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Abstract—In this paper, the synthesis of sparse time-modulated
linear arrays with minimum number of elements and controlled
harmonic radiations is investigated. The proposed iterative approach
based on a particle swarm optimization is aimed at finding the array
configuration with the minimum number of elements and the optimal
pulse sequence that affords a beam pattern with the same features of
a reference one also limiting the amount of sideband radiations under
a specific threshold. A set of representative numerical examples is
discussed to assess the effectiveness and the reliability of the proposed
approach.

1. INTRODUCTION

A time-modulated array (TMA) is an antenna device whose elements
are excited through periodical waveforms of arbitrary shapes [1]
generally realized by means of a set of RF switches [2] inserted in
the feed network [3]. Such an architectural solution gives the system a
high reconfigurability thanks to the possibility to drive the RF switches
with simple digital signals, but it causes the generation of spurious and
undesired harmonic signals [the so called sideband radiation, (SR)] due
to the periodic time-varying excitations.

In the last decade, after the pioneer work [4] where Yang et al.
showed that global optimization algorithms can be profitably applied
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to synthesize time-modulated linear arrays, a great attention has
been devoted to suppress spurious harmonic signals. Toward this
end, many techniques have been proposed based on differential
evolution (DE) [4–7], simulated annealing (SA) [8], and particle
swarm optimizer (PSO) [9–11] aimed at minimizing the sideband level
(SBL) [4], namely the peak level of the harmonic patterns, or the
overall harmonic content [9] or both [11] by suitably defining the time-
pulse durations. The possibility to modify the periodic waveforms
has been also examined in [12–15] to achieve a better handling of the
SRs. More specifically, a simple time-shift between the pulses has
been exploited in [12] to control the harmonic patterns, while in [14]
splitting rectangular pulses in multiple sub-pulses has been proposed to
set the distribution of the sideband power of the harmonic frequencies.
Moreover, the use of alternative waveforms (e.g., trapezoidal and
raised-cosine) in [15] provided a reduction of the radiated harmonic
content. The application of the previous techniques to real-element
arrays has been also assessed [16, 17].

Jointly to the minimization of power losses due to SRs, the
simplification of the array geometry/architecture of TMAs has been
investigated, as well. Thinning strategies aimed at reducing the
number of elements have been proposed in [18, 19] and sub-arraying
techniques for simplifying the complexity of the feeding network have
been studied in [20, 21]. Although the reduction of the radiating
elements in equally-spaced time-modulated linear arrays (TMLAs) has
been already studied in [18] as well as the exploitation of the positions
of the array elements as additional degrees-of-freedom of the synthesis
process [22], the synthesis of sparse TMAs with minimum number
of elements placed in arbitrary locations has not yet been deeply
investigated. As a matter of fact, the design of sparse TMAs has been
carried out in [22, 23] while the SRs have been optimized through the
minimization of the SBL analyzed for the first harmonic pattern.

Concerning the synthesis of sparse arrays, it has been a topic of
growing interest in the state-of-the-art literature on standard phased
arrays and many techniques have been proposed. Let us consider as
representative examples, the matrix pencil method [24], compressive
sensing-based techniques [25–27], and convex optimization-based
techniques [28, 29]. In principle, such strategies could be applied to
also deal with sparse TMAs, but they are not naturally conceived to
handle SRs.

In this paper and unlike [22, 23, 30] where the number of array
elements was an input parameter of the synthesis process, the proposed
strategy is aimed at synthesizing a sparse array with the smallest
number of elements affording a beam pattern close to a reference one
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at the carrier frequency, while minimizing the amount of sideband
power under a user-defined threshold. The optimization is carried
out by means the PSO [31], namely a stochastic global optimization
algorithm able to effectively deal with non-convex (i.e., multi-minima)
cost functions as well as real-valued unknowns as needed for the
synthesis problems at hand.

The outline of the paper is as follows. The mathematical theory of
TMAs is summarized in Section 2, whereas the optimization procedure
for the synthesis of sparse time-modulated arrangements is described
in Section 3. Representative numerical results concerned with state-
of-the-art benchmarks and comparisons are presented in Section 4.
Finally, some conclusions are drawn (Section 5).

2. MATHEMATICAL BACKGROUND

Let us consider an array of N elements displaced along the z-axis and
modulated in time by periodic rectangular waveforms. The arising
time-varying array factor turns out to be expressed as the summation
of the contribution of each array element as follows

= (θ, t) = ej2πft
N−1∑

n=0

In(t)ejkzn cos(θ) (1)

where f , 1
T is the working frequency, k = 2πf

c the wavenumber, c
the speed of light, In(t) = InUn(t), In being the n-th complex static
excitation, and Un(t) models the periodically-repeated rectangular
pulsed waveform at the n-th array element [Un(t) = Un(t + mTp),
Tp , 1

fp
being the modulation period and m ∈ Z]

Un(t) =
{

1, trisen ≤ t ≤ tfalln

0, otherwise.
(2)

By considering the Fourier expansion, the n-th time-varying excitation
becomes

In(t) = In

+∞∑

h=−∞
Cnhejh2πfpt (3)

where the h-th harmonic term of the the n-th excitation, Cnh , is given
by

Cnh =
1
Tp

∫ tfalln

trisen

Un(t)e−jh2πfpt = τnsinc (πhτn) e−jπh(τn+2τ rise
n )
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τn = (tfalln −trisen )
Tp

(n = 1, . . . , N) being the normalized n-th switch-on

pulse duration, while τ rise
n = trisen

Tp
(n = 1, . . . , N) is the normalized

switch-on instant.
By substituting (3) in (1), one obtains the following array factor

expressed as the summation of infinite “array factor terms” each one
associated to a different h-th harmonic frequency

F (θ) =
+∞∑

h=−∞
Fh (θ) =

+∞∑

h=−∞
ej2π(f+hfp)t

N−1∑

n=0

InCnhejkzn cos(θ). (4)

At the carrier frequency (h = 0), the corresponding array factor term
turns out to be

F0 (θ) =
N−1∑

n=0

Inτnejkzn cos(θ). (5)

Although such a contribution can be theoretically isolated by means
of a suitable filtering, the other harmonic terms in (4) still represent
a waste of power to be properly handled. Such a power loss is equal
to [32, 33]

PSR =
N−1∑

n=0

[
|In|2 τn (1− τn)

]

+2
N−2∑

n=0

N−1∑

m=n+1

Re {InI∗m} sinc [k (zn − z:m)] (τ̃nm − τnτm) (6)

where τ̃nm denotes the portion of the modulation period in which the
n-th and the m-th array elements are in the ‘on’ state. For convenience,
we usually consider the percentage of SR over the total radiation,

SR =
PSR

Ptot
=

PSR

PCF + PSR
(7)

instead of PSR, PCF being the power radiated at the working
frequency [32] given by

PCF =
N−1∑

n=0

(|In|τn)2+2
N−2∑

n=0

N−1∑

m=n+1

Re {InI∗m} τnτmsinc [k (zn−zm)] . (8)

3. ITERATIVE OPTIMIZATION APPROACH

The synthesis problem at hand then consists in affording a radiated
pattern matching a reference one, while controlling the amount of
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sideband radiation by setting the optimal pulse sequence, τ = {τn; n =
0, . . . , Nopt − 1}, and the locations, d = {dn = (zn+1 − zn); n =
0, . . . , Nopt − 2}, of the minimum (Nopt) number of array elements
within a prescribed aperture length, Lref .

Towards this end, the following iterative (υ being the iteration
index) procedure has been implemented (Fig. 1):

• Step 1 — Initialization (υ = 1):
(a) Choice of the reference array/pattern and definition of the
target parameters for the array geometry and the pattern masks:
Nref and Lref being the number of array elements of the reference
array and the array aperture size, respectively, and SLLref ,
BWref , and SRth being the sidelobe level, the beamwidth, and
the sideband radiation threshold, respectively;
(b) Setup of the PSO parameters, namely the inertial weight,
w, the cognitive acceleration, C1, the social acceleration, C2, the
number of swarm particles, S, the maximum number of iterations,
K, and the convergence threshold, ηth ;
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Figure 1. Flowchart of iterative PSO-based optimization procedure.
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• Step 2 — Iterative Process:
(a) Update the number of array elements (N (υ)

ref ← Nref − υ);
(b) Set the range of the variations of the problem degrees-of-
freedom (dmin ≤ dn ≤ dmax and τmin ≤ τn ≤ τmax);
(c) Run the PSO as shown in Fig. 1 to minimize the following
cost function taking into account the problem requirements and
constraints:

Φ (τ , d) = αCFΦCF (τ , d) + αSRΦSR (τ , d) + αLΦL (τ , d) (9)

where ΦCF (τ , d) = {|SLLref−SLL(τ ,d)|2
|SLLref |2 H[SLL(τ , d) − SLLref ] +

|BWref−BW (τ ,d)|2
|BWref |2 H[BW (τ , d)−BWref ]}, ΦSR(τ , d) = PSR(τ ,d)

Ptot(τ ,d) , and
ΦL(τ , d) = H[L(τ , d) − Lref ], H[·] being the Heaviside step
function. Moreover, αCF , αSR, and αL are real positive weighting
coefficients. In the PSO, the classical velocity and position update
equations, respectively defined as [31]

v
(s,υ)
n,k+1 =wv

(s,υ)
n,k +C1r1

(
p
(s,υ)
n,k − x

(s,υ)
n,k

)
+C2r2

(
g
(υ)
n,k − x

(s,υ)
n,k

)
(10)

and
x

(s,υ)
k+1 = x

(s,υ)
k + v

(s,υ)
k+1 (11)

are implemented, where s = 1, . . . , S and x = {τ , d}. In (10), r1

and r2 are two random variables having uniform distribution in the
range [0, 1]. Moreover, p

(s,υ)
k = arg{mini=1,...,k[Φ(x(s,υ)

i )]}, s =

1, . . . , S, and g
(υ)
k = arg{mini=1,...,k;; s=1,...,S [Φ(x(s,υ)

i )]} are the
personal and global best solutions at the k-th PSO iteration,
respectively [31];

• Step 3 — Stopping Criterion:
If {ΦCF (τ (υ), d(υ)) > ηth} or {ΦSR(τ (υ), d(υ)) > SRth} and
{υ > 1} then stop the iterative loop and return the solution
τopt = τ (υ−1) and dopt = d(υ−1). Otherwise, goto Step 2 and
increase the iteration index (υ ← υ + 1).

4. NUMERICAL VALIDATION

The first example of the numerical assessment is devoted to “describe”
the proposed synthesis procedure. Towards this end, a Dolph-
Chebyshev pattern with SLLref = −25 [dB] (BWref = 8.51 [deg])
radiated by an array of Nref = 14 isotropic elements has been
considered as a representative reference case. While no constraints
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have been chosen for the pulse durations (i.e., τn ∈ [τmin; τmax] =
[0.0; 1.0]), a restricted range [0.40λ; 1.00λ] has been assumed for the
inter-element array distances dn ∈ [dmin; dmax] to limit the mutual
coupling effects. The upper bound for the sideband radiation has been
also fixed to SRth = 10%. Concerning the optimization strategy, the
calibration parameters of the PSO have been set to w = 0.4, C1 = 2.0,
C2 = 2.0, S = Nref , and K = 2000, while the cost function terms
have been weighted as follows: αCF = 10, αSR = 1, and αL = 103

to prioritize the pattern matching at h = 0 keeping SLL and BW as
close as possible to the reference one.

After completing Step 3 at υ = 1, the normalized pulse durations
and the element positions turn out to be as in Fig. 2(a) affording the
radiated beam patterns at the carrier frequency (h = 0) and the first
two upper harmonic frequencies (h = 1, 2) shown in Fig. 2(b). The
matching between the patterns synthesized at h = 0 with N = 13
elements and the reference one is almost perfect, the pattern features
being SLLυ=1

PSO = −25.02 [dB] and BW υ=1
PSO = 8.53 [deg] (Table 1),

while the sideband radiation turns out to be widely below the user-
chosen threshold (SRυ=1

PSO = 4.54% < SRth = 10%). Since the
Stopping Criterion (Section 3) is not satisfied, the optimization loop is
iterated by reducing the number of array elements. Table 1 summarizes
the pattern features of the partial solutions synthesized at each υ-
th iteration. As it can be noticed, there is a trade-off between the
number of array elements (N) and the amount of wasted power (SR)
for similar values of SLL, BW , and L. More specifically, the reduction
of N causes an increase of SR. The final iteration is that at υ = 3
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Figure 2. Numerical assessment — (Nref = 14, Lref = 6.5λ,
SLLref = −25 dB, BWref = 8.51 [deg]) — υ = 1 — (a) Optimized
pulse sequences and (b) radiated power patterns (h = 0, 1, 2).
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since the solution defined at υ = 4 does not satisfy the project
requirements in terms of sideband radiation (i.e., SRυ=4

PSO = 14.96%)
despite the good matching at the h = 0 (SLLυ=4

PSO = −24.96 [dB]
and BW υ=4

PSO = 8.51 [deg], Table 1). The optimization result in
terms of the duration of the periodic waveforms and the geometry
of the array are reported in Fig. 3(a), whereas the radiated beam
patterns are shown in Fig. 3(b). More in detail, Fig. 3(c) shows a
comparison between the reference Dolph-Chebyshev pattern and the
optimized one at the carrier frequency to assess the accuracy of the
synthesis process. The efficiency of the optimization is also pointed
out from the reduction of both the SR and the SBL. Indeed, the
sideband radiation percentage and the sideband level decrease from
SRref = 22.22% and SBLref = −12.36 [dB] down to SRυ=3

PSO = 9.41%
and to SBLυ=3

PSO = −19.52 [dB], respectively. Fig. 4 details the SR
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Figure 3. Numerical assessment — (Nref = 14, Lref = 6.5λ,
SLLref = −25 dB, BWref = 8.51 [deg]) — υ = 3 — (a) Optimized
pulse sequences, (b) radiated power patterns (h = 0, 1, 2), and
(c) comparison between optimized and reference pattern at h = 0.
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Figure 4. Numerical assessment — (Nref = 14, Lref = 6.5λ,
SLLref = −25 dB, BWref = 8.51 [deg]) — υ = 3 — optimized and
reference harmonic sideband radiations.

Table 1. Numerical assessment — (Nref = 14, Lref = 6.5λ,
SLLref = −25 dB, BWref = 8.51 [deg]) — pattern features.

N L [λ] SLL [dB] BW [deg] SBL [dB] SR [%]

Reference 14 6.50 −25.00 8.51 −12.36 22.22

PSO, υ = 1 13 6.50 −25.02 8.53 −24.09 4.54

PSO, υ = 2 12 6.50 −25.00 8.52 −21.73 6.43

PSO, υ = 3 11 6.50 −24.93 8.52 −19.52 9.41

PSO, υ = 4 10 6.50 −24.96 8.51 −16.81 14.96

reduction with respect to the reference for each h-th term of the PSO
optimized solution.

The second numerical experiment, referred as “Case A”, considers
as reference the array configuration from [9] and it is aimed at proving
that, unlike [9] where only pulse durations have been optimized,
the joint optimization of both pulse durations and array element
locations allows one non-negligible improvements. With reference to
the following optimization setup: Nref = 26, SLLref = −20 [dB],
BWref = 2.9 [deg], and SRth = 3.57%, the optimization process stops
at the iteration υ = 5 by returning the υ = 4 solution corresponding
to an array of Nυ=4

PSO = Nopt = 22 elements whose geometry and
temporal excitations are given in Fig. 5(a) affording the harmonic
patterns at h = 0, 1, 2 displayed in Fig. 5(b). As it can be observed
by the pattern behaviors in Fig. 5(c) and the values of the pattern
features in Table 2, the synthesized solution fully satisfies the design
requirements (SLLυ=4

PSO = −20 [dB] vs. SLLref = −20 [dB] and
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SRυ=4
PSO = 3.54% vs. SRthr = 3.57%) except for a negligible difference

in the beam width (BW υ=4
PSO = 2.92 [deg] vs. BWref = 2.90 [deg]).

Moreover, it is worth noticing the significant reduction of the array
size (Lref = 19.6λ → Lυ=4

PSO = 18.17λ corresponding to an aperture

reduction of ∆L = 7.3% being ∆L , Lref−Lυ=4
PSO

Lref
× 100) as well as the

number of radiating elements (Nref = 26 → Nυ=4
PSO = 22 equivalent to

an element saving of about ∆N = 15.4% being ∆N , Nref−Nυ=4
PSO

Nref
×100).

The third example (“Case B”) is devoted to compare a solution
obtained with the proposed PSO-based approach with a result
synthesized by means of the DE in [22] that is considered as reference
one. In [22], the design of sparse TMAs is addressed by controlling
the losses in the SR through the minimization of the SBL for the
first harmonic term (h = 1). The element locations and the pulse
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Figure 5. Comparative study “Case A” — (Nref = 26, Lref = 19.6λ,
SLLref = −20 dB, BWref = 2.90 [deg]) — υ = 4 — (a) Optimized
pulse sequences, (b) radiated power patterns (h = 0, 1, 2), and
(c) comparison between optimized and reference pattern at h = 0.
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sequence achieved with the DE and PSO (υ = 1) are shown in
Fig. 6(a). Although the number of radiating elements is the same
(Nref = Nυ=1

PSO = 32), the array synthesized by means of the proposed
method requires a narrower aperture (Lref = 23.8λ → Lυ=1

PSO =
23.5λ) with a reduction of ∆L = 2.1%. The corresponding power
patterns generated at the central frequency (h = 0) are shown in
Fig. 6(b) and the pattern features are reported in Table 3. The two
beams are characterized by approximately the same sidelobe behavior
(SLLRef = −29.80 [dB] vs. SLLυ=1

PSO = −29.75 [dB]) and mainlobe
(BWRef = 2.70 [deg] vs. BW υ=1

PSO = 2.72 [deg]). As for the sideband
radiations (Fig. 7), the power losses are more than 1% lower for the
PSO solution (SRRef = 9.68% vs. SRυ=1

PSO = 8.45%) although the
DE solution has a lower sideband level [SBLRef = −22.70 [dB] vs.
SBLυ=1

PSO = −22.35 [dB] — Fig. 7(a)]. Since the maximum SBL
may also appear at higher harmonics, the minimization of the total
power loss turns out being more effective for SR rejection than the
minimization of the SBL only.
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Figure 6. Comparative study “Case B” — (Nref = 32, Lref = 23.78λ,
SLLref = −29.8 dB, BWref = 2.70 [deg]) — υ = 1 — (a) Optimized
pulse sequences and (b) radiated power patterns (h = 0) obtained with
the proposed iterative PSO approach and the DE [22].

Table 2. Comparative study “Case A” — (Nref = 26, Lref = 19.6λ,
SLLref = −20 dB, BWref = 2.90 [deg]) — pattern features.

N L [λ] SLL [dB] BW [deg] SBL [dB] SR [%]

[Poli 2010] 30 20.30 −20.00 2.84 −28.91 3.57

PSO, υ = 4 22 18.17 −20.00 2.92 −31.47 3.54
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Table 3. Comparative study “Case B” — (Nref = 32, Lref = 23.78λ,
SLLref = −29.8 dB, BWref = 2.70 [deg]) — pattern features.

N L [λ] SLL [dB] BW [deg] SBL [dB] SR [%]

[Li 2010] 32 23.8 −29.80 2.70 −22.70 9.68

PSO, υ = 1 32 23.3 −29.75 2.72 −22.35 8.45

The fourth numerical example (“Case C”) is aimed at comparing
the results from the proposed approach with those coming from
the hybrid multi-stage optimization strategy based on convex
programming (CP ) and simulated annealing [23]. Unlike [23], the
algorithm in Section 3 does not contemplate the optimization of
the switch-on instants to suppress the sideband level since we are
interested at the minimization of sideband power, while modifying
τ rise = {τ rise

n ; n = 0, . . . , Nopt − 1} could increases it when the inter-
element spacing differs from dn = 0.5λ, n = 1, . . . , N −1. However, for
a fair comparison, an additional step (Step 4 ) has been added to the
optimization procedure consisting in the PSO-based minimization of
the following cost function [23]:

Φ(k)
(
τ rise

)
= SBL(k)

(
τ rise

)
, (12)

once element positions and pulse durations have been set through
Step 3.

The benchmark configuration has been chosen equal to a Dolph-
Chebyshev pattern with BWref = 7.95 [deg] radiated by an array of
Nref = 16 time-modulated elements, while the sideband radiation
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threshold has been fixed to SRth = 20.03% [23]. By taking into account
the symmetry of the pulse durations with respect to the center of the
array as in [23]), the optimal solution υ = 2 described in terms of
the pulse sequences and the radiated beam patterns in Fig. 8(a) and
Fig. 8(b), respectively, has been yielded. After completing also the
Step 4 (12), the final result turned out as that shown in Fig. 9(a)
radiating the beam pattern in Fig. 9(b). Such an optimized solution
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7.4λ, SLLref = −30 dB, BWref = 7.95 [deg]) — υ = 2 (Step 3 )
— (a) Optimized pulse sequences and (b) radiated power patterns
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— (a) Optimized pulse sequences and (b) radiated power patterns
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is characterized by a lower sideband level (SBLυ=2
PSO = −20.94 [dB] vs.

SBLStage 2
CP−SA = −19.87 [dB] — Table 4) and an improvement of the

SR [Fig. 10(b)] as well as a better behavior of the sideband level of
the higher-order harmonics [Fig. 10(a)] with an average reduction of
∆SBL = 4.1 [dB]. For completeness, the pattern parameters about
reference and optimized pattern/geometry are reported in Table 4.
As expected, the pulse shifting causes an increasing of the percentage
of sideband radiation over the total radiated power (SRυ=2−Step 3

PSO =
13.18% vs. SRυ=2−Step 4

PSO = 16.90%) although to a value smaller than
that in [23] (SRυ=2−Step 4

PSO = 16.90% vs. SRStage 2
CP−SA = 22.91%).
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Figure 10. Comparative study “Case C” — (Nref = 16, Lref = 7.4λ,
SLLref = −30 dB, BWref = 7.95 [deg]) — (a) Behaviors of the
sideband level and (b) sideband radiation versus the harmonic order
h.

Table 4. Comparative study “Case C” — (Nref = 16, Lref = 7.4λ,
SLLref = −30 dB, BWref = 7.95 [deg]) — pattern features.

N L [λ] SLL [dB] BW [deg] SBL [dB] SR [%]

[D′Urso 2011],

Stage-1
12 7.40 −30.00 7.95 −15.06 20.03

[D′Urso 2011],

Stage-2
12 7.40 −30.00 7.95 −19.87 22.91

PSO, υ = 2,

Step-3
12 7.40 −29.95 7.95 −17.19 13.81

PSO, υ = 2,

Step-4
12 7.40 −29.95 7.95 −20.94 16.90
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5. CONCLUSIONS

In this paper, a strategy for the synthesis of sparse TMAs has been
presented. Starting from a reference array and a reference pattern,
the procedure iteratively reduce the number of array elements and
execute an optimization aimed at minimizing the mismatching with
the reference at the carrier frequency while limiting the amount of
sideband power. The set of numerical experiments results have pointed
out the following main items:

• There is a trade-off between antenna performance, number of array
elements, and amount of sideband radiation and the sideband
radiation threshold strongly impacts on the array sparsening;

• The exploitation of sparse geometries as additional degrees-of-
freedom allows one to improve the synthesized solutions. More
specifically, the number of array elements can be significantly
reduced whether element positions can be arbitrarily located
within the array aperture still keeping equal pattern features (i.e.,
SLL, BW , and SR).

Future lines of research will extend the proposed approach towards
planar and conformal array architectures.
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