured mesh. For this purpose, a 3D dual-mesh
technique analogous to the 2D scheme presented in [18] is used.
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In this scheme, the spatial gradient is approximated at the nodes
of elements inside the imaging domain D, whereas the divergence
calculation is performed at the centroids of each tetrahedron inside
the imaging domain.

First, a volume Ωi is constructed surrounding a node i that
belongs to domain D. The boundary, Γi, of the region Ωi is built
from triangular patches whose vertices are the centroids of tetrahedra
sharing the node as shown in Fig. 1. Letting ζ stand for one of the
Cartesian coordinates (i.e., x, y, or z), for node i we can approximate
the spatial gradient as

∂χi,n

∂ζ
= ζ̂ · ∇χi,n ≈

〈
ζ̂ · ∇χn(~r )

〉
Ωi

=
1
Vi

∮

Γi

χn(~r )ζ̂ · n̂ ds (9)

where ζ̂ is a constant unit vector, 〈·〉Ωi
the average value over the

volumetric region Ωi, Vi the volume of Ωi, and n̂ the outward normal
vector to Γi. The equality in (9) holds as node i is the barycenter
of region Ωi. As χn(~r ) is known at the vertices of surface Γi, the
integration can be performed numerically.

Figure 1. Region surrounding a node i used for evaluating the spatial
gradient of the contrast function. Only the dual-mesh is shown.

For calculating the divergence at tetrahedra centroids, scalar first-
order linear basis functions are used. For a tetrahedral element e, a
vector ~ξe can be written as

~ξe =
4∑

l=1

(
ξe
x,lx̂ + ξe

y,lŷ + ξe
z,lẑ

)
αe

l (~r ) (10)
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where for a node l (one of the four vertices making up element e) the
3D scalar linear basis function αe

l (~r ) is given as

αe
l (~r ) =

1
6V e

(ae
l + be

l x + ce
l y + de

l z) . (11)

Here V e is the volume of element e, and the coefficients ae
l , be

l , ce
l and

de
l are only dependent on the tetrahedron geometry [14]. The spatial

divergence within a tetrahedron e is then calculated as

∇ · ~ξe =
∂ξe

∂x
·x̂+

∂ξe

∂y
·ŷ+

∂ξe

∂z
·ẑ=

1
6V e

3∑

l=1

(
ξe
x,lb

e
l +ξe

y,lc
e
l +ξe

z,ld
e
l

)
. (12)

Using the nodal values of ξe
x,l, ξe

y,l and ξe
z,l calculated by the

approximation in (9), the divergence values at the centroids of
tetrahedral elements in D are computed and used to calculate the
search directions. More details on including MR in CSI can be found
in [19].

4. ALGORITHM IMPLEMENTATION

The fully-vectorial MR-FEM-CSI algorithm has been implemented
in C/C++ for distributed memory systems using MPI under the
PETSc framework [13]. At the core of this algorithm is the “inverse”
of the FEM operator, ~L, a rectangular matrix that maps contrast
sources, located at tetrahedra centroids, to scalar tangential fields
along the unique tetrahedra edges in the computational domain Ω.
Note that the MR-FEM-CSI inversion algorithm operates on the
imaging domain D ⊆ Ω. A flexible parallel implementation should
attempt to provide linear scaling of operations performed on both
domains, D and Ω, as the number of processors P increases. For the
following reasons, PETSc has been adopted to facilitate the parallel
implementation [13, 20]. PETSc is a collection of data-structures and
computational routines designed for parallel solutions of sparse systems
of equations arising from partial differential equations. In the MR-
FEM-CSI formulation, PETSc is well-suited to handle the sparsity of
the operators Hb, ~Rb, ~MS,t and ~MD. While the focus of this work
is limited to producing the operator ~L[~wt] explicitly by means of an
LU-decomposition, PETSc offers additional features that we will seek
to exploit in future work: an array of preconditioners and iterative
solvers as well as a GPU interface. Herein, the LU-decomposition of
the FEM operator was performed by enabling the SuperLU Dist library
in PETSc [21].
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A major benefit of PETSc is that parallel storage and operations
can be transparent to the implementation: once vectors such as χ
and operators such as Hb are filled, PETSc will automatically handle
partitioning the workload amongst processors; it remains simply to
handle the computation of vector and/or operator elements in an
efficient manner. To this end, a rough partition of the global
element edges (degrees of freedom in the FEM operator) is determined
by applying a partitioning technique, such as orthogonal recursive
bisection or hypergraph partitioning, to the volumetric elements using
the Zoltan library [22]. This assigns an equal partition of geometrically
localized elements to each processor. A unique global indexing scheme
is then applied to element edges. Processors then compute FEM
matrix elements associated with the edges of elements that are locally
assigned.

For efficient scalability, the fundamental operations of the
algorithm need to be parallelized. On the other hand, we do not
attempt to parallelize the algorithm over transmitters due to the
limited speed-up that this can achieve in many-processor systems. As
the bulk of the memory used in the MR-FEM-CSI algorithm is required
for storing the LU-decomposition of the FEM operator, memory limits
are not bound by the size of the FEM mesh itself thus the mesh
can be duplicated in its entirety on each processor. Nevertheless, if
one wished to use a fully distributed mesh representation, additional
“ghost” elements are required when applying MR for evaluating the
surface integral in (9). In our implementation, the mesh is distributed
amongst the processors.

5. INVERSION RESULTS

The results presented in this section were computed using a cluster of
32 8-core Intel Xeon X5355 processors connected by a DDR InfiniBand
interconnect. Each of the 256 cores operates at 2.6GHz and each 8-
core processor has 16GB of memory, or 2 GB per core in a many-core
configuration.

The geometry files and meshes used herein were created and
optimized using GMSH [23].

In Table 1, the following information is provided for each example:
the frequencies (f), the number of transmitters per frequency (T ), the
number of tetrahedra (N) and edges (E) in the problem domain Ω, the
number of unknowns (I) inside the imaging domainD, the average time
per iteration (titer) in seconds (s), the number of processor cores used,
the algorithm overhead time, and the memory allocated by each core in
megabytes (MB). The algorithm’s computational overhead is the time
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Table 1. Summary of inversion examples.

Example
f

T N E I
titer

(GHz) (s)

Synthetic Dataset 0.07 24 148,994 179,795 80,047 30

Fresnel Datasets 36

Two Spheres 3–5 330,274 395,019 173,713 87

Two Cubes 3–8 349,653 416,892 83,020 85

Myster 3–8 302,630 361,980 70,908 81

Example
Number of Overhead Memory per Core

Processor Cores Time (s) mem/core (MB)

Synthetic Dataset 32 150 309

Fresnel Datasets 96

Two Spheres 530 411

Two Cubes 530 520

Myster 540 460

required by the code to read in the mesh, create the transformation
matrices, allocate memory for vectors, calculate the CSI initial guess
and to perform the LU-decomposition of Hb. The latter presents the
bulk of the overhead. Storing the LU-decomposition of Hb is, by far,
the greatest contributor to memory use.

In running the MR-FEM-CSI algorithm, at the end of each
iteration the estimates of the algorithm were constrained to lie within
physical bounds such that Re(εr) ≥ 1 and Im(εr) ≤ 0.

5.1. Synthetic Data

The synthetic example investigates the feasibility of detecting spoilage
in grain bins using microwave imaging. This MWI application is
of current interest and the use of FEM eases the modeling of the
problem: the chamber walls are metallic and are modeled as perfect
electrically conductive (PEC) boundaries; the background medium is
inhomogeneous consisting of a dry-wheat layer and free-space. With
FEM it is not necessary to compute a Green’s function that accounts
for both the PEC and the inhomogeneous background, making FEM-
CSI an ideal candidate for solving this problem.

A hopper-style bin, depicted in Fig. 2, whose dimensions mimic
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Figure 2. (a) The 2D configuration of the hopper-style bin with
transducers’ location. (b) A cross-sectional image of the 3D mesh of
the bin including a region of spoilage.

that of a grain bin at the Canadian Wheat Board Centre for Stored
Grain research at the University of Manitoba, is modeled; the model
consists of the bin with metallic walls filled two-thirds to capacity
with dry grain (approximately 4.7 m from the based of the bin).
Dry grain is loss-less with a dielectric constant of 2 at 70 MHz [24].
Within the grain, a spherical spoilage region of 50 cm diameter is
embedded. The center of the spoilage is located at (0, 75, −99) cm.
The relative permittivity of the anomaly was set to εr = 4 − j1 [25].
The content of the bin are illuminated successively by several sources of
electromagnetic radiation at a frequency of 70MHz. The transmitters
are located at the three z-planes z = {0, −0.875, −1.75}m. At each
layer, 8 transmitters are evenly distributed on a circle of radius 1.65m.
The sources are modeled as electric dipoles polarized along the z-axis
and are collocated with the receivers. At the receiver locations, two
datasets were collected: the first consisted of only the z-component
of the electric field, whereas the second measured all three Cartesian
components.

Different meshes are used for the purposes of calculating the
synthetic data and performing inversions. Further, 10% noise was
added as per the method in [1].

The number of tetrahedra and edges in the FEM mesh is 148, 994
and 179, 795 respectively. The imaging domain was selected to be
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a circular cylinder of height 3.75m and radius 2 m centered around
the origin. The number of tetrahedra centroids where optimization
unknowns are located inside D is 80, 047. The inversion algorithm
was run on 32 cores requiring 309 megabytes (MB) per core, most of
which is required to store the LU-decomposition. The time required
to perform overhead calculations was approximately 150 seconds. The
time per iteration was ≈ 30 seconds. The algorithm converged in 300
iterations.

The reconstruction results using only the z-component of the
electric fields are shown in Figs. 3(a), (b); the results using all three
field components are given in Figs. 3(c), (d). For both datasets, the
location of the hot-spot within the inhomogeneous background (being
dry-wheat and air) was successfully detected. Using all three field
components, the spherical construction of the spoilage was better
estimated, which is expected as more information is available for
the inversion algorithm (1,728 measurements versus 576 in the single

(a) (b)

(c) (d)

Figure 3. Synthetic dataset reconstruction results collecting
(a), (b) only the z-component of the field at the receivers and (c), (d) all
field components at the receivers. The white circles show the expected
location of the 50 cm spoilage region.
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component case). The real and imaginary values of the relative
permittivity were underestimated, but are clearly distinguishable from
the inhomogeneous background.

The purpose of this synthetic example is to show the ease of using
inhomogeneous background along with metallic enclosures in the MR-
FEM-CSI algorithm for solving a practical application-of-interest. In
this application it is not possible to introduce loss into the background
medium, which might then allow the use of a homogeneous infinite-
space Green’s function.

5.1.1. Parallel Performance

Figure 4 shows the parallel performance of the MR-FEM-CSI code in
terms of computational time per iteration and memory requirements
per core for parallel runs of the synthetic dataset ranging from 1 to 96
cores. In the serial case, the algorithm required 5.9GB of memory and
210 seconds/iteration for the 179, 795 mesh edges and 80, 047 imaging
domain elements. Parallel scaling exhibits good performance up to
32 cores, where 309MB of memory are required per core for a total
of 9.65GB of memory. In this configuration the computational time
per iteration was 30 seconds, or a speed up of a factor of 7 versus the
serial case. Using 32 cores, the number of edges and imaging domain
elements associated with each core are approximately 5, 626 and 2, 500
respectively. At this level, communication time and additional parallel
overhead related to the LU factorization contribute to the reduction in
performance. Beyond 32 cores, the performance continues to increase
but with diminishing return. Larger problem sizes, such as those
presented for the experimental datasets in the next section, exhibit
better parallel performance up to 96 cores.
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Figure 4. Number of cores vs. log10 (time per iteration/memory per
core).
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5.2. Fresnel Dataset

Three-dimensional data were collected for several targets at the
Institute Fresnel of Marseille in 2009 [26]. The collected datasets
have been previously inverted using different methods like MR-
IECSI [27], MR-GNI [1], and DBIM [28]. The inversion algorithms
were based on the integral-equation formulation of the electromagnetic
problem. Herein, the datasets are inverted using the 3D MR-FEM-CSI
algorithm.

The experimental setup consisted of a parabolic antenna as a
transmitter and a ridge-horn antenna as a receiver, both located inside
an anechoic chamber. The antennas moved around the targets on a
spherical surface of radius ≈ 1.8m. For the transmitting antenna,
the azimuthal angle, φ, varied from 20◦ to 340◦ with steps of 40◦ and
the polar angle, θ, ranged from 30◦ to 150◦ with steps of 15◦. The
coordinate system definitions used here are shown in Fig. 5. According
to the system design, the receiving antenna positions were restricted to
a single azimuthal plane at θ = 90◦. In addition, for technical reasons
the location of the receiving antenna could not be closer than 50◦ from
the azimuth angle position of the transmitter. Hence, the azimuthal
angle of the receiver varied from 0◦ to 350◦ with steps of 10◦, with the
exclusion of ±50◦ of the transmitter’s azimuthal angle. Furthermore,
for each dataset the receiver positions opposite to the transmitter were
unusable due to the saturation of the network analyzer.

The measured data were collected at 21 frequencies ranging from
3GHz to 8GHz with steps of 0.25 GHz. For each target, the fields
were measured at receiver locations for two transmitting antenna

Figure 5. The coordinates configuration of the Institut Fresnel 3D
setup.
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polarizations: first along θ, then along φ. For both cases, the receiver
antenna was polarized along the θ-direction. The collected data at each
polarization were calibrated using the techniques described in [26].

In this paper the transmitting polarizations were converted to
received polarizations by applying reciprocity. Then, as the receiver
antenna is always at the θ = 90◦ plane, the incident field can be
modeled as a z-polarized plane wave with magnitude 1 and phase 0
at the origin (0, 0, 0). The modeled incident field is calculated as

~Einc
t (~r ) = −ejkb(x cos(φ′t)+y sin(φ′t))ẑ. (13)

where φ′t denotes the azimuthal angle of the reciprocal transmitter,
which is equal to a receiver’s azimuthal angle φr in the actual
measurement setup. The plane wave model of the incident field is
valid as the transmitters and receivers in the experimental setup are
more than 10 wavelengths away from the target.

The receiver locations in the reciprocal system are taken to be at
the source positions in the actual measurement setup. The receiver
position (φ′r, θ′r) corresponds to the transmitter location (φt, θt) in the
actual system.

Let Esct
θθ and Esct

φθ be the measured scattered fields at the actual
receiver location with the transmitter polarized along the θ- and the
φ-directions respectively. The spatial components of the scattered field
vector at the reciprocal receiver location (φ′r, θ′r) are

Esct
x = cos(θ′r) cos(φ′r)E

sct
θθ − sin(φ′r)E

sct
φθ

Esct
y = cos(θ′r) sin(φ′r)E

sct
θθ + cos(φ′r)E

sct
φθ

Esct
z = − sin(θ′r)E

sct
θθ .

(14)

The multi-frequency reciprocal datasets are inverted using a
frequency-hopping approach. That is, data from each frequency are

(a) (b)

Figure 6. Targets of (a) Two Spheres dataset and (b) Two Cubes
dataset.
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inverted independently, and the solution from a lower frequency is
used to calculate the initial guess for the next higher frequency. At
each frequency, the algorithm was run for 75 iterations (increasing
the number of iterations did not alter the final result). Herein we
show inversion results for three datasets: Two Spheres, Two Cubes
and Myster. The imaginary part of the reconstructions are not shown
as the targets are lossless.

5.2.1. Two Spheres

The target consists of two dielectric spheres 50mm in diameter and
aligned along the x-axis, as depicted in Fig. 6(a). The relative
permittivity of both spheres is εr = 2.6. The imaging domain, D,
is defined as a sphere 120 mm in diameter, centered around the origin.
The unknown variables are located at the centroids of approximately
173, 713 tetrahedra within D. The frequency-hopping approach is
applied to the multi-frequency data at 3, 4 and 5 GHz.

(a) (b)

(c) (d)

Figure 7. Two Spheres reconstruction at 5 GHz: (a) the isosurface
plot (level = 1.5), and the 2D cross-section plots at planes (b) x = 0,
(c) y = 0 and (d) z = 0. Superimposed circles are provided to show
actual OI location.
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The results at 5GHz are shown in Fig. 7 in the form of a 3D
isosurface plot (level set to 1.5), and three 2D cross-sectional plots at
planes x = 0, y = 0 and z = 0. The algorithm predicated the location
and size of the spheres accurately, along with estimating their relative
permittivity at approximately 2.6.

5.2.2. Two Cubes

The target/OI has two dielectric cubes of side-length equal to 25 mm
and relative permittivity εr = 2.3. The cubes are located 25 mm and
50mm above the plane z = 0 as shown in Fig. 6(b). The imaging
domain, D, is selected as a rectangular prism with length and width
equal to 90mm and a height of 95 mm. The domain center is located at
(0, 0, 52.5)mm. The multi-frequency data from 3 GHz to 8 GHz with
a step of 1GHz are used to reconstruct the OI using frequency-hopping
approach. The number of unknowns in D is 83, 020.

The inversion results at 8GHz are shown in Fig. 8 and they
include: (a) an isosurface plot with the level set to 1.5, and the 2D

(a) (b)

(c) (d)

Figure 8. Two Cubes reconstruction at 8GHz: (a) the isosurface
plot (level = 1.5), and the 2D cross-section plots at planes (b) x =
[−1.4, 1.4] cm, (c) y = [−1.4, 1.4] cm and (d) z = [3.0, 6.4] cm.
Superimposed lines are provided to show actual OI location.
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slice plots at planes (b) x = [−1.4, 1.4] cm, (c) y = [−1.4, 1.4] cm and
(d) z = [3.0, 6.4] cm. The locations and relative sizes of the cubes are
predicted correctly by the MR-FEM-CSI algorithm. The estimated
relative permittivity values are close to 2.3.

5.2.3. Myster

The target/OI is a group of 12 identical spheres, 23.8 mm diameter
each. They are arranged together to compose the geometry shown
in Fig. 9(a). The sphere centers are situated along the vertices of
an icosahedron, as depicted in Fig. 9(b). Each sphere has a relative
permittivity εr = 2.6. The inversion domain, D, is a square box with
its center point located at (0, 0, 10) mm. The length and width of
the box are equal to 100mm and its height is 80 mm. The number of
unknowns is approximately 70, 908. The frequency-hopping approach
is applied using data from 3GHz to 8 GHz with a a frequency increment
of 1 GHz.

(a) (b)

Figure 9. (a) Myster target configuration for (b) an icosahedron. The
red circles at the vertices of the icosahedron are the centers of spheres
constructing the target.

The reconstruction results at 8 GHz are shown in Figs. 10(a)–
(f) at six z-planes ranging from z = 0.44 cm to z = 3.567 cm. The
algorithm predicted the overall shape and location of the Myster
object accurately. The individual spheres of the target are hardly
distinguishable from each other and this is due to the nature of the
L2-weighted regularizer that tends to smooth and fuse the spheres
together; nevertheless the relative permittivity value of the spheres
are not overestimated. These results are similar in accuracy and
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(e)

(a) (b) (c)

(d) (f)

Figure 10. Myster reconstruction at 8 GHz: the 2D cross-section
plots at z-planes. (a) 0.44 cm, (b) 1.374 cm, (c) 1.69 cm, (d) 2.31 cm,
(e) 2.94 cm and (f) 3.567 cm. Superimposed circles are provided to
show actual OI location.

performance as those obtained using [1, 27, 28]. MR-FEM-CSI does
not provide any significant advantages for the inversion of this type
of experimental dataset. But it is interesting to verify the code does
compare well with these existing techniques.

6. CONCLUSION

In this work we have presented the extension of the MR-FEM-
CSI algorithm to three-dimensional full-vectorial microwave imaging
problems. Numerical results have shown successful inversion of both
synthetic and experimental datasets. The synthetic dataset was
chosen to emphasize the advantages of the FEM formulation, namely
boundary conditions of arbitrary type and shape, and support for
inhomogeneous background media. In our current implementation,
the price for these advantages is the pre-computation and storage
of the inverse FEM operator. To reduce the computational burden
imposed by storing the LU-decomposition of the FEM operator, we
have parallelized the implementation using PETSc.

Future work will consider extending the FEM formulation to
higher-order elements, exploiting a dual mesh for supporting the
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contrast function and replacing the LU-decomposition of the inverse
FEM operator with preconditioned iterative solvers.
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