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Abstract—By combining the work of J. R. Wait on a periodically
loaded vertical wire grid and the work of D. A. Hill and J. R. Wait on a
wire mesh, a novel generalized formulation, the Wait-Hill formulation,
is obtained for the analysis of lumped-element periodically-loaded
orthogonal wire grid generic frequency selective surfaces. The Wait-
Hill formulation is simple and not restricted by the miniaturization
assumption of current approximate simple methods for the analysis
of loaded and unloaded wire grids. The results of the Wait-Hill
formulation are shown to agree well with those of a commercial
software.

1. INTRODUCTION

As the late professor Ben A. Munk emphasized in his books [1, 2] one
has to avoid misconceptions when trying to realize novel frequency
selective surface (FSS) configurations with improved properties. It is
therefore necessary to derive formulations that can analyze FSS. The
type of formulation depends on the unit cell configuration of the FSS
which in turn depends on the specific application; periodic loading
is employed for most popular FSS designs [1]. Our endeavor to gain
insight into the behavior of periodically loaded FSS for achieving novel
FSS designs of improved performance led us to consider establishing a
generic configuration for FSS. We define generic FSS as the simplest
combination of conductors and lumped elements characteristic of
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Figure 1. Geometry of the LE-PL-OWG generic FSS.

a whole class of periodically loaded FSS that includes bandstop,
bandpass and multiband FSS. We must note that by lumped elements
we mean electronic circuit networks of components, not just single
R, L, C components. In FSS fabrication, the lumped elements may
be of surface mount or printed form [1, 3, 4]. The lumped-element
periodically-loaded orthogonal wire grid (LE-PL-OWG) FSS in Fig. 1
is a generic FSS. An example of a specific FSS that arises from this
LE-PL-OWG generic FSS with capacitive loading is the well known
Jerusalem cross [5].

This paper proposes a novel formulation that can provide
theoretical and physical insight into the performance of the LE-
PL-OWG bandstop FSS (generic bandpass FSS will be considered
elsewhere). The formulation combines original work by J. R. Wait [6]
on periodically loaded vertical wire grids and by D. A. Hill and
J. R. Wait [7] on unloaded orthogonal wire grids. We name this
generalized formulation the Wait-Hill (WH) formulation. Although
the proposed WH formulation can be expressed in terms of the
formalism in [6, 7], we choose, in this paper, to express it in terms
of the formalism of B. A. Munk [1] as we found it convenient
to use. Because of the equivalent radius approximation [1, 8], the
analysis of narrow strip structures can practically be achieved through
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the analysis of wire structures. Hence, we will only consider the
analysis of LE-PL-OWG structures. The research to be presented
is expected to be of interest in the field of theoretical analysis and
applications of loaded wire grids [9–11] as it provides a formulation
not restricted by the miniaturization assumption of the approximate
methods in [10, 11]. The WH formulation is simple and provides
insight on how the plane of incidence affects the current distribution
in the LE-PL-OWG FSS. This insight cannot be obtained by the
approximate methods in [10, 11]. It is to be noted that by assuming
that the period is sufficiently electrically small, the WH formulation
can provide approximate analytical expressions for the equivalent
circuit impedance and scattering parameters of the LE-PL-OWG FSS
for both perpendicular and parallel polarization that are independent
of the plane of incidence. References [10, 11] also deal with equivalent
circuit impedance approximate expressions which are obtained with a
different approach. Differences between our approximate formulae and
those of [10, 11] are discussed in Section 3 of the paper.

The paper is organized as follows. In Section 2, the generalized
WH formulation is derived and its numerical results are compared with
those of the commercial software CST [12]. In Section 3, it is shown
how the WH formulation can provide theoretical and physical insight
into the behavior of LE-PL-OWG bandstop FSS. In particular, the
effect of the plane of incidence on the current harmonic amplitudes of
the WH formulation is examined and simple approximate expressions
for the FSS transmission coefficient are derived. The conclusions are
drawn in Section 4.

2. DERIVATION OF THE GENERALIZED WAIT-HILL
FORMULATION

The geometry of the periodic structure under analysis is shown in
Fig. 1. The surrounding medium is assumed to be lossless with
permittivity ε, permeability µ and intrinsic impedance η. A time
dependence of the form of ejωt is assumed in the formulation and
suppressed. The arbitrarily polarized electric field of the incident
plane wave is decomposed into two components, one parallel and one
perpendicular to the plane of incidence (see Fig. 1)

Einc = ‖Einc(R) ‖n̂00+ + ⊥Einc(R)⊥n̂00+ (1)

where [1],

‖n̂00± =
−x̂sxsy ± ŷ

(
s2
x + s2

z

)− ẑsysz√
s2
x + s2

z

, ⊥n̂00± =
−x̂sz + ẑsx√

s2
x + s2

z

(2)
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sx = sin ξ sinψ, sy = cos ξ, sz = sin ξ cosψ (3)
with R = xx̂ + yŷ + zẑ. Subscript ± which refers to propagation in
the ±y direction (Fig. 1) can be removed from ⊥n̂00±. Because of the
linearity of the problem, without loss of generality, it is assumed that
the incident wave is either parallel or perpendicularly polarized and
that

‖Einc(R) = ⊥Einc(R) = E0e
−jkr ŝ·R (4)

where kr = 2π/λ and s = sxx̂ + syŷ + sz ẑ.
For simplicity, the reference wire axes coincide with the z-axis for

reference wire A (xA = 0) and with the x-axis for reference wire B
(zB = 0). The origin O is at the intersection of the two wires, as
shown in Fig. 1. It is also assumed that all wires have the same radius,
b. Over the reference unit cell (|x| ≤ Dx/2, |z| ≤ Dz/2), the per unit
length load impedance is

ZL(K)(u) =
{ Zv(K)/l for (Du − l)/2 ≤ |u| ≤ Du/2

0 otherwise (5)

where K = A, u = z for wire A and K = B, u = x for wire B. Zv(K) is
the lumped element impedance (see Fig. 1). Since ZL(K)(u) is periodic,

ZL(K)(u) =
∞∑

n=−∞
Zn(K) e−j2πnu/Du (6)

with Zn(K) = [(−1)n(Zv(K)/Du) sin(nπl/Du)]/(nπl/Du).
The current flowing along the reference wires A and B is given by

IK(u) = IΠ(K)(u)e−jkrsuu (7)
as xA = zB = 0. IΠ(K) is the periodic part of the current function

IΠ(K)(u) =
∞∑

p=−∞
Kpe

−j2πpu/Du (8)

where p = m for wire A and p = q for wire B.
As indicated in [7] the scattered electric field Esc can be derived

from the magnetic vector potential. The wire boundary condition is [6],(
‖,⊥Einc · û + Esc · û) ∣∣

Rb
= ZL(K)(u)IK(u) (9)

where û = ẑ, Rb = Rb(0, b, z) for wire A and û = x̂, Rb = Rb(x, b, 0)
for wire B. From (9), following a procedure similar to [6, 7], the WH
formulation is obtained,

Ẑm(A)Am+
∞∑

n=−∞

′
Zn(A)Am−n−

∞∑
q=−∞

C
(m)
q(B)Bq = δm0E0e

−jkrsyb‖,⊥n00z

(10)
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−
∞∑

m=−∞
C

(q)
m(A)Am+Ẑq(B)Bq+

∞∑
n=−∞

′
Zn(B)Bq−n

= δ0qE0e
−jkrsyb‖,⊥n00x (11)

where δij is the Kronecker delta (δij = 1 for i = j and δij = 0 for
i 6= j), ‖,⊥n00x and ‖,⊥n00z are the x and z components respectively of
the unit vectors of Equation (2), and

Ẑm(A)=
jωµ

2Dx

(
1−r2

z

)[−Dx

π
ln

(
1−e

−2πb
Dx

)
+∆m+

e−Γm0b

Γm0

]
+Z0(A) (12)

Ẑq(B)=
jωµ

2Dz

(
1−r2

x

)[−Dz

π
ln

(
1−e

−2πb
Dz

)
+∆q+

e−Γ0qb

Γ0q

]
+Z0(B) (13)

∆m=
∞∑

q=−∞

′


e−Γmqb

Γmq
− e

− 2π
Dx
|q|b

2π
Dx
|q|


 ,

∆q =
∞∑

m=−∞

′


e−Γmqb

Γmq
− e

− 2π
Dz
|m|b

2π
Dz
|m|


 (14)

C
(m)
q(B)=

jωµ

2Dz
rzrx

e−Γmqb

Γmq
(15)

C
(q)
m(A)=

jωµ

2Dx
rxrz

e−Γmqb

Γmq
(16)

Throughout the paper, the symbol Σ′ means that the index value of
zero is excluded from the summation, i.e., in (14), the q = 0 term is
omitted in ∆m and the m = 0 term is omitted in ∆q. Furthermore,

Γmq = jkrry = jkr

√
1− r2

x − r2
z (17)

where rx = sx + qλ/Dx, rz = sz + mλ/Dz.
The range of m, q and n is suitably truncated to generate a set of

simultaneous equations to be solved numerically. Here, −Q ≤ m ≤ Q
and −Q ≤ q ≤ Q. Solving for unknowns Am and Bq means that
for any value m = h in (10) and q = h in (11), the range of n is
−(Q− h) ≤ n ≤ (Q + h) in (10) and (11). The size of the final matrix
is (4Q+2)× (4Q+2). As an example, (18) shows the matrix equation
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assuming Q = 1,



Z−2(A) Z−1(A) Ẑ−1(A) −C
(−1)
1(B) −C

(−1)
0(B) −C

(−1)
−1(B)

Z−1(A) Ẑ0(A) Z1(A) −C
(0)
1(B) −C

(0)
0(B) −C

(0)
−1(B)

Ẑ1(A) Z1(A) Z2(A) −C
(1)
1(B) −C

(1)
0(B) −C

(1)
−1(B)

−C
(−1)
1(A) −C

(−1)
0(A) −C

(−1)
−1(A) Z−2(B) Z−1(B) Ẑ−1(B)

−C
(0)
1(A) −C

(0)
0(A) −C

(0)
−1(A) Z−1(B) Ẑ0(B) Z1(B)

−C
(1)
1(A) −C

(1)
0(A) −C

(1)
−1(A) Ẑ1(B) Z1(B) Z2(B)







A1

A0

A−1

B1

B0

B−1



=




0
MA

0
0

MB

0




(18)

where MA = E0 exp(−jkrsyb)‖,⊥n00z and MB = E0 exp(−jkr

syb)‖,⊥n00x. Once the amplitude values Am, Bq are computed, the
scattered field at an observation point is obtained. Assuming that only
the fundamental (q = m = 0) harmonic propagates, the co-polarized
and cross-polarized transmission coefficients are given by

Tw g = wEtran(Rout)
gEinc(Rin)

=
E0δwg − Fwg

E0
e−j2krsyyobs (19)

where Rout = R(x, yobs, z), Rin = R(x,−yobs, z), δwg is the Kronecker
delta, g = ⊥, ‖ and w = ⊥, || represent the incident and scattered wave
polarization, respectively, and

Fwg =
η

2Dx
(gA0)

wn00z

sy
+

η

2Dz
(gB0)

wn00x

sy
(20)

In the Numerical Solution section, p. 357 of [7], Hill and Wait indicate
that for parallel polarization and incidence along the wire axis (ψ = 0◦)
and near grazing (ξ near 90◦) the convergence of the solution of their
truncated matrix (Equation (18) with ZL = 0) was extremely slow for
their unloaded wire grid structure. The convergence difficulties were
illustrated in Fig. 2 of [7]. By plotting the current distribution along
the wires (shown in Fig. 3 of [7]), they found that the currents exhibited
step discontinuities at the wire junction which satisfied Kirchhoff’s
current law (Equation (20) of [7]). As stated in [7], the primary reason
for the slow convergence was the fact that the continuous expansion
functions of the Fourier series in (8) are inefficient in synthesizing
this discontinuous current at the wire junction. We also observed
step discontinuities in the current plots of our FSS example (see FSS
parameters in the caption of Fig. 2) obtained by solving (18). Based on
the observed behavior of the higher order Fourier series coefficients of
the currents in (8), Hill and Wait introduced a discontinuous periodic
sawtooth function f∆ in their current expressions in order to improve
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(a) (b)

(c) (d)

Figure 2. Co-polarized and cross-polarized transmission coefficient
results for the LE-PL-OWG FSS with Zv(A) = Zv(B) = 1/(jωC),
C = 1 pF, l = 1.25mm, b = 0.36mm, Dx = Dz = 60mm, ξ = 70◦,
ψ = 22.5◦, yobs = 20mm. The surrounding medium is free space.
CST: Dashed line. WH method: Solid line. Q = 10, Q′ = 20 × Q,
Q∆ = 20 × Q. (a) Magnitude of T‖ ‖: (◦) and T⊥‖: (∗). (b) Phase
of T‖ ‖: (◦) and T⊥‖: (∗). (c) Magnitude of T⊥⊥: (◦) and T‖⊥: (∗).
(d) Phase of T⊥⊥: (◦) and T‖⊥: (∗).

Figure 3. Co-polarized transmission coefficient magnitude |T⊥⊥|.
Solid line: WH method (LE-PL-OWG FSS). Dotted line: Wait’s
formulation (LE-PL vertical wire grid FSS). ξ = 0◦, ψ = 90◦ (◦);
ξ = 35◦, ψ = 90◦ (×); ξ = 70◦, ψ = 90◦ (+). Zv(A) = Zv(B) =
1/(jωC), C = 1 pF, l = 1.25mm, b = 0.36mm, Dx = Dz = 60 mm.
The surrounding medium is free space.
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the convergence of their results (see section on Improved Solution,
pages 358–359 in [7]). Over the reference unit cell, the function f∆ is
defined as [7],

f∆(u)=∆[U(u)−u/Du−1/2]=
∞∑

p=−∞

′ j∆
2πp

e−j2πpu/Du , |u|≤Du/2 (21)

where u = x, z, U(u) is the unit step function, and ∆ is a complex
unknown constant which represents the step of the function f∆ at the
wire junction.

For our FSS example, we observed that the higher order Fourier
series coefficients of the currents in (8) closely follow the higher order
Fourier series coefficients of the sawtooth function (21) when ∆ is
set equal to the current discontinuity jump at the wire junction.
Hence, we also employ the Hill-Wait sawtooth function to improve
the convergence of our results. Its implementation into the generalized
WH formulation is shown below. Following [7], the IΠ(K) in (8) can be
expressed as

IΠ(K)(u) = χf∆(u) +
∞∑

p=−∞
K ′

pe
−j2πpu/Du (22)

where χ = 1 for wire A and χ = −1 for wire B. As in [7], based on (22),
the current harmonic amplitudes Kp in (8) can be expressed in terms
of the coefficients of the function f∆ in (21) and the amplitudes K ′

p as

Kp = jχ∆(1− δp0)/(2πp) + K ′
p (23)

Substituting (23) in (10) and (11) leads to

Ẑm(A)A
′
m +

∞∑
n=−∞

′
Zn(A)A

′
m−n −

∞∑
q=−∞

C
(m)
q(B)B

′
q + Um∆

= δm0E0e
−jkrsyb‖,⊥n00z (24)

−
∞∑

m=−∞
C

(q)
m(A)A

′
m + Ẑq(B)B

′
q +

∞∑
n=−∞

′
Zn(B)B

′
q−n − Vq∆

= δ0qE0e
−jkrsyb‖,⊥n00x (25)

respectively, where

Um = Ẑm(A)j
(1− δm0)

2πm
+

∞∑
n=−∞

′
Zn(A)j

(1− δ(m−n)0)
2π(m− n)

+
∞∑

q=−∞
C

(m)
q(B)j

(1− δ0q)
2πq

(26)
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and

Vq =
∞∑

m=−∞
C

(q)
m(A)j

(1− δm0)
2πm

+Ẑq(B)j
(1− δ0q)

2πq

+
∞∑

n=−∞

′
Zn(B)j

(1− δ0(q−n))
2π(q − n)

(27)

The extra equation needed because of the additional unknown complex
parameter ∆ is

∞∑
m=−∞

Gm(A)A
′
m −

∞∑
q=−∞

Gq(B)B
′
q + W∆ = 0 (28)

where Gm(A) = jkrrz, Gq(B) = jkrrx and W = 1/Dx + 1/Dz. As in [7],
Equation (28) is obtained by substituting the current expression in (7),
with IΠ(K) given by (22), into Equation (26) of [7]. The latter equation,
based on the parameters of Fig. 1, is re-written here for convenience
as 1

2(∂IA
∂z |z=0− + ∂IA

∂z |z=0+) = 1
2(∂IB

∂x |x=0− + ∂IB
∂x |x=0+).

Equation (22) suggests that only the low order coefficients A′m
and B′

q need to be computed if the higher order current harmonic
amplitudes of (8) are approximated well by the higher order coefficients
of the function f∆ in (21). Hence, in the computations, the range of
m, q and n in the summations of (24) and (25) is suitably truncated
to generate a set of simultaneous equations to be solved numerically.
Here, −Q ≤ m ≤ Q and −Q ≤ q ≤ Q. Solving for unknowns A′m
and B′

q means that for any value m = h in (24) and q = h in (25), the
range of n is −(Q−h) ≤ n ≤ (Q+h) in (24) and (25). The size of the
final matrix is (4Q + 3)× (4Q + 3) because of the additional unknown
∆. As an example, (29) shows the matrix equation assuming Q = 1,



Z−2(A) Z−1(A) Ẑ−1(A) −C
(−1)
1(B) −C

(−1)
0(B) −C

(−1)
−1(B) U−1

Z−1(A) Ẑ0(A) Z1(A) −C
(0)
1(B) −C

(0)
0(B) −C

(0)
−1(B) U0

Ẑ1(A) Z1(A) Z2(A) −C
(1)
1(B) −C

(1)
0(B) −C

(1)
−1(B) U1

−C
(−1)
1(A) −C

(−1)
0(A) −C

(−1)
−1(A) Z−2(B) Z−1(B) Ẑ−1(B) −V−1

−C
(0)
1(A) −C

(0)
0(A) −C

(0)
−1(A) Z−1(B) Ẑ0(B) Z1(B) −V0

−C
(1)
1(A) −C

(1)
0(A) −C

(1)
−1(A) Ẑ1(B) Z1(B) Z2(B) −V1

G1(A) G0(A) G−1(A) −G1(B) −G0(B) −G−1(B) W



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


A′1
A′0
A′−1

B′
1

B′
0

B′
−1

∆




=




0
MA

0
0

MB

0
0




(29)

In the computations, the m, q summations in (14), which appear in
the expressions of Ẑm(A) and Ẑq(B) of Equations (12) and (13), are
truncated with truncation limit Q′, such that in (14), −Q′ ≤ m ≤ Q′
and −Q′ ≤ q ≤ Q′.

Truncation is also applied to the m, q, n summations of
Equations (26) and (27). In our code, for any value m = h in (26)
and q = h in (27), the n summations of (26) and (27) have limits
−(Q∆−h) ≤ n ≤ (Q∆ +h). Furthermore, for the q summation in (26)
and the m summation in (27) the limits are −Q∆ ≤ q ≤ Q∆ and
−Q∆ ≤ m ≤ Q∆, respectively. To examine the numerical convergence
of the WH formulation, for various values of Q, Q′ and Q∆, we consider
as an example a LE-PL-OWG generic FSS (Fig. 1) periodically loaded
with lumped element capacitors. The lumped element capacitance is
C = 1pF, the lumped element length is l = 1.25mm, the wire radius
is b = 0.36 mm and the period is Dx = Dz = 60 mm. The incident
plane wave is parallel polarized with incidence angles ξ = 70◦ and
ψ = 22.5◦. The surrounding medium is free space. We found very good
agreement among the co-polarized and cross-polarized transmission
coefficient magnitude results of the following truncation limits: (i)
Q = 5, Q′ = 40 × Q, Q∆ = 40 × Q; (ii) Q = 10, Q′ = 20 × Q,
Q∆ = 20 × Q; (iii) Q = 40, Q′ = 40 × Q, Q∆ = 40 × Q. Based on
these results we use the values Q = 10, Q′ = 20×Q and Q∆ = 20×Q
in the simulations that follow for this FSS example. Fig. 2 shows that
for our FSS example there is a very good agreement between the WH
formulation results and the CST results.

3. WAIT-HILL FORMULATION ANALYSIS OF
GENERIC FSS

This section considers how the WH formulation provides insight into
the behavior of LE-PL OWG generic FSS. Different planes of incidence
are considered. We assume that Dx = Dz = D and Zn(A) = Zn(B) =
Zn as this is often the case in FSS configurations with orthogonal axes
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of periodicity [1]. To aid the analysis that follows, we rewrite (11) as

Ẑq(B)Bq +
∞∑

n=−∞

′
ZnBq−n = R(q) (30)

where R(q) = δ0qE0e
−jkrsyb‖,⊥n00x +

∞∑
m=−∞

C
(q)
m(A)Am.

Hence we can write the following matrix equation



. . .
...

...
...

...
... . . .

. . . Z−4 Z−3 Z−2 Z−1 Ẑ−2(B) . . .

. . . Z−3 Z−2 Z−1 Ẑ−1(B) Z1 . . .

. . . Z−2 Z−1 Ẑ0(B) Z1 Z2 . . .

. . . Z−1 Ẑ1(B) Z1 Z2 Z3 . . .

. . . Ẑ2(B) Z1 Z2 Z3 Z4 . . .

. . .
...

...
...

...
...

. . .







...
B2

B1

B0

B−1

B−2

...




=




...
R(−2)

R(−1)

R(0)

R(1)

R(2)

...




(31)

3.1. Perpendicular Polarization with ψ = 90◦ (sz = 0)

Since sz = 0 it follows that

C
(q)
m(A) =

jωµ

2D
rx

mλ

D

e−Γmqb

Γmq
, C

(q)
0(A) = 0, C

(q)
|m|(A) = −C

(q)
−|m|(A) (32)

It is also to be noted that ⊥n00x = 0. Since the loading and the unit
cell are symmetric (about the x-axis) along the z-direction, then for
the incidence considered we expect Am = A−m and therefore R(q) = 0
for every q. Since the right hand side (RHS) vector of (31) is zero, and
assuming the matrix can be inverted, one obtains Bq = 0 for every
q. Numerical results confirm the above current harmonic amplitude
relations (Am = A−m and Bq = 0). From (19), the cross-polarization
transmission coefficient T‖⊥ is zero for any angle of incidence ξ since
‖n00z = 0 and ⊥B0 = 0. This was anticipated because of the structure’s
symmetry [13].

Since Bq = 0, the LE-PL-OWG FSS formulation (18) reduces
to that of plane wave scattering from a LE-PL vertical wire grid FSS
which was considered in [6]. Fig. 3 demonstrates this fact by comparing
the WH formulation (LE-PL-OWG FSS) results with those of the
Wait’s formulation (LE-PL vertical wire grid FSS) [6].
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3.2. Parallel Polarization with ψ = 0◦ (sx = 0)

Since sx = 0, it follows from (16) that

C
(q)
m(A) =

jωµ

2D

qλ

D
rz

e−Γmqb

Γmq
(33)

and ‖n00x = 0. Therefore, R(0) = 0 and (for q 6= 0)

R(q) =
∞∑

m=−∞
C

(q)
m(A)Am = −

∞∑
m=−∞

C
(−q)
m(A)Am = −R(−q) (34)

In addition, from (13), Ẑq(B) = Ẑ−q(B). Since the wire B has lumped
element loading that is symmetric about the point of intersection with
wire A then Zn = Z−n. Hence substituting R(−q) = −R(q), Z−n = Zn

and Ẑ−q(B) = Ẑq(B) in the matrix of (31) leads to a bisymmetric
matrix. Its inverse is also bisymmetric. Therefore assuming that
the middle row of the inverse matrix is, say, [. . . a b c b a . . .] then
B0 = 0. Furthermore, Bq = −B−q due to the form of the RHS
vector and the bisymmetry of the inverse matrix. Thus, the current
IB(x) is an odd function. Numerical results confirm the above current
harmonic amplitude relations (B0 = 0 and Bq = −B−q). From (19),
the cross-polarization transmission coefficient T⊥‖ is zero for any angle
of incidence ξ since ⊥n00z = 0 and ‖B0 = 0. This was expected because
of the structure’s symmetry [13].

Because of the presence of the induced current IB(x) one
anticipates that the transmission coefficient from the LE-PL-OWG
FSS will be different from that of the LE-PL vertical wire grid FSS [6].
This is confirmed in Fig. 4. Fig. 4 shows that there is a deviation of
the resonance frequency with the angle of incidence ξ. However this
deviation is smaller for the OWG FSS than for the vertical wire grid
FSS. To obtain more insight for our FSS example, by simplifying (29),
we found it useful to employ a crude approximation, i.e., we assume
that (22) can be expressed as (ignoring, for the moment, the particular
plane of incidence and the fact that B0 = 0)

IΠ(K)(u) ≈ K0 + χf∆(u) (35)

Then, from (35) and the fact that B0 = 0, (29) reduces to[
Ẑ0(A) U0

G0(A) W

] [
A0

∆

]
=

[
E0 ‖,⊥n00z

0

]
(36)

where we have assumed that exp(−jkrsyb) ≈ 1. From its solution we
obtain,

A0 =
WE0‖,⊥n00z

Ẑ0(A)W −G0(A)U0

(37)
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Substituting the amplitude approximation (37) in Equation (19) yields
the parallel polarization transmission coefficient expression that will be
developed in Section 3.4, Equation (50), in which ‖Zg is given by

‖Zg =
[
−jωµD

2π

(
1− s2

z

)
ln

(
1− e

−2πb
D

)
+ Zv

]

+
[
−jωµD

4π
s2
z ln

(
1− e

−2πb
D

)]

=
{
−jωµD

4π
(2− sin2 ξ) ln

(
1− e

−2πb
D

)}
+ Zv (38)

since sz = sin ξ. Results from (50) are plotted in Fig. 4. In
obtaining (38), we assumed that D/λ is sufficiently small so that we
can neglect the term ∆0 in Ẑ0(A). The parameter ‖Zg represents the
transmission line equivalent circuit impedance of the LE-PL-OWG FSS
for the present plane of incidence. The transmission line characteristic
impedance is ηsy. The square bracket term in the first line of (38) is
the transmission line equivalent circuit impedance of the isolated LE-
PL vertical wire grid FSS [6], and it is the sum of the impedance of the
vertical wire grid inductance and the impedance of the lumped element
capacitive load. The square bracket term in the second line of (38) is
the impedance of an additional inductance due to the presence of the
horizontal wires; this inductance increases as the angle of incidence ξ
increases. At the resonance frequency, ‖Zg = 0. It is thus explained,

Figure 4. Co-polarized transmission coefficient magnitude |T‖ ‖|.
Solid line: WH method (LE-PL-OWG FSS). Dotted line: Wait’s
formulation [6] (LE-PL vertical wire grid FSS). Dashed line: Eqs. (50)
with (38). For the solid, dotted and dashed lines with no symbols
the incidence angles are ξ = 35◦ and ψ = 0◦. For the solid, dotted
and dashed lines with symbol (•) the incidence angles are ξ = 70◦
and ψ = 0◦. Zv(A) = Zv(B) = 1/(jωC), C = 1 pF, l = 1.25mm,
b = 0.36mm, Dx = Dz = 60mm. The surrounding medium is free
space.
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for the first time, why the deviation in the resonance frequency of the
LE-PL-OWG FSS is less than that of the LE-PL vertical wire grid
FSS of [6] as the angle of incidence ξ increases. As will be shown,
elsewhere, for lumped element periodically loaded vertical wire grids,
the resonance frequency deviation can be reduced by employing a
lumped element inductance. For LE-PL-OWG FSS, we demonstrate
this in Section 3.4 where we consider an arbitrary angle of incidence.

For periodically loaded FSS, it is noted that an approximate
formulation for the Jerusalem cross FSS impedance was proposed
in [10] (see Equation (13) of [10] and Equations (A7) and (A9) of [14])
but its inductive term corresponds to that of the first square bracket
term of the first line in (38), i.e., it does not take into consideration
the presence of the horizontal wires. For the unloaded planar mesh,
the curly bracket term in the second line of (38) was obtained in [11]
(see Equation (5) in [11]) from the average boundary condition of
Equation (1) of [11]. As we do for (38), the authors of [11] obtained
their Equation (5) for a given direction of incidence (see paragraph
above Equation (5) in [11]). However, using the WH formulation
approach, we will show in Section 3.4 that the approximate impedance
expression in the curly brackets is valid for any arbitrary plane of
incidence, see our Equation (51).

3.3. Incidence for ψ = 45◦ (sx = sz)

Since our example is diagonally symmetric, i.e., Dx = Dz = D
and Zn(A) = Zn(B), then Ẑm(A) = Ẑq(B) for any m = q. Also,

C
(q)
m(A) = C

(m)
q(B) for any m = q. Therefore, (18) can be written as

follows [
Z −C
−C Z

] [
A
B

]
=

[
E ‖,⊥n00z

E ‖,⊥n00x

]
(39)

Equation (39) is solved for each polarization. For perpendicular
polarization, ⊥n00z = 1/

√
2 and ⊥n00x = −1/

√
2. Hence (39) leads

to A = −B. Therefore A0 = −B0. For parallel polarization
‖n00x = ‖n00z = −sy/

√
2 and (39) leads to A = B. Therefore

A0 = B0. Numerical results confirm the above current harmonic
amplitude relations. Substituting these relations into the transmission
coefficient (19) results in T‖⊥ = T⊥‖ = 0 for any angle of incidence
ξ. The absence of cross-polarization, for both polarizations, is
numerically confirmed in Fig. 5 where co-polarization and cross-
polarization transmission coefficient magnitude results are shown for
ξ = 70◦.
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Figure 5. Co-polarized and cross-polarized transmission coefficient
magnitude results (WH method) for ξ = 70◦, ψ = 45◦. |T⊥⊥|: solid
line with (◦); |T‖ ‖|: dashed line with (◦); |T‖⊥|: solid line with (∗);
|T⊥‖|: dashed line with (∗). Zv(A) = Zv(B) = 1/(jωC), C = 1 pF,
l = 1.25mm, b = 0.36mm, Dx = Dz = 60 mm. The surrounding
medium is free space.

3.4. Incidence at an Arbitrary Angle

In Fig. 2, we observe that the cross-polarization transmission
coefficients of the two polarizations are equal. This is anticipated from
the theoretical work of Li [15] on the symmetries of cross-polarization
diffraction coefficients of gratings which is based on the reciprocity
theorem [16]. The WH formulation can provide a mathematical
confirmation of this fact for our LE-PL-OWG generic FSS as follows.
Equation (18) can be written as (each of the submatrices has a size
(2Q + 1)× (2Q + 1))[

Z(A) −C(B)

−C(A) Z(B)

] [
A
B

]
=

[
E ‖,⊥n00z

E ‖,⊥n00x

]
(40)

where Z(A) and Z(B) are persymmetric. Since Dx = Dz = D, C(A)
and C(B) have the same antidiagonal and mirror each other about the
antidiagonal. From (40) one obtains, through matrix inversion, that[

A
B

]
=

[
Θ Λ
Φ Ψ

] [
E ‖,⊥n00z

E ‖,⊥n00x

]
(41)

We found numerically that the submatrices of the inverse matrix have
the same properties as the submatrices of the matrix of (40), i.e., Θ
and Ψ are persymmetric and Λ and Φ have the same antidiagonal
and mirror each other about the antidiagonal. Obtaining from (41)
expressions for A0 and B0 and substituting these in (20) yields

Fwg =
ηE0e

−jkrsyb

2Dsy
× [ΘQ+1,Q+1 gn00z wn00z + ΛQ+1,Q+1 gn00x wn00z

+ΦQ+1,Q+1 gn00z wn00x + ΨQ+1,Q+1 gn00x wn00x] (42)
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Because of the relation of Λ and Φ it follows that ΛQ+1,Q+1 =
ΦQ+1,Q+1. Hence, F‖⊥ = F⊥‖ and, from (19), T||⊥ = T⊥‖.

Assuming that the period is electrically small, as the period
used in the FSS example of Fig. 7, we again consider the crude
approximation (35) based on which (29) reduces to




Ẑ0(A) −C
(0)
0(B) U0

−C
(0)
0(A) Ẑ0(B) −V

G0(A) −G0(B) W




[
A0

B0

∆

]
=




E0 ‖,⊥n00z

E0 ‖,⊥n00x

0


 (43)

where we have assumed that exp(−jkrsyb) ≈ 1. Assuming also
that λ/D is sufficiently large for ∆0 to be neglected and for the
approximations sx + λq/D ≈ λq/D and sz + λm/D ≈ λm/D to hold
for q 6= 0 and m 6= 0, we obtain from (12), (13), (15), (16), (26) and
(27) the following expressions,

Ẑ0(A) ≈ (1− s2
z)X + (1− s2

z)
η

2Dsy
+ Z0 (44)

Ẑ0(B) ≈
(
1− s2

x

)
X +

(
1− s2

x

) η

2Dsy
+ Z0 (45)

C
(0)
0(A) = C

(0)
0(B) ≈ sxsz

η

2Dsy
(46)

U0 ≈ j
λ

2πD
szX and V0 ≈ j

λ

2πD
sxX (47)

where X = − jωµ
2π ln(1− e

−2πb
D ).

Solving (43) and substituting the expressions for A0 and B0 in (19)
we obtain the following expressions for the co-polarized transmission
coefficients

T⊥⊥ =
(

1− η/(2sy)
η/(2sy) + ⊥Zg

)
e−j2krsyyobs (48)

where
⊥Zg = DX + Zv (49)

and

T‖ ‖ =
(

1− ηsy/2
ηsy/2 + ‖Zg

)
e−j2krsyyobs (50)

where
‖Zg = (1 + s2

y)DX/2 + Zv (51)

with sy = cos ξ. Furthermore, for the cross-polarized transmission
coefficients,

T‖⊥ = T⊥‖ = 0 (52)
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For both incident polarizations, expressions for ∆ in (43) indicate
that its value is small for small D and large λ.

In Equations (48)–(51), the transmission coefficients and the
bandstop resonance frequencies (at which ⊥Zg and ‖Zg are zero) are
independent of the azimuthal angle ψ. However, the transmission
coefficients in Equations (48) and (50) are dependent on the angle
of incidence ξ. In addition, Equation (49) indicates that the resonance
frequency for perpendicular polarization is independent of ξ, while
Equation (51) indicates that the resonance frequency for parallel
polarization changes as ξ changes. As it will be shown, elsewhere, for a
LE-PL vertical wire grid FSS, this deviation of the parallel polarization
resonance frequency can be reduced by adding in our LE-PL-OWG
generic bandstop FSS, in series with the lumped element capacitance,
a lumped element inductance. If this inductance value is such that the
X terms in (49), (51) can be neglected, then (48), (50) are simplified
further as follows

T⊥⊥ =
[
1− η/(2sy)

η/(2sy) + Zv

]
e−j2krsyyobs (53)

T‖ ‖ =
[
1− ηsy/2

ηsy/2 + Zv

]
e−j2krsyyobs (54)

In Equations (53) and (54), the resonance frequency is the same
for both polarizations and independent of ξ. However, the transmission
coefficients of (53) and (54) are still dependent on the angle of incidence
ξ.

We now demonstrate the above approximations using a new FSS
example. This new LE-PL-OWG bandstop FSS is obtained from the
FSS of Fig. 2 by reducing the period D of the FSS of Fig. 2 to D(new) =
10mm. Reducing the period reduces Xto X(new). To maintain the

(a) (b)

Figure 6. (a) The parallel polarization resonance frequency deviation,
∆fr, and (b) inductance values, L (solid line) and L

(new)
w (ξ) (dashed

line), versus the new period D(new). b = 0.36 mm, C = 1pF, ξ = 70◦.
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resonance frequency at a similar value (at normal incidence) to that of
the FSS of Fig. 2 we add (following simulations) a lumped element
inductance of value L = 40 nH in series with the lumped element
capacitance, i.e., Zv = 1/(jωC) + jωL. To justify the choice of the
period D(new) and the lumped element inductance value, we make
use of (51) since we have shown in Fig. 4 that (38) approximates
satisfactorily the FSS behaviour. Let jωLw(ξ) = (1 + s2

y)DX/2
where Lw(ξ) is, according to (51), the parallel polarization wire
inductance at angle ξ of the FSS of Fig. 4. Let also jωL

(new)
w (ξ) =

(1+s2
y)D

(new)X(new)/2 where L
(new)
w (ξ) is the parallel polarization wire

inductance at angle ξ of the new FSS. Hence, in order for the two
FSS configurations to have, at normal incidence, the same resonance
frequency, a lumped element inductance L must be added to the new
FSS of value L = Lw(0) − L

(new)
w (0). If, for the new FSS, the parallel

polarization resonance frequency at normal incidence is fr(0) and at
angular incidence is fr(ξ) then the resonance frequency deviation is,
according to (51),

∆fr =fr(ξ)−fr(0)=

{
2π

√[
L

(new)
w (ξ)+L

]
C

}−1

−
{
2π

√
Lw(0)C

}−1
(55)

A plot of ∆fr, L, L
(new)
w (ξ) is shown in Fig. 6 for ξ = 70◦. To have a

Figure 7. Transmission coefficient magnitude results. Dx = Dz =
10mm, l = 1.25mm, b = 0.36mm, Zv = 1/(jωC) + jωL, C = 1 pF,
L = 40 nH. Dashed line (unfilled symbols): CST. Solid line: WH
method. Dash-dot line: (48) and (50). Dotted line (filled symbols):
(53) and (54). Normal incidence: (♦). |T⊥⊥|, |T‖⊥|, ξ = 70◦: ψ = 22.5◦

(∗); ψ = 45◦ (M); ψ = 90◦ (O). |T‖ ‖|, |T⊥‖|, ξ = 70◦: ψ = 0◦ (¤);
ψ = 22.5◦ (◦); ψ = 45◦ (.). For clarity unfilled symbols are used on
CST curves only since the curves of the WH method and Eqs. (48) and
(50) closely follow the CST results. The surrounding medium is free
space.
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parallel polarization resonance frequency deviation of around 15 MHz
we choose D(new) = 10 mm. The required lumped element inductance
is 36 nH (approx.) which is close to the numerically chosen value of
40 nH. L

(new)
w (ξ) is about 1.8 nH.

Figure 7 shows co-polarized and cross-polarized transmission
coefficient magnitude results obtained from: (i) Eqs. (53) and (54);
(ii) the WH formulation with Q = 2, Q′ = 100 × Q, Q∆ = 100 × Q;
(iii) Eqs. (48) and (50); and (iv) CST. We observe a good agreement
among them; the frequency span of the resonance frequencies of all the
curves does not exceed 50 MHz. This good agreement indicates that
our choice of FSS parameters is consistent with the assumptions made
to obtain (48), (50) and (53), (54).

4. CONCLUSION

The generalized Wait-Hill formulation was created by synthesizing the
work of J. R. Wait on a periodically loaded vertical wire grid and the
work of D. A. Hill and J. R. Wait on a wire mesh. For the considered
examples, the obtained numerical results were shown to agree well with
a commercial software. The capability of the Wait-Hill formulation to
analyze LE-PL-OWG generic bandstop FSS was also highlighted. We
thus expect that the Wait-Hill formulation will be useful to the FSS
community. We also believe that this paper will be of interest to those
working with connected array antennas. Future work will deal with the
magnetic current version of the Wait-Hill formulation for the analysis
of lumped element periodically loaded orthogonal narrow slot bandpass
FSS and the design of novel FSS.
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