
Progress In Electromagnetics Research M, Vol. 33, 137–151, 2013

A LEAST SQUARES FINITE ELEMENT METHOD FOR
THE EXTENDED MAXWELL SYSTEM

Juhani Kataja*

Department of Radio Science and Engineering, Aalto University,
P. O. Box 13000, AALTO FI-00076, Finland

Abstract—A finite element method based on the first order system
LL∗ (FOSLL∗) approach is derived for time harmonic Maxwell’s
equations in three dimensional domains. The finite element solution is
a potential for the original field in a sense that the original field U is
given by U = L∗u. The Maxwellian boundary data appears as natural
boundary condition. Homogeneous Dirichlet boundary conditions
for the potential must be imposed, and they are circumvented with
weak enforcement of boundary conditions and it is proved that the
sesquilinear form of the finite element system is elliptic in the space
where the Dirichlet boundary conditions are satisfied weakly.

1. INTRODUCTION

The time-harmonic Maxwell’s equations posed on normalized fields are
given by





∇×E− ikH = 0
−∇×H− ikE = −J
∇ ·H = 0
∇ ·E = ρ

(1)

together with the boundary conditions

n×E = −Ms or n×H = Js. (2)

The normalized fields E and H relate to the physical fields E and H
by E ∼ √

εE , H ∼ √
µH, where ε and µ are the permittivity and

permeability of the medium, resp.
There are countless finite element (FE) formulations to deal with

this problem (c.f. [1] and references therein), most prominent ones
being derived from the curl-curl equation ∇×∇×E− k2E = ikJ.
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Discretizing the curl-curl equation above with the Galerkin’s
method requires specialized basis functions, usually the Nédélec’s curl
conforming functions, which are hard to come by in high orders, the
arising system of linear equations is never positive-definite when k is
above the lowest resonance number of the cavity and, moreover, the
system becomes increasingly ill-conditioned when the frequency tends
to zero. It should be also noted that the analysis of the method is
rather involved [1].

Another way to discretize (1) is by viewing it as a first order PDE
system and constructing a least squares functional whose minimizer
solves (1). This approach leads to the class of first order system least
squares (FOSLS) methods [2–5].

In the FOSLS methods, a given operator equation

Lu = f (3)

is posed as a minimization problem

min
u
‖Lu− f‖2 (4)

in some Hilbert-space norm ‖ · ‖. Thus, the corresponding discrete
system is hermitian and positive-semidefinite: If the space is finite
dimensional, the minimization problem is equivalent with the normal
equations L∗Lu = L∗f , where L∗ is the adjoint of L, i.e., the hermitian
transpose if L is a matrix and the norm is the Euclidean one.

However, the norm ‖·‖ above must be chosen such a way that it is
computable and, that the resulting discrete method is convergent [2, 4].
The simplest choice is, of course, the L2-norm, but negative Sobolev
norms come in to question as well [6].

In [7], Cai et al. introduce an operator dependent norm which
leads to a quadratic functional given by J (u) = ‖L∗u∗−u‖2

L2
, here L∗

is the L2-adjoint of L. This method is coined as the first order system
LL∗, or FOSLL∗, method since the corresponding finite dimensional
system would be LL∗u∗ = f .

In this paper, a FOSLL∗ formulation for (1) is constructed and
analyzed. We note that similar augmentation, as done in [8], of the
adjoint operator to an elliptic one (in the sense of Petrovsky [9]), results
in exactly the same extended Maxwell’s system that Picard studied
in [10, 11]. Thus, it is expected that the discrete system is stable at
the zero-frequency limit.

Our method is almost identical to what Lee analyzed in the
eddy current situation [8]. However, in the time-harmonic case, the
stability of the finite element method rests on a spectral argument
and, furthermore, we weaken certain homogeneous Dirichlet boundary
conditions required by the method in the spirit of Lagrange multipliers
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as was proposed by Babuška in [12] by projecting away the part of
the solution which does not satisfy the weakened Dirichlet conditions.
Finally, we pose a non-homogeneous boundary condition for the
original field.

The projection is implemented using the nullspace projection in
the PETSc [13] Krylov subspace solver. In fact, because the method
is of least-squares type, we are able to use conjugate gradient method
as long we stay within the Krylov iteration in the subspace in which
the weakened Dirichlet conditions are satisfied.

We need to discretize the system with nodal Lagrange H1 basis
functions which are very well known for arbitrary orders. This,
however, leads to problems in domains with re-entrant corners [8, 14],
where the H1 elements fail to approximate the solution. However, in
the paper [8], Lee obtains a convergent method with weighted Sobolev
norms and H1 elements.

The paper is organized as follows: First we will lay definitions and
pose the extended Maxwell system. Following that we formulate the
finite element system postponing most of the analysis to Appendix A.
Next, we demonstrate the method on simple boundary value problems
and, finally, we conclude the paper with discussion.

2. FORMULATION AND NOTATION

Let us take Ω ⊂ R3 to be a convex polyhedral domain, denote its
boundary by Γ = ∂Ω. The space of square integrable complex valued
functions on Ω are denoted by L2(Ω), or by L2 if there is no possibility
of confusion on the domain. The norm of L2 is given by

‖f‖ :=

√∫

Ω
|f(x)|2dx.

The base Hilbert space we shall operate in is
H := (L2(Ω))8. (5)

The norm of H is, likewise, denoted by ‖ · ‖: Let F = (F1 . . . F8) ∈ H,

then ‖F‖ =
√∑8

i=1 ‖Fi‖2. We denote the complex conjugate of x

by x and the inner product of two elements E, F ∈ H by (E,F ) =∫
Ω

∑
i Ei(x)Fi(x)dx.
The extended Maxwell system corresponding to (1) is

given [10, 15, 16] by





0 0 ∇· 0
0 0 −∇× ∇
∇ ∇× 0 0
0 ∇· 0 0


− ik







Φ
E
H
Ψ


 =




0
−J
0
ρ


 in Ω. (6)
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Throughout the paper, we shall denote the matrix comprising of
derivatives by P, the unknown vector by U and the right hand size
by F . Furthermore, we denote

L = P − ik. (7)

The trace operators corresponding to (2) with which the Dirichlet
boundary data is prescribed are given by

BEU =



−n ·H
−Ψn
−n×E

0


 or BMU =




0
n×H
−Φn
−n ·E


 . (8)

We call these electric and, respectively, magnetic boundary
operators. Corresponding to these operators we define two subspaces
DE and DM coined the perfect electric conductor (PEC) subspace and
the perfect magnetic conductor (PMC) subspace, respectively. They
are defined as Cartesian products of Sobolev spaces by

DE(Ω) = H1(Ω)/C×H
D
◦
C
(Ω)×H ◦

DC
(Ω)×H1

0 (Ω) (9)

DM (Ω) = H1
0 (Ω)×H ◦

DC
(Ω)×H

D
◦
C
(Ω)×H1(Ω)/C. (10)

These spaces both come equipped with a norm ‖U‖D defined by

‖U‖2
D = ‖U‖2 + ‖PU‖2. (11)

We employ stand-in notation BR and DR with R = E or R = M since
the theory is completely symmetric for both cases.

The Sobolev spaces H
D
◦
C

and H ◦
DC

appearing above are defined
by

{
H ◦

DC
= H0(∇·) ∩H(∇×) and

H
D
◦
C

= H(∇·) ∩H0(∇×).

here H0(∇·) consists of square integrable functions having an L2

divergence and vanishing normal trace and H0(∇×) consists of,
likewise, (L2)3 vector fields with square integrable curl and vanishing
tangential trace. These spaces without the subscript 0 refer to
just spaces of square integrable vector fields with square integrable
divergence or curl, respectively. The space H1 is the usual subspace
of L2 whose functions have square integrable gradient and if f ∈ H1

0 ,
then the scalar trace of f on the boundary is zero. Finally, H1/C is
the space of H1-functions having zero mean value.

The norm in H ◦
DC

and H
D
◦
C

is given by ‖F ‖2
V = ‖F ‖+‖∇×F ‖2+

‖∇ · F ‖2, with V being either H ◦
DC

or H
D
◦
C
. With this convention it
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holds that the norm ‖ · ‖D is equivalent with the graph-norm of DR,
i.e.,

‖U‖2
D = ‖U‖2 + ‖∇Φ‖2 + ‖∇Ψ‖2

+‖∇ ×E‖2 + ‖∇ ·E‖2 + ‖∇ ×H‖2 + ‖∇ ·H‖2. (12)

For sufficiently smooth functions we can relate the boundary trace
operator

P (n) =




0 0 n· 0
0 0 −n× n
n n× 0 0
0 n· 0 0


 (13)

with an integration by parts formula [15] for P by
∫

Ω
PU · V̄ + U · PV dx =

∫

Γ
P (n)U · V̄ dσ. (14)

It holds that −P (n) = BE + BM .
Thus for the Dirichlet data (8) we have the following integration

by parts formulas

−〈BEU, [ϕ e h 0]〉
= (∇ ·H, ϕ)+(H,∇ϕ)+(∇×E,h)−(E,∇×h)

+(∇Ψ, e)+(Ψ,∇ · e), ∀(φ, e,h)∈H1×H(∇×)×H(∇·) (15)

−〈BMU, [0 e h ψ]〉
= (−∇×H, e) + (H,∇× e) + (∇Φ, e) + (Φ,∇ · e)

+(∇·E, ψ)+(E,∇ψ), ∀(e,h, ψ)∈H(∇·)×H(∇×)×H1. (16)

Since the domain Ω is convex it holds that [17] there exist
constants c, C > 0 such that

c‖u‖D ≤ ‖u‖H1 ≤ C‖u‖D. (17)

We shall freely use this fact throughout the paper.
We shall also denote generic positive nonzero coefficients by c, C.

Their values may change in the middle of a calculation, but they
depend only on the domain and the wavenumber k.

It holds that L : DR → H is a bounded operator. Furthermore,
the unbounded operator P : DR ⊂ H → H is skew-self-adjoint [16],
meaning that D(P∗) = D(P) and P∗ = −P. This translates directly
to skew-self-adjointness of L : DR ⊂ H → H, i.e.,

L∗ = −P + ik. (18)
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2.1. Least Squares Finite Element Method

Instead of directly discretizing (6) we look for its dual-potential u∗ ∈
DR as a minimization problem

u∗ = arg min
u∈DR

1
2
‖L∗u‖2 − Re l(u), (19)

where

l(u) =
∫

Γ
BRU · ūdσ −

∫

Ω
F · ūdx. (20)

Note that
l(u) = (U,L∗u) (21)

by integration by parts.
This approach is reversed to the usual one [7] where the u∗ is the

minimizer of ‖L∗u∗ − U‖2, but if U ∈ L2 we have

arg min
u

1
2
‖L∗u‖2 − Rel(u) = arg min

u

1
2
‖L∗u‖2 − Rel(u) +

1
2
‖U‖2

= arg min
u

1
2
‖L∗u− U‖2. (22)

Thus U = L∗u∗.
The corresponding variational formulation for (19) is

Find u∗ ∈ DR, s.t.
(L∗u∗, L∗v) = l(v) ∀v ∈ DR. (23)

We denote the sesquilinear form† appearing above by
a(u, v) = (L∗u, L∗v). (24)

Clearly, if L∗ : DR → H has a bounded inverse it holds that a is DR-
elliptic and, furthermore, if l is a bounded linear functional on DR,
the minimizer of (19) exists, is unique and depends continuously on
l. Furthermore if Dh

R is a finite dimensional subspace of DR then we
have, by Cea’s lemma (see e.g., [18] or any other textbook on finite
elements), the quasi-optimality

‖u∗h − u∗‖D ≤ C

α
inf

v∈Dh
R

‖v − u∗‖D, (25)

where C and α are the continuity and ellipticity coefficients of a,
respectively. Using this result and the boundedness of we get L :
DR → H
‖L∗u∗h − U‖ = ‖L∗u∗h − L∗u∗‖ ≤ c‖u∗h − u∗‖D ≤ cC

α
inf

v∈Dh
R

‖v − u∗‖D.

† a linear in first argument and conjugate linear in second argument
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2.2. Discretization

We wish to discretize (23) with nodal H1 conforming Lagrange
elements, but constructing DR conformal bases with such elements
is complicated if the domain is not a rectangular one. More
specifically, the spaces H ◦

DC
and H

D
◦
C

pose problems as conformity
in them translates in vanishing of normal or tangential component
which in turn is difficult to accomplish with nodal vector elements.
Furthermore, for first order elements, vanishing tangential or normal
trace in, e.g., spherical domain implies that all components of the field
vanish on the boundary.

As a remedy, in non-rectangular domains, we impose the boundary
conditions for the dual potential in a discrete weak sense similarly
as in [12]. However, instead of introducing Lagrange multipliers we
restrict to the space where the boundary condition is satisfied weakly
using the nullspace methods in PETSc Krylov space solver [13].

Suppose that Ω admits partition T by shape regular tetrahedrons.
We denote the maximum circumference of the tetrahedrons by h. Let
us denote the nodal Lagrange H1 conforming finite element space
consisting of piecewise polynomials of nth degree by Sh and the curl
conforming nth order Nédélec space [19, 20] by Nh. Furthermore, let us
define discrete boundary bilinear forms bR : (Sh)8×Sh×Sh×Nh → C
by

bE(u, (µ, τ,λ)) : =
∫

Γ
BEu · [µ nτ λ 0]T dσ, (26)

bM (u, (µ, τ,λ)) : =
∫

Γ
BEu · [0 λ nτ µ]T dσ (27)

The discrete spaces from which we look for the solution are now
given by
V R

h :=
{
u∈(Sh)8 : bR(u, (µ, τ,λ)) = 0 ∀(µ, τ,λ)∈Sh×Sh×Nh

}
. (28)

These are not necessarily subspaces of DE and DM , respectively.
The main result of the paper, however, is that a is V R

h -elliptic,
i.e., there is a constant α > 0 such that

α‖u‖2
D ≤ a(u, u), ∀u ∈ V R

h . (29)
The proof is provided in the Appendix A.

Thus, the discrete form of (23) for rectangular regions is given by
Find u∗ ∈ DR ∩ (Sh)8, s.t.

(L∗u∗, L∗v) = l(v) ∀v ∈ DR ∩ (Sh)8, (30)
and for non-rectangular regions by

u∗ = arg min
u∈V R

h

1
2
‖L∗u‖2 − Re l(u). (31)
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3. NUMERICAL APPLICATIONS AND EXAMPLES

In this section, we shall present examples how the formulated FE
system can be used. We will inspect how to recover an oblique plane-
wave and, as a second example, we construct the perhaps simplest
hybrid method to compute the reflection coefficient in a rectangular
waveguide terminated by a PEC wall.

Example 1. In this example, we choose the electric boundary
data to be that of a plane wave traveling in the direction φ = π

4 (angle
from x axis) and θ = π

6 (angle from z axis) and we let the wave-number
k vary.

In Fig. 1 we show the real parts of the electric and magnetic field
computed with the discrete dual potential being in V E

h . We used a
single tetrahedron with 5th order polynomials as the FE basis.

The solution was forced to be in the V E
h basis by computing the

singular value decomposition of the matrix arising from the form bE

and giving the PETSc [13] conjugate gradient Krylov subspace solver
those right singular vectors that correspond to singular values bigger
than 10−10. This tolerance can be chosen quite freely since the singular
values are grouped in two clearly separated groups. The singular values
are plotted in Fig. 2.

Figure 1. Real parts of electric field (dark gray arrow) and magnetic
field (light gray arrow) in tetrahedron discretized with one 5th order
element and interpolated to mesh in figure.
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Figure 2. Singular values of the matrix corresponding to bE on 5th
order basis functions on tetrahedron.

It turns out that a is guaranteed to be DR-elliptic whenever
(ik)−1 is not in a spectrum of a compact operator P−1 : H → H.
However, in a cubical domain we observe drop in the energy of the
field solution at interior resonance frequencies (Fig. 3). Because the
extended Maxwell system encodes both acoustic and electromagnetic
equations [16] the system should have interior resonances at k =√

m2 + n2 + l2π, m,n, l ∈ N.
Example 2. Next we compute the reflection coefficient from

a rectangular waveguide which is terminated by a PEC wall and
whose width is a = 10 mm and height b = 5 mm. The length of the
computational domain in z direction is c = 20 mm.

The primary field Up traveling in the z direction is the TE10 mode
given by (kc = π/a, β =

√
k2 − k2

c )




Hz,p(x, z) = cos(kcx)eiβz

Ht,p(x, z) =
iβ

kc
ux sin(kcx)eiβz

Et,p(x, z) = uy
ik

kc
sin(kcx)eiβz.

(32)

The reflected field is given by




Hz,s(x, z) = ρ cos(kcx)e−iβz = ρe−i2βzHz,p(x, z)

Ht,s(x, z) = −ρ
iβ

kc
ux sin(kcx)e−iβz = −ρe−i2βzHt,p(x, z)

Et,s(x, z) = ρ
ik

kc
uy sin(kcx)e−iβz = ρe−i2βzEt,p(x, z),

(33)

where ρ is an unknown reflection coefficient. We denote the
computational domain by Ω, the input port at z = 0 by Γ and the
field inside Ω by Ui.
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Figure 3. Energy of the FE solution against k/π. Near 1,
√

2 and
√

3
there is a strong deviation from the analytical value of 2. The direction
of propagation of the plane wave is φ = π/4 and θ = π/6.

The interior field Ui satisfies the jump conditions

Bs
RUs + Bi

RUi = −Bs
RUp, (34)

where Bi
R is the boundary trace operator from the computational

domain to Γ and Bs
R from the scattering region to Γ and Us is the

reflected field and Up is the impinging primary field. Note that at
ΓBs

R = −Bi
R. Now it holds that Bs

EU1 = ρe−i2βzBs
EUp and Bs

MUs =
−ρe−i2βzB1

MUp. Thus we arrive to the following set of equations.

Find u ∈ DE , s.t.
〈L∗u, L∗v〉+ 〈ρe−i2βzBs

EUp, v〉 = −〈Bs
EUp, v〉 ∀v ∈ DE (35)

BML∗u− ρe−i2βzBs
MUp = −Bs

MUp. (36)

We test the Equation (36) with one sine function and we arrive to
following

Find u ∈ DE , s.t.
〈L∗u, L∗v〉+〈ρe−i2βzBs

EUp, v〉=−〈Bs
EUp, v〉 ∀v∈DE (37)

BML∗u,




0
uy sin kcx

0
0







L2(Γ)

− ρ
ab

2
iβ

kc
e−iβz =−ab

2
iβ

kc
eiβz (38)

The real part of the y component of the total electric field is shown in
Fig. 4. The error of ρ compared to the analytical value is 9% (19106
DoFs) or 5% (16602 DoFs, refined mesh at port). The error of |ρ| is
of order 10−8. In this calculation second order elements were used.
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Figure 4. Real part of the total electric field inside the waveguide in
Example 2.

4. DISCUSSION

We have constructed a symmetric finite element method based on the
first order least squares LL∗ approach for time harmonic extended
Maxwell’s equations. This allows us to use the conjugate gradient
method to solve problems at frequencies where the usual curl-curl
equation would be indefinite even with Hodge decompositions.

The Maxwellian boundary data is implemented in the system as a
natural boundary condition on the right hand side of the equation.
However, on the dual potential side, we must enforce boundary
conditions in a discrete weak sense in order to handle more general
geometries than rectangular ones. Thus, the constructed finite element
method is non-conformal in a sense that the boundary conditions are
not satisfied exactly.

It should be noted that the approximation in the Lemma 1
is probably not optimal as it only takes into account first order
polynomials. Especially, in the Example 1, we obtained quite a
good result with 5th order basis functions even though h is about 1.
The convergence of the Krylov subspace solvers were not particularly
studied since the examples were somewhat small. However, it took
around 300 iterations for the conjugate gradient algorithm to reach
relative error of 10−8 in the Example 1. In the Example 2 a direct
solver was used.
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The appearance of the div-curl in the formulation is dealt using
nodal Lagrange H1 elements which are readily available for very
high orders, but on the other hand, they lead to convergence issues
in non-convex non-smooth domains [8, 14]. However, the proposed
method seems to be very suitable for domain decomposition methods,
since we can always decompose any domain into convex subdomains
and all communication between domains are handled through natural
boundary conditions.
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APPENDIX A. ANALYSIS

The main result of this section, and the whole paper, is that a is V h
R -

elliptic and bounded. We prove it by first showing that a is DR elliptic
with existence of bounded inverse for L∗ : DR → H. Following that,
we establish an a-priori approximation estimate concerning the weak
imposition of the Dirichlet boundary condition on the dual potential.

The existence of a bounded inverse for L∗ : DR → H implies
DR-ellipticity of the sesquilinear form a:

Theorem 1. The bilinear form a : (u, v) 7→ (L∗u, L∗v) is bounded
and DR elliptic save for countably many resonance numbers k.

Proof. The boundedness is trivial since L∗ and L are bounded as
linear operators DR → H.

It holds that P : DR → H satisfies

c‖u‖D ≤ ‖Pu‖ ≤ C‖u‖D,

for some c, C > 0 [10, 16]. Furthermore, the embedding DR ↪→ H is
compact by Maxwell compactness principle [21] and Rellich’s selection
principle [16, 18]. Thus, it holds that P−1 : H → H is a compact
operator and its spectrum Λ(P−1) is at most countable set having zero
as the only point of accumulation. Thus, P − ik : DR → H has a
bounded inverse whenever (ik)−1 6∈ Λ(P−1).

The existence of the bounded inverse implies that there is ck > 0
independent of u ∈ DR s.t.

ck‖u‖D ≤ ‖L∗u‖,
thus c2

k suits as the ellipticity constant.
Near the resonance frequencies, the ellipticity constant is bounded

above by |1 − k/λ|2/(λ−2 + 1), where (iλ)−1 ∈ Λ(P−1) minimizes
|1 − k/λ|/√λ−2 + 1. This can be seen by taking vλ to be the
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eigenvector corresponding to (iλ)−1: ‖L∗P−1vλ‖ = ‖L∗(iλ)−1vλ‖ =
‖(k/λ− 1)vλ‖ = |1− k/λ|, but ‖P−1vλ‖D =

√
λ−2 + 1.

Let us now inspect V R
h ellipticity of a by proving a controlling

estimate for the size of the part of u ∈ V R
h which is not in DR:

Lemma 1. Let u ∈ V E
h and let ũ ∈ H1 be such that L∗ũ = 0 and

BEu = BEũ. Furthermore, let v = [f ε χ p] ∈ DE be the dual potential
of ũ, i.e., ũ = L∗v.

Then there is a constant c > 0 depending only on the geometry of
Ω and the frequency such that

‖L∗v‖2 ≤ ch‖u‖2
D. (A1)

Proof. Since v is the dual potential of ũ and the vector field parts of
u satisfy the discrete weak normal and tangential boundary conditions
we can apply the approximation of Sh in H1 and Nh in H(∇×) ([1]
Remark 5.41). We make use of a Smith-Aronszajn inequality [22]
|u|22 ≤ c

(‖∆u‖2 + ‖u‖2
)
.

Since v is the dual potential of ũ, by applying −P and −ik on
both sides of the equation (−P + ik)v = ũ and summing we get that
∆v = k2v. Now

|(L∗v, L∗v)| = |〈BE ũ, v〉| = |〈BEu, v〉|
= |〈n · h, f〉+ 〈n× ε, χ〉|
= inf

(fh,λ)∈Sh×Nh

|〈n · h, f − fh〉 − 〈n× e, χ− λ〉|

≤ ‖u‖D
(

inf
fh,λ

‖f − fh‖H1 − ‖χ− λ‖H(∇×)

)

≤ ‖u‖D (C1h|f |2 + C2h‖∇ × χ‖H1)
≤ ‖u‖DCh (|f |2 + |χ|1 + |χ|2)
≤ ‖u‖DCh (|v|2 + ‖v‖D)

≤ ‖u‖DCh
(
‖v‖D +

√
1 + |k|2‖v‖

)

≤ ‖u‖DCh|v|2 ≤ ‖u‖D
√

1 + |k|2‖v‖
≤ ‖u‖DCh‖v‖D ≤ ch‖u‖2

D.

The case of u ∈ V M
h is proved in the same way.

Using this lemma we can make a to be V R
h elliptic by applying DR

ellipticity to ‖L∗(u − L∗v)‖2, where v is as in Lemma 1, and making
use of the fact that PL∗v = ikL∗v:

1
α
‖L∗u‖2 =

1
α
‖L∗(u− L∗v)‖2

≥ ‖u− L∗v‖2
D
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= ‖u− L∗v‖2 + ‖Pu− PL∗v‖2

≥ ‖u‖2
D −max{1, |k|}C ′h

1
2 2‖u‖2

D
≥

(
1− Ch

1
2

)
‖u‖2

D.

Thus the following holds.
Theorem 2. For small enough h, a is V R

h -elliptic.
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