
Progress In Electromagnetics Research, Vol. 142, 505–521, 2013

EXTENDED HIGH RESOLUTION RANGE PROFILE-
JET ENGINE MODULATION ANALYSIS WITH SIGNAL
ECCENTRICITY

Ji Hoon Park1, *, Woo Yong Yang1, Jun Woo Bae2,
Seong Cheol Kang2, and Noh Hoon Myung1

1Department of Electrical Engineering, Korea Advanced Institute
of Science and Technology (KAIST), 335 Gwahangno, Yuseong-gu,
Daejeon 305-701, Korea
2Samsung Thales, Sampyong-Dong, Bundang-Gu, Seongnam 463-400,
Korea

Abstract—In this paper, high resolution range profile-jet engine mod-
ulation (HRRP-JEM) analysis is extended by including quantitative
estimation of the jet engine location and extraction of the JEM micro-
Doppler component. Based on a parametric model of the range cell
data, signal eccentricity was introduced for the purpose of determining
the jet engine location. Then, complex empirical mode decomposition
(CEMD) was employed to extract the embedded JEM component. The
signal eccentricity also served as an auxiliary means of CEMD-based
micro-Doppler extraction. Application to the simulated HRRP-JEM
data demonstrated that the analysis results described in this paper
could be useful for advanced radar target recognition with HRRP-
JEM.

1. INTRODUCTION

Inverse synthetic aperture radar (ISAR) imaging [1–4] has been
widely employed as a representative radar target recognition method.
However, for a few types of radar targets, the ISAR image may be
limited by its cross-range dimension, which totally depends on the
relative target rotation. Recently, the concept of high resolution range
profile in conjunction with jet engine modulation (HRRP-JEM) for
aircraft targets with jet engines was introduced [5, 6] as another radar
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imaging method for target recognition. HRRP-JEM, also known as
the combined HRR-JEM, uses a radar waveform with both high range
resolution and high frequency resolution. By high range resolution, the
information on the aircraft structure can be obtained from the HRRP.
With high frequency resolution, the JEM [6–11], one of the micro-
Doppler phenomena induced by a rotating jet engine compressor, can
show its unique spectrum affected by several characteristics of the jet
engine. Thus, an HRRP-JEM image composed of range and frequency
axes is considered as an independent means for radar target recognition
by localizing the equipped jet engine installed on the aircraft [5, 6, 12].
However, most literature dealing with radar imaging has not placed
great emphasis on HRRP-JEM analysis.

In our previous work [12], an algorithm for automatically
determining the jet engine location was proposed and basically
postulated that after eliminating frequency components around the
zero-frequency, the range cell related to the jet engine location had
higher amplitude than other cells by the remaining 1st chopping
harmonic of the JEM spectrum [10, 11]. However, this non-parametric
approach does not consider the inherent signal characteristics, and
ambiguity can arise from the threshold for discriminating the frequency
range to be removed. Hence, this work should be extended by focusing
on more quantitative analysis. In addition, the JEM component
containing jet engine features needs to be further extracted for
enhanced target recognition.

With a simple parametric model of the range cell data, this paper
employs signal eccentricity [13–15] to quantitatively determine the jet
engine location. For a limited dwell time, the eccentricity is expected
to be useful for measuring the micro-Doppler contribution of each
range cell. Then, we adopt complex empirical mode decomposition
(CEMD) [16–20] to further extract the JEM component. Apart from
existing criteria, the eccentricity also serves as a supplementary means
for the CEMD-based micro-Doppler extraction. The rest of the paper
is organized as follows: In Section 2, we briefly introduce the range cell
data model and propose basic techniques for extended HRRP-JEM
analysis. In Section 3, we examine the HRRP-JEM data obtained
from virtual aircraft framework (VIRAF, by IDS inc.) simulations
of realistic aircraft models. Finally, conclusions and future work are
discussed in Section 4.
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2. BASIC TECHNIQUES FOR EXTENDED HRRP-JEM
ANALYSIS

2.1. Simple Parametric Model of Radar Cell Data

The signal in the range cell of the HRRP-JEM image is modelled on
the basis of point scatterers [17, 21–23] and the problem geometry with
related parameters is shown in Fig. 1. Q and P are the scattering
points on the target with bulk rotation angle, θ(t) and on the rotating
subordinate part, respectively. After the range tracking and the
translational motion compensation, the radar received signal from Q
with a wavelength of λ is given by

sQ(t) ≈ exp
[
j
4πRQ

λ
sin θ(t)

]
=exp

[
j
4πRQ

λ
sin(ωQt+θQ)

]

≈ exp
[
j
4πRQ

λ
ωQt

]
(1)

where ωQ denotes the angular frequency, and RQ is the distance
between the target geometrical center O and Q. After ignoring the
initial angle θQ, sQ(t) becomes the form of linear phase modulation by
the small accumulation angle assumption, namely ωQt ¿ 1. Hence,
the instantaneous frequency of Q is time-invariant. The radar signal
from P is represented by the sinusoidal phase modulation such that

sP (t) = exp
[
j
4πRP

λ
sin(ωP t)

]
(2)
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Figure 1. (a) Problem geometry of a target with a rotating part.
(b) Expanded figure with respect to Q.
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where ωP is the angular speed of the rotating part and RP the rotation
radius. Note that the small accumulation angle assumption is not
valid here since ωP t is not generally small in relation to 1 [17, 23]
and ωP is much greater than ωQ in the HRRP-JEM imaging scenario
(ωQ ¿ ωP ). Consequently, the range cell data can be expressed by
the sum of the body returned component sQ(t) and the micro-Doppler
component sP (t) as follows:

s(t)=sP (t)+AsQ(t)=exp
[
j
4πRP

λ
sin(ωP t)

]
+A exp

[
j
4πRQ

λ
ωQt

]
(3)

where A is the weight that makes the body returned component
account for a relatively large portion of s(t). This is because sP (t)
may become weaker than sQ(t) if there is emphatic scattering from
aircraft structures.

2.2. Signal Eccentricity and Its Application to Estimating
Jet Engine Location

Signal eccentricity ε measures how far a complex-valued signal deviates
from circularity with respect to the central axis of the complex
plane [13–15]. By definition, it is expressed by main and minor axes
of elliptical geometry when the signal s(t) = s is projected onto the
2D complex plane. However, since deterministically calculating the
lengths of these axes is not always possible for an arbitrary data
set, we use another mathematical expression based on the statistical
characteristic of s such that [15]

ε =

√∣∣∣∣
P

C

∣∣∣∣ =

√∣∣∣∣
E [s · sT ]
E [s · sH ]

∣∣∣∣ (4)

where P is the pseudo-covariance, C the covariance, and E[·] the
expectation operator.

The eccentricity ranges between 0 for pure circular polarization
and 1 for pure linear polarization. In (3), both signal components
theoretically have 0 eccentricity values because they all have circularly
rotating natures in the 3D complex domain composed of real,
imaginary and time axes. However, in reality, the eccentricity
cannot be 0 since the dwell time for radar imaging is within tens of
milliseconds [6, 12, 17]. Thus, it can be highly dependent on the signal
rotating behavior in the given dwell time. Since the body returned
component sQ(t) slowly rotates compared to the micro-Doppler sP (t)
(ωQ ¿ ωP ) [5, 6, 12], sQ(t) will appear to be linearly polarized as shown
in Fig. 2(a) as opposed to sP (t), which will retain its circularity along
the central axis of the complex plane as shown in Fig. 2(b). Table 1
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Figure 2. Signal rotating behavior for a dwell time of 20 ms. (a) sQ(t).
(b) sP (t).

Table 1. Parameters of signal components depicted in Fig. 2.

parameters value

radar wavelength λ 0.03 m

sampling frequency 80 kHz

dwell time 20 ms

parameters related to P and Q
RP , ωP 0.25m, 200π rad/s

RQ, ωQ, A 5.0m, 0.05 rad/s, 50

gives background information on the signal components illustrated in
Fig. 2. The large value of ωP considers a scattering point on a propeller
blade rotating at a rate of 6000 RPM.

Figure 3 shows eccentricity values of s(t) for different A. If A is
less than 1, the micro-Doppler contribution becomes dominant and s(t)
has a low eccentricity value. However, when A increases, the rotating
behavior of s(t) starts to deviate from circularity with respect to the
central axis of the complex plane. Therefore, the signal eccentricity
is feasible for assessing the micro-Doppler contribution to the range
cell data. To further develop our discussion on localization of the jet
engine, the eccentricity concept will be applied to HRRP-JEM images.
Since the JEM micro-Doppler contribution will be maximized at the
engine location, the corresponding range cell is expected to be found
by investigating the eccentricity of each range cell.
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Figure 3. Eccentricity values of s(t) by changing A.

2.3. Micro-Doppler Extraction via CEMD Incorporated
with Signal Eccentricity

Once the range cell indicating the jet engine location is found, the
JEM component can be further extracted from the range cell data,
which still contains the body returned component. In this paper,
we adopt CEMD [16], an extension of real-valued EMD [24], as an
extraction method. Its underlying idea is to regard the complex-valued
signal as rapidly rotating components superimposed on slowly rotating
components. Thus, CEMD successively separates zero-mean rotating
components from the original signal by projecting it in uniformly
spaced directions along a unit circle. Each decomposed component
is referred to as the complex intrinsic mode function (IMF). Since
CEMD has fully data-driven characteristics, namely, it makes no prior
assumption on the given data, many researchers have demonstrated
its effectiveness in a variety of applications [17–20]. Since the detailed
algorithm has been presented in many papers, we will not repeat it
here to keep this paper concise.

We use (3) again to illustrate the CEMD-based micro-Doppler
extraction. A is given as 50 to imitate the range cell data in
which the body returned component strongly overlaps with the micro-
Doppler. The CEMD with 127 projection directions is applied to s(t)
and 3 complex IMFs are obtained. Since the micro-Doppler can be
reconstructed by combining appropriate IMFs, a standard for IMF
selection needs to be set up. In [17], Bai et al. proposed the number
of zero-crossings as a standard for IMF discrimination to separate the
micro-Doppler from the body Doppler in ISAR imaging. It can be a
physically intuitive means because it basically assumes that the micro-
Doppler varies much more rapidly than the body Doppler. However,
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the zero-crossing threshold may not be clear if there is no rapid
change in the number of zero-crossings. Furthermore, in contrast to
our situation dealing with the HRRP-JEM data, the micro-Doppler
discussed in [17] accounts for a substantial portion of the range cell
data. Therefore, we propose the eccentricity as a new complementary
means to consider the rotating behavior of the reconstructed signal.
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Figure 4. Investigation into 3 extracted IMFs. (a) Numbers of zero-
crossings. (b) Energy ratio in a dB scale.

Figure 4 shows the number of zero-crossings and the energy ratio of
each extracted IMF. The first two IMFs have numerous zero-crossings
while their energy values are at least 30 dB lower than that of the 3rd
IMF. Thus, it can be anticipated that these IMFs contain the micro-
Doppler component. To clarify this observation, we then calculate the
eccentricity for IMF combinations: r1(t), r2(t) and r3(t). Here, rn(t)
is given by

rn(t) =
n∑

i=1

ci(t) (5)

where ci(t) is the ith IMF, and IMFs are combined by the ascending
order in accordance with the degree of rotation. Note that rn(t)
becomes identical with the original signal when n is equal to the
number of extracted IMFs. The eccentricity of each rn(t) is 0.1576,
0.1099 and 0.8577, respectively. The eccentricity value of r3(t)
quantitatively reveals that the last IMF denotes the body returned
component as predicted from Fig. 4. After separating the 3rd IMF,
r2(t) with the minimum eccentricity is regarded as best characterizing
the micro-Doppler component and is designated as the reconstructed
micro-Doppler component. Since the 2nd IMF has relatively low
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Figure 5. Spectrograms related to micro-Doppler extraction. (a) s(t).
(b) r2(t).

energy, r1(t) is allowed to be selected despite its relatively high
eccentricity. Therefore, the signal eccentricity does not severely restrict
the IMFs to be used but indicates the desirable IMF combination.

Figure 5 presents the spectrograms of s(t) and r2(t). Even though
Fig. 5(a) exhibits an almost constant frequency line, Fig. 5(b) depicts
a time-dependent frequency and shows quite a good match with the
theoretical micro-Doppler frequency, which can be derived from the
phase term in (2) as follows:

f(t) =
1
2π

d

dt

[
4πRP

λ
sin(ωP t)

]
=

2
λ

RP ωP cos(ωP t) (6)

3. APPLICATION OF PROPOSED TECHNIQUES TO
HRRP-JEM IMAGES

3.1. Estimation of Jet Engine Location

To verify the proposed techniques, this section examines the 2D
RCS data set [12] obtained from VIRAF simulations of two realistic
aircraft models. These aircraft models are equipped with jet engines
as shown in Fig. 6 and were assumed to be stationary for typical
HRRP-JEM images without cross-range dimensions. Table 2 gives
electromagnetic simulation parameters and relevant geometrical and
dynamic characteristics.

Figure 7 shows Fourier-based HRRP-JEM images of the aircraft
models. In the Global Hawk, the head and tail positions can be
observed at the 4th and 18th range cells in accordance with the
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Figure 6. Simulated aircraft models equipped with jet engine models.
(a) Global Hawk and AE3007 engine. (b) B-1B Bomber and F101
engines.
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Figure 7. Fourier-based HRRP-JEM images of aircraft models.
(a) Global Hawk. (b) B-1B Bomber.

projected length. In addition, broad spectra are shown at the 11th–
14th range cells. Although these spectra suggest the existence of the
JEM harmonic spectrum, it is difficult to determine the range cell
indicating the actual jet engine location.

For discrimination accuracy, some range cells are excluded in
the eccentricity computation when they do not overlap with the
effective aircraft range or their maximum RCS values do not reach the
predetermined small value of −20 dBsm as shown in Fig. 8(a). This
is because the JEM-related spurious components existent throughout
the ranges can also give a small eccentricity even if they do not have
a real influence on the HRRP-JEM image. Fig. 8(b) exhibits the
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Table 2. Electromagnetic simulation parameters for HRRP-JEM
imaging and geometrical and dynamic characteristics of two aircraft
models with jet engines.

aircraft model Global Hawk B-1B Bomber

electromagnetic

simulations

electromagnetic

analysis method

shooting and bouncing

rays (SBR) [25, 26]

radar center

frequency
10GHz

bandwidth
150MHz (range

resolution = 1m)

frequency interval 7.5MHz 3MHz

number of

frequency steps
21 51

pulse repetition

frequency (PRF)
80 kHz 20 kHz

dwell time
20ms (frequency

resolution = 50Hz)

incident angle

(azimuth Φ = 0◦)
70◦ 100◦

characteristics of

two aircraft models

with jet engines

projected length

by incident angle
13.34m 47.96 m

projected distance

from head to engine
8.46m 31.51 m

number of equipped

jet engines
1 4

engine model AE3007 F101

full rotation speed 6000RPM

number of blades

in 1st rotor stage
23 17

length of blades

in 1st rotor stage
0.491m 0.385 m

eccentricity values calculated for the rest of range cells, and the 13th
range cell shows the lowest eccentricity. Since there are 9 cells between
the head and the engine, the estimated range cell corresponds to the
real location at which the distance to the head is 8.46 m. If the range
resolution of 1 m is further improved by the wide bandwidth, more
accurate localization can be performed. The eccentricity also confirms
that the 11th and 12th range cells with high eccentricity denote the
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Figure 8. Characteristics of range cell data in the Global Hawk.
(a) Maximum RCS. (b) Eccentricity.
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Figure 9. Characteristics of range cell data in the B-1B Bomber.
(a) Maximum RCS. (b) Eccentricity.

scattering from the aircraft structure.
In the B-1B Bomber, the tail position is not clear, as depicted in

Figs. 7(b) and 9(a). Thus, the jet engine location is estimated with
respect to the head position at the 2nd range cell. Although there
are two JEM-like broad spectra at the 27th–29th range cells and at
the 34th–36th range cells, we cannot clearly conclude which range cell
denotes the real jet engine location. Fig. 9(b) shows the eccentricity
of the range cells with RCS values greater than −20 dBsm. It can
be shown that the 34th range cell with the minimum eccentricity is
identified as the jet engine location from which the distance to the head
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is 31.51 m. Other JEM-like spectra at the 27th–29th range cells are
shown to be mainly contributed to by the body returned component.
This section demonstrated that the eccentricity could facilitate the
quantitative estimation of the jet engine location.

3.2. Extraction of JEM Component

Figure 10(a) shows the spectrogram of the 13th range cell data in the
Global Hawk. The spectrogram confirms that the strong body returned
component still exists around the zero frequency. The CEMD with
127 directions decomposed the data into 9 IMFs, and their numbers of
zero-crossings and the energy ratio are shown in Fig. 10(b). Although
the number of zero-crossings of the 1st IMF is much more than the
others, most of the energy lies in the 2nd IMF except for the 9th IMF,
which obviously coincides with the strong zero-frequency component.
Hence, it is not clear which IMF should be included for accurate
JEM extraction. As evident from Table 3, the eccentricity values of
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Figure 10. (a) Spectrogram of 13th range cell data in the Global
Hawk. (b) Numbers of zero-crossings and the energy ratio of 9
extracted IMFs.

Table 3. Calculated eccentricity for IMF combinations of two aircraft
cases.

r1(t) r2(t) r3(t) r4(t) r5(t) r6(t) r7(t) r8(t) r9(t)

Global

Hawk
0.3513 0.3721 0.3262 0.3174 0.3149 0.3136 0.3135 0.3135 0.7193

B-1B

Bomber
0.2820 0.4140 0.4667 0.4487 0.4355 0.4363 0.7711 − −
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reconstructed signals (r1(t) ∼ r8(t)) do not sharply increase until the
last 9th IMF is added. Based on the minimum eccentricity, r8(t) is
selected as the extracted JEM component.

Figure 11 depicts the spectrogram of r8(t) where the JEM
component is more concentrated than in the spectrogram of Fig. 10(a).
From Fig. 11(b), we can obtain a variety of information, such as
the chopping rate, the blade length, and the blade parity (whether
the number of blades is even or odd). The chopping rate [6, 11],
the period when a blade moves to its neighbor position, can be
calculated as 0.435 ms. The blade length is estimated using the Doppler
span [8, 10, 11] along the frequency axis. The slanted waveforms
marked with white lines suggest the odd number of blades for which
the blades alternately approach and recede [8].
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Figure 11. (a) Spectrogram of r8(t) in the Global Hawk.
(b) Expanded spectrogram related to (a).

Figure 12(a) shows the spectrogram of the 34th range cell data in
the B-1B Bomber. Although it presents the relatively strong micro-
Doppler by simultaneous scattering from 4 engines, further processing
is needed for more accurate JEM analysis. Table 3 supports that
r1(t) is designated as the extracted JEM component. One remarkable
characteristic of the auto-correlation of r1(t) shown in Fig. 12(b) is the
spool rate (full rotation period), one of the typical JEM characteristics.
The outstanding peaks associated with the spool rate exist among
surrounding peaks related to the chopping rate. Thus, using the time
intervals of the auto-correlation, the number of blades can be calculated
as 17. From Figs. 12(c) and 12(d), it is noteworthy that the refined
spectrogram of r1(t) exhibiting slanted lines leads to the more distinct
even/odd check of the blade number than Fig. 12(a).
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Figure 12. (a) Spectrogram of the 34th range cell data in the B-
1B Bomber (expanded between 1.3 ms and 2.8 ms). (b) Unbiased
auto-correlation of r1(t). (c) Spectrogram of r1(t). (d) Expanded
spectrogram related to (c).

4. CONCLUSION

This paper presents an extended HRRP-JEM analysis with signal
eccentricity: the estimation of the jet engine location and the
extraction of the JEM component via CEMD. Based on the range cell
data model, we employed the eccentricity as a metric for assessing
the micro-Doppler contribution. Rather than the non-parametric
approach, the signal eccentricity served as a reliable indicator by
facilitating more quantitative jet engine localization. In addition,
further application of eccentricity could provide a new supplementary
means for the CEMD-based JEM extraction. Future studies should
focus on examining the measured data where the clarity of HRRP-
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JEM images would be degraded by the aircraft motion. To maintain
the quality of HRRP-JEM images, not only the aircraft target but
also the rotating jet engines need to be continuously tracked by the
radar during the dwell time. Although this paper dealt with HRRP-
JEM images with one JEM line, more than two jet engines can be
illuminated by the radar signal and can be located at different range
cells. Therefore, HRRP-JEM images with more than two JEM lines
can also provide later research direction. However, the fundamental
principles of this research can be followed because the eccentricity was
proven to be effective for evaluating the micro-Doppler contribution.
The extended HRRP-JEM analysis described in this paper is expected
to be useful for advanced radar target recognition with HRRP-JEM.
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