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Abstract—We provide a sufficient condition to select the parameters
of Type 3 Non-Uniform Fast Fourier Transform (NUFFT) algorithms
based on the Gaussian gridding to fulfill a prescribed accuracy.
This is a problem of significant interest in many areas of applied
electromagnetics, as for example fast antenna analysis and synthesis
and fast calculation of the scattered fields, as well as in medical imaging
comprising ultrasound tomography, computed axial tomography,
positron emission tomography and magnetic resonance imaging. The
approach is related to the one dimensional case and follows the work
in [15]. The accuracy of the proposed choice is first numerically
assessed and then compared to that achieved by the approach in [2].
The convenience of the strategy devised in this paper is shown. Finally,
the use of the Type 3 NUFFT is highlighted for an electromagnetic
application consisting of the implementation of the aggregation and
disaggregation steps in the fast calculation of the scattered field by the
Fast Multipole Method.

1. INTRODUCTION

In a large number of numerical problems of electromagnetics, the
need arises of evaluating Non-Uniform Discrete Fourier Transforms
(NUDFTs), namely DFTs with data and/or results on irregular
grids. Examples concern imaging [1–3], solutions to differential
and integral equations [4–7], fast array antenna analysis [8] and
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synthesis [9] and antenna diagnosis [10], to mention just a few.
Concerning the first mentioned topic, calculating NUDFTs is
particularly relevant in medical imaging, as for instance ultrasound
tomography [11], Computed Axial Tomography (CAT) [12], Positron
Emission Tomography (PET) [13] or Magnetic Resonance Imaging
(MRI) [14], for which the fast and accurate calculation of diagnostic
images is the main issue to be addressed.

To calculate the NUDFTs, it is unfortunately not possible to
promptly exploit the computational benefit (O(N log N) complexity)
of standard Fast Fourier Transforms (FFTs) which on the contrary re-
quire Cartesian input and output grids. This solicited the development
of Non-Uniform FFT (NUFFT) algorithms capable to perform accu-
rate computations essentially with O(N log N) complexity. NUFFTs
exploit the computational benefit of standard FFTs by fast and ac-
curate pre- and/or post-interpolation stages, properly tailored to the
problem at hand, from/to regular to/from irregular grids. The various
proposed NUFFT algorithms then differentiate by the specific trade-off
between accuracy and computational burden [15–19].

One of the many proposed NUFFT algorithms employ Gaussian
windows to interpolate “non-uniformly sampled” exponentials by
finite summations of “uniformly sampled” ones, a technique known
as “Gaussian gridding”. Error bounds for the accuracy of those
interpolations have been thoroughly examined in [15] and NUFFT
algorithms for the “Type 1” (transforms from irregular to regular
grids), “Type 2” (transforms from regular to irregular grids) and
“Type 3” (transforms from irregular to irregular grids) problems have
been described. However, in [15], the selection of the algorithms
parameters (support of the employed Gaussian windows, number of
interpolation samples etc.) has not been investigated.

Subsequently, a fast way to implement Gaussian gridding,
addressed to as “fast Gaussian gridding”, has been proposed for the
Type 1 and 2 problems in [19] and for the Type 3 problem in [2]. This
time the Authors of [2, 19] give indications on the choice of the relevant
algorithm parameters but:

• They do not provide analytical justifications and refer the Reader
to [15] which however does not discuss, as mentioned, the
parameters selection;

• For the Type 3 problem, the suggested choices can lead to
inconsistent or poor results;

• The parameters choice is independent of the target accuracy.

Purpose of this paper is to provide and show the convenience
of a criterion for the parameters choice with reference to Gaussian
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gridding applied to the Type 3 problem in the one dimensional case.
In particular, by exploiting the results in [15], we provide a sufficient
condition to select the parameters of Type 3 Non-Uniform Fast Fourier
Transform (NUFFT-3) algorithms based on the Gaussian gridding to
fulfill a prescribed accuracy in the computation of the NUDFT.

The paper is organized as follows. Section 2 is devoted to recall
the NUFFT-3 scheme based on Gaussian gridding and illustrated in [2].
Section 3 presents general conditions that must be satisfied by the
algorithm parameters. In Section 4, the results of [15] are exploited
to derive those conditions on the relevant parameters to achieve a
prefixed accuracy. The parameters choice to fulfill the mentioned
accuracy is analytically worked out in Section 5. Section 6 presents
numerical results aimed at proving the accuracy of the NUFFT-3
scheme under the parameters choice of Section 5 and, in that section,
the results are compared to those achieved by the parameters choice
suggested in [2] and the main issues of such an approach are also
highlighted. In Section 7, the fruitful use of the NUFFT-3 is shown
for an electromagnetic application consisting of the implementation
of the aggregation and disaggregation steps in the fast calculation of
the scattered field by the Fast Multipole Method (FMM) [7]. Finally,
conclusions follow in Section 8.

2. TYPE 3 NON-UNIFORM FFT

In this section, we briefly recall the 1D Type 3 NUDFT (NUDFT-3)
and shortly outline the related NUFFT-3 algorithm developed in [2].
For the reader’s convenience, this section is divided in six subsections,
the first one for the NUDFT-3 and the other five describing each of
the five steps involved in the NUFFT-3.

2.1. NUDFT-3 and NUFFT-3

Let {xi}N−1
i=0 be a set of N non equispaced points, {fi}N−1

i=0 a set of
corresponding coefficients and {sk}Ns−1

k=0 a set of Ns non-equispaced
angular frequencies. The transformation

Fk =
N−1∑

i=0

fie
−jskxi k = 0, . . . , Ns − 1 (1)

is referred to as a NUDFT-3 [2].
As a first step towards the NUFFT-3 based on Gaussian gridding,

we observe that the values {Fk}Ns−1
k=0 in Eq. (1) can be regarded as the
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samples of the continuous Fourier Transform Fδ(s) of fδ(x) defined as

fδ(x) =
√

2π

N−1∑

i=0

fiδ(x− xi), (2)

i.e.,

Fδ(s) =
1√
2π

∞∫

−∞
fδ(x)e−jsxdx. (3)

Accordingly and roughly speaking, the idea behind the NUFFT-
3 is that of interpolating the samples {fi}N−1

i=0 from the non-uniform
lattice {xi}N−1

i=0 to a uniform one by convolving fδ(x) with a smoothing
window gτ (x), employing a standard FFT to obtain spectral samples
on a uniform grid and finally interpolating such spectral samples
to the non-uniform grid {sk}Ns−1

k=0 by convolving the result with a
proper window gσ(s). It should be remarked that the windows
employed for the spatial and spectral interpolations should be properly
compensated. The interpolations being convolutions and by exploiting
the properties of the Fourier transform, the spectral window gσ(s)
is compensated in the spatial domain through its inverse Fourier
transform Gσ(x) prior to the application of the standard FFT, while
the spatial window gτ (x) is compensated in the spectral domain
through its Fourier transform Gτ (x) following the interpolation of the
uniform samples achieved by the standard FFT to the non-uniform
grid of interest.

More in detail, the interpolation from the non-uniform lattice
{xi}N−1

i=0 to a uniform one to be determined, say {n∆x}Mr/2−1
n=−Mr/2

(assuming Mr even), is obtained by convolving fδ(x) with gτ (x) as

fτ (x) =fδ(x) ? gτ (x) =
1√
2π

∫ ∞

−∞
fδ(x

′)gτ (x− x′)dx′ =

N−1∑
i=0

figτ (x− xi). (4)

As mentioned and prior to be transformed, fτ (x) is multiplied by
the reciprocal of Gσ(x), namely

f−σ
τ (x) =

fτ (x)
Gσ(x)

. (5)

Applying the standard FFT to the uniform samples of f−σ
τ (x)

enables calculating its continuous Fourier transform F−σ
τ (s) on a

uniform grid to be determined, say {m∆s}Mr/2−1
m=−Mr/2.
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After that, and by virtue of Eq. (5), the values {Fτ (sk)}Ns−1
k=0 can

be recovered by convolving F−σ
τ (s) with gσ(s) as follows

Fτ (s) =
[
F−σ

τ (s) ? gσ(s)
]

=
1√
2π

∫ +∞

−∞
F−σ

τ

(
s′

)
gσ

(
s− s′

)
ds′. (6)

Finally, the spatial interpolation window can be compensated.
In the framework of this general scheme, Gaussian gridding

consists of using Gaussian bell functions as spatial and spectral
interpolation windows, namely gτ (x) = e−x2/(4τ) and gσ(s) = e−s2/(4σ),
having corresponding transforms Gτ (s) =

√
2τe−τs2

and Gσ(x) =√
2σe−σx2

, respectively.
In the following, the five steps necessary to carry out the NUFFT-

3 based on Gaussian gridding are briefly summarized.

2.2. Step #1: Gaussian Gridding in the Spatial Domain

The first step is an application of Eq. (4), that is

fτ (n∆x) =
N−1∑

i=0

fie
− (n∆x−xi)

2

4τ , n = −Mr/2, . . . , (Mr − 1)/2. (7)

Due to the rapid decay of gτ (x), fi significantly contributes to only
few samples of fτ (n∆x). In particular, on defining Int[α] the nearest
integer to α, by letting ζi = Int[xi/∆x], i = 0, . . . , (N − 1), denote
the nearest regular grid point to xi/∆x and assigning n′ = n− ζi, the
contributions of each coefficient fi to fτ (n∆x) can be ignored when
|n′| > msp , where msp is a parameter properly selected according to
the required accuracy.

2.3. Step #2: Pre-compensating for the Interpolation
Window Involved by the Gaussian Gridding in the Spectral
Domain

This step is an application of Eq. (5), i.e.,

f−σ
τ (n∆x) =

1√
2σ

eσ(n∆x)2fτ (n∆x), n = −Mr/2, . . . , Mr/2−1. (8)

2.4. Step #3: Standard FFT

A standard FFT is applied to the samples of f−σ
τ (x) to provide

F−σ
τ (m∆s) ' ∆x√

2π

Mr/2−1∑

n=−Mr/2

f−σ
τ (n∆x)e−jmn∆x∆s. (9)
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2.5. Step #4: Gaussian Gridding in the Spectral Domain

Step #4 is an application of Eq. (6), that is

Fτ (sk) =
∆s√
2π

Mr/2−1∑

m=−Mr/2

F−σ
τ (m∆s)e−

(m∆s−sk)2

4σ . (10)

Similarly to Step #1, due to the rapid decay of gσ(s), F−σ
τ (m∆s)

significantly contributes to only few samples of Fτ (sk). In particular,
on letting ηk = Int[sk/∆s], k = 0, . . . , (Ns − 1), and m′ = m − ηk,
the contributions of each coefficient F−σ

τ (m∆s) can be ignored when
|m′| > msp which, in the approach of [2], is the same as that involved
in the spatial domain Gaussian gridding thanks to the relationship
between ∆x and ∆s due to the application of the standard FFT.

2.6. Step #5: Post-compensating for the Interpolation
Window Involved by the Gaussian Gridding in the Spatial
Domain

This Step consists of compensating the initial smoothing in Eq. (4),
namely,

F̄ (sk) =
1√
2τ

eτs2
kFτ (sk), (11)

so obtaining the computed F̄ (sk) approximating the Fk’s in Eq. (1).

3. GENERAL CONDITIONS

According to the foregoing section, the algorithm parameters (APs) to
be chosen are

• The number of spatial and spectral uniform sampling points Mr;
• The parameter τ of the spatial Gaussian bell interpolating

function;
• The parameter σ of the spectral Gaussian bell interpolating

function;
• The number of 2msp significant samples of the spectral and spatial

Gaussian interpolating functions;
• The sampling step ∆x in the spatial domain;
• The sampling step ∆s in the spectral domain.

In this section, we derive the conditions, required by the different
steps of the algorithm, that must be satisfied by the APs. We also
indicate proper pre- and post-processing steps to reduce the number
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of spatial and spectral uniform sampling points Mr.

Condition #1

In Step #2, the support of 1/Gσ(x) is unbounded, while that of fτ (x) is
essentially bounded, being fτ (x) the sum of Gaussian functions having
negligible values for |x− xi| a few times larger than the corresponding
standard deviations. Therefore,

σ <
1
4τ

(12)

is required to ensure that the support of f−σ
τ (x) is bounded and

essentially determined by that of fτ (x).

Condition #2

To accurately performing Step #3, Mr and ∆x should be chosen so
that the interval [−(Mr/2)∆x, (Mr/2−1)∆x] contain most of the entire
signal energy in agreement with the desired accuracy.

The interval [xmin − msp∆x, xmax + msp∆x], with xmin =
min{xi}N−1

i=0 and xmax = max{xi}Ns−1
i=0 , must be then the smallest

interval containing the support of f−σ
τ (x). Therefore, Condition

#2 requires, apart from the asymmetry issues to be discussed in
Subsection 3.1, that

Mr

2
≥ X

∆x
+ msp , (13)

where X = max{|xmin|, |xmax|}.
Condition #3

To avoid aliasing in Step #3, the space sampling step ∆x must satisfy
the Nyquist sampling condition

∆x ≤ π

Bs
(14)

where Bs is the spatial bandwidth of f−σ
τ (x).

Condition #4

The spatial and spectral sampling steps and the uniform samples
number Mr must satisfy the FFT condition

∆s =
2π

∆xMr
. (15)
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Condition #5

Similarly to Condition #2, to accurately perform the calculation of the
integral in Eq. (10), the interval [−(Mr/2)∆s, ((Mr − 1)/2)∆s] must
capture most of the energies of the integrands {F−σ

τ (s′)gσ(sk−s′)}Ns−1
k=0 .

The interval [smin − msp∆s, smax + msp∆s], with smin =
min{sk}Ns−1

k=0 and smax = max{sk}Ns−1
k=0 , must be then the smallest

interval containing the supports of F−σ
τ (s′)gσ(sk−s′), k = 0, . . . , Ns−1,

taken as functions of s′. Therefore, Condition #5 requires that
Mr

2
≥ S

∆s
+ msp , (16)

where S = max{|smin|, |smax|}.

3.1. Centering of the Spatial and Spectral Grids

To speed up the computations, an important task is to keep low Mr (for
example, the FFT step has complexity O(Mr log Mr)), while satisfying
the above conditions and meeting the accuracy requirements.

The minimum value of Mr satisfying Condition #3 is obtained by
rewriting Eq. (1) as

Fk =
N−1∑

i=0

cie
−j(sk−sb)xi , (17)

with ci = fi exp(−jsbxi), so that X becomes equal to |xb − xmin| =
|xmax − xb|, with xb = (xmin + xmax)/2.

Similarly, the minimum value of Mr satisfying Condition #5 can
be obtained by rewriting Eq. (17) as

Fk = e−j(sk−sb)xb

N−1∑

i=0

cie
−j(sk−sb)(xi−xb), (18)

so that S becomes equal to |sb − smin| = |smax − sb|, with sb =
(smin + smax)/2.

On defining F ′
k = Fk exp[j(sk − sb)xb], s′k = (sk − sb) and

x′i = (xi − xb), then Eq. (18) rewrites as

F ′
k =

N−1∑

i=0

cie
−js′kx′i , (19)

which is again the expression of a NUDFT-3. Henceforth, the NUFFT-
3 procedure will be assumed to be applied to Eq. (19) while avoiding
the primed notation and using that in Eq. (1).
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4. CONDITIONS DICTATED BY THE ACCURACY

In this section, we finally deal with the choice of appropriate values for
Mr, τ , σ, 2msp , ∆x and ∆s satisfying the above conditions and for a
fixed, desired accuracy.

In the following, we first give the assumed definition of accuracy.
Later on, by exploiting the results in [15], we derive an error bound
for the F̄k’s, k = 1, . . . , Ns, when evaluated according to the Type 3
NUFFT scheme. Finally, the parameters choice is detailed.

4.1. Accuracy

Let us denote by ‖F‖ the `1 norm of a sequence F = {Fk}Ns−1
k=0 and by

F̄ = {F̄k}Ns−1
k=0 . Let us also define by ε0 the desired accuracy and by ε

the achieved accuracy in approximating F by F̄ , i.e.,

ε =
maxk=0,...,Ns−1{

∣∣Fk − F̄k

∣∣}
‖F‖ < ε0. (20)

On substituting Eqs. (7) and (8) in Eq. (9) and by taking into
account that the Gaussian interpolation window in the spatial domain
is given a bounded support determined by msp , then

F−σ
τ (m∆s)' ∆x√

2π

msp∑

n′=−msp

[(
N−1∑
i=0

1√
2σ

eσ((ζi+n′)∆x)2fie
− ( xi

∆x
−(ζi+n′))2∆x2

4τ

)]

e−jm(ζi+n′)∆x∆s. (21)
On substituting now Eq. (21) into Eq. (10) and then the result in

Eq. (11) and by taking into account that the Gaussian interpolation
window in the spectral domain is given a finite support again
determined by msp , we introduce

F̄k =
N−1∑

i=0

fiSik, (22)

where

Sik = ebτ (sk∆x)2
msp∑

n′=−msp

Pin′Qin′k, (23)

Pin′ =
1

2
√

πbτ
e−

[ xi
∆x

−(ζi+n′)]2
4bτ , (24)

bτ =
τ

∆x2
, (25)

bσ =
σ

∆s2
, (26)
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and

Qin′k=
eσ[(ζi+n′)∆x]2

2
√

πbσ

msp∑

m′=−msp

e−
[ sk
∆s

−(ηk+m′)]2
4bσ e−j(ηk+m′)(ζi+n′)∆s∆x. (27)

Let us now introduce ¯̄Fk as

¯̄Fk =
N−1∑

i=0

fiS̃ik, (28)

where

S̃ik = ebτ (sk∆x)2
msp∑

n′=−msp

Pin′e
−j(ζi+n′)sk∆x. (29)

Both F̄k and ¯̄Fk are approximations to Fk, where the first one
arises from the application of the NUFFT-3 scheme, while the second
one by further using the approximation

Qin′k ' e−j(ζi+n′)sk∆x (30)

which will be derived in Subsection 4.3.
In Subsection 4.5, an error bound for the approximation Fk ' F̄k

will be derived by exploiting the triangle inequality
∣∣Fk − F̄k

∣∣ ≤
∣∣∣ ¯̄Fk − F̄k

∣∣∣ +
∣∣∣Fk − ¯̄Fk

∣∣∣ (31)

and bounds on | ¯̄Fk − F̄k| and |Fk − ¯̄Fk|. Therefore, by exploiting the
procedure by Dutt and Rokhlin of [15] in Subsection 4.2, bounds for
those quantities will be derived.

4.2. Corollary 2.9 of [15]

Following the procedure by Dutt and Rokhlin (Corollary 2.9 of [15]),
we can express an error bound for which any function of the form
ejcx can be accurately represented by using a finite Fourier series with
properly chosen Gaussian coefficients.

Let b > 1/2 and c 6= 0 be real numbers, and let R ≥ 2 be an integer
and Q ≥ 4πb be an even integer. Then, for any x ∈ [−π/R, π/R]∣∣∣∣∣∣

ejcx − ebx2
Q/2∑

k=−Q/2

1
2
√

πb
e−

(c−(Int(c)+k))2

4b ej(Int(c)+k)x

∣∣∣∣∣∣
< δ (32)

where
δ = e

−bπ2
(
1− 1

R2

)
(4b + 9). (33)
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4.3. Bound for | ¯̄F k − F̄k|
According to the result above, by letting Q = 2msp , b = bσ, c = sk/∆s,
R = R1 and x = −(ζi + n′)∆s∆x, and by noticing that Int(c) = ηk,
then ∣∣∣∣∣e

−j(ζi+n′)sk∆x − eσ[(ζi+n′)∆x]2

2
√

πbσ

msp∑

m′=−msp

e−
[ sk
∆s

−(ηk+m′)]2
4bσ e−j(ηk+m′)(ζi+n′)∆s∆x

∣∣∣∣∣ < δ1 (34)

with

δ1 = e
−bσπ2

(
1− 1

R2
1

)

(4bσ + 9) (35)
which establishes the approximation (30) with an accuracy dictated by
δ1.

In the following, we report the conditions under which Eqs. (32)
and (33) can be rewritten as (30), (34) and (35):

Condition #6
R1 ≥ 2 (36)

Condition #7 (
X

∆x
+ msp

)
∆s∆x ≤ π

R1
(37)

Condition #8
msp ≥ 2πbσ (38)

Condition #9

bσ ≥ 1
2

(39)

According to (34) and (35) and to the triangle inequality, then we
have

∣∣∣ ¯̄Fk − F̄k

∣∣∣ =

∣∣∣∣∣∣
ebτ (sk∆x)2

N−1∑

i=0

msp∑

n′=−msp

fiPin′
(
e−j(ζi+n′)sk∆x −Qin′k

)
∣∣∣∣∣∣

≤ ebτ (sk∆x)2δ1

N−1∑

i=0

|fi|
msp∑

n′=−msp

|Pin′ | . (40)

The last inequality can be rewritten by exploiting (24) and by
noticing that

msp∑

n′=−msp

|Pin′ |=
msp∑

n′=−msp

1
2
√

πbτ
e−

( xi
∆x

−(ζi+n′))2

4bτ



754 Capozzoli et al.

<
∞∑

n′=−∞

∆x

2
√

πτ
e−

(n′∆x−(xi−ζi)∆x)2

4τ

<

∫ ∞

−∞

1
2
√

πτ
e−

(x−(xi−ζi)∆x)2

4τ dx < 1 +
∆x

2
√

πτ
. (41)

The last inequality holds for every value of ∆x and becomes tight
for small values of ∆x. By taking into account Eq. (25) and Condition
#9, finally we have

∣∣∣ ¯̄Fk − F̄k

∣∣∣ < ebτ (sk∆x)2δ1

N−1∑

i=0

|fi|
(

1 +
1√
2π

)
. (42)

4.4. Bound for |Fk − ¯̄F k|
In this section, by exploiting again (32) and (33), we work out an
approximate expression for S̃ik, and thus for Sik and F̄k, which will be
employed to finally derive an error bound to |Fk − ¯̄Fk|.

Similarly as in the previous subsection, by letting, in (32) and (33),
b = bτ , Q = 2msp and c = xi/∆x, R = R2 and x = −sk∆x and by
noticing that Int(c) = ζi, we have

∣∣∣∣∣∣
e−jskxi − ebτ (sk∆x)2

msp∑

n′=−msp

Pin′e
−j(ζi+n′)sk∆x

∣∣∣∣∣∣
< δ2 (43)

with

δ2 = e
−bτ π2

(
1− 1

R2
2

)

(4bτ + 9) . (44)

In other words,
S̃ik ' e−jskxi . (45)

with an accuracy dictated by δ2.
In the following, we report further conditions that must be

satisfied to use (43), (44) and (45):
Condition #10

R2 ≥ 2 (46)

Condition #11
S∆x ≤ π

R2
(47)

Condition #12
msp ≥ 2πbτ (48)
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Condition #13

bτ ≥ 1
2

(49)

According to (43) and (44) and to the triangle inequality, then we
have

∣∣∣ ¯̄Fk−F̄k

∣∣∣=
∣∣∣∣∣∣
Fk−ebτ (sk∆x)2

N−1∑
i=0

fi

msp∑

n′=−msp

Pin′e
−j(ζi+n′)sk∆x

∣∣∣∣∣∣
< δ2

N−1∑
i=0

|fi| . (50)

4.5. Error Bound for Fk

We now finally derive an error bound for the Fk calculated according
to the Type 3 NUFFT scheme.

By exploiting (31), (42) and (50) along with the triangle inequality
and Condition #11, then we have

∣∣Fk − F̄k

∣∣ <

[
e
bτ

(
π

R2

)2

δ1

(
1 +

1√
2π

)
+ δ2

] N−1∑

i=0

|fi| . (51)

Henceforth, we exploit the degrees of freedom that we have on bτ ,
bσ, R1 and R2 by letting

R = R1 = R2 (52)

and
b = bτ = bσ (53)

so that δ1 = δ2 = δ. Accordingly, an error bound for Fk is
∣∣Fk − F̄k

∣∣ <
∣∣∣Fk − ¯̄Fk

∣∣∣ +
∣∣∣ ¯̄Fk − F̄k

∣∣∣

<δ
N−1∑

i=0

|fi|eb( π
R)2

[
e−b( π

R)2

+
(
1+

1√
2π

)]
<δ

N−1∑

i=0

|fi|eb( π
R)2

[
2+

1√
2π

]
. (54)

Therefore, the relative accuracy according to (20) is

maxk=0,...,Ns−1

{∣∣Fk−F̄k

∣∣}

‖F‖ <ε(b,R)=
(
2+

1√
2π

)
e
−bπ2

(
1− 2

R2

)
(4b+9). (55)

5. CHOICE OF THE ALGORITHM PARAMETERS

In this section, our purpose is to select first the values of b and R so that
the error bound ε(b,R) equals a prefixed value ε0 and then determine
all the other algorithm parameters according to the conditions derived
above, which are summarized in Table 1.



756 Capozzoli et al.

Table 1. Summary of the general conditions and of the conditions
dictated by the accuracy for the choice of the APs.

Number Condition

1 σ < 1/(4τ)

2 0.5Mr ≥ (X/∆x) + msp

3 ∆x ≤ π/Bs

4 ∆s = 2π/(∆xMr)

5 0.5Mr ≥ (S/∆s) + msp

6 R1 ≥ 2

7 (X/∆x + msp)∆s∆x ≤ π/R1

8 msp ≥ 2πbσ

9 bσ ≥ 0.5

10 R2 ≥ 2

11 S∆x ≤ π/R2

12 msp ≥ 2πbτ

13 bτ ≥ 0.5

First of all, let us rewrite Eq. (55) as

b =
1
γ

log
(

4α

ε0
b +

9α

ε0

)
(56)

with
α = 2 +

1√
2π

(57)

and

γ = π2

(
1− 2

R2

)
. (58)

This equation is transcendental and an analytical solution is not
possible. However, it can be solved by “successive approximations”,
see Subsection 6.1. In the following, we will denote by bn the n-th
order solution to Eq. (56).

5.1. Choice of msp

The minimum value of msp needed to satisfy Conditions #8 and #12
is

msp = 2πbn. (59)
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5.1.1. Choice of ∆x and Mr

If we use Condition #4 in Condition #7, we have that

Mr

2
≥ R

(
X

∆x
+ msp

)
(60)

which is more restrictive than Condition #2, being R ≥ 2
(Condition #6 and Condition #10). Furthermore, taking into account
Condition #4 and Condition #11, Condition #5 rewrites as

Mr ≥ 2R

R− 1
msp . (61)

Then, Mr should meet the most stringent between (60) and (61).
However, R/(R − 1) ≤ 2 when R ≥ 2, so that (61) implies that Mr ≥
4msp at most. Since we expect that X/∆x À msp so that Mr À msp ,
then we can stipulate that Mr must satisfy the inequality (60) only.
In order to keep low the value of Mr, then we choose the maximum
possible value for ∆x according to Condition #11, i.e.,

∆x =
π

RS
. (62)

The consequent choice of Mr is

Mr ≥ 2
(

XSR2

π
+ 2πRbn

)
. (63)

Note that the expression for Mr is parameterized to R. In order
to reduce the computational complexity of the algorithm, we are
obviously interested to choose the value of R yielding the minimum
value for Mr, while satisfying the required accuracy. To this end, we
notice that the first term of the right hand side of (63), which is much
larger than the second one, grows as R2 so that it achieves its minimum
value for R = 2 when taking into account that Conditions #6 and #10
imply R ≥ 2. Therefore we henceforth choose R slightly larger than 2.

Up to now, we have exploited all the above Conditions, except for
Conditions #1 and #3, and we have set the parameters msp , b, ∆x
and Mr. In the next subsection we will deal with the choice of ∆s, τ
and σ.

5.2. Choices of ∆s, τ and σ

The parameter ∆s is set according to Eq. (15). The parameters τ and
σ can be straightforwardly determined from Eqs. (25) and (26). It
remains to check Conditions #1 and #3.
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Let us verify first Condition #1. To this end, we notice that, from
Condition #4 and from Eqs. (25) and (26),

1
4τ
− σ = b∆s2

[(
Mr

2msp

)2

− 1

]
> 0, (64)

since we expect that, as we noticed in Subsection 5.1.1, Mr À msp , so
that Condition #1 is met.

Finally, and concerning Condition #3, determining Bs requires
determining the support of F−σ

τ (s). To this end, we observe that
F−σ

τ (s) can be rewritten as

F−σ
τ (s) =

1√
4πσ

N−1∑

j=0

fjIj(s), (65)

with

Ij(s) =
∫ ∞

−∞
eσx2

e−
(x−xj)2

4τ e−jsxdx = e−
s2

4d

√
π

d
e−

x2
j

4τ (1+ 1
4dτ )e

xjs

4dτ , (66)

and

d =
(

1
4τ
− σ

)
. (67)

In other words,

F−σ
τ (s) =

1√
4πσ

√
π

d
e−

s2

4d

N−1∑

j=0

f ′je
xjs

4dτ , (68)

where

f ′j = fje
−x2

j
4τ (1+ 1

4dτ ) j = 1, . . . , N. (69)

According to (68), the bandwidth of F−σ
τ (s) is essentially limited

by the support of the Gaussian function exp(−(s2/(4d)). Defining the
support of exp(−(s2/(4d)) by the value of s = Bs guaranteeing that

e−
B2

s
4d = εk ¿ 1, (70)

then

Bs = 2

√
log

(
1
εk

)√
M2

r

16bπ2
− b. (71)

We have verified that, for the numerical cases of next section,
Condition #3 is satisfied when εk = 10−5.
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6. NUMERICAL RESULTS

We now present numerical outcomes aiming at proving how
the parameters choice according to the developed procedure
returns consistent results. Before showing the numerical results in
Subsection 6.2, in the next subsection we detail the numerical solution
of Eq. (56). Lastly, in Subsection 6.3, the main issues of the approach
in [2] are highlighted.

6.1. Successive Approximation Solution to Eq. (56)

Let us begin by observing that the function

h(b) =
1
γ

log
(

4αb

ε0
+

9α

ε0

)
(72)

is a contraction [21]. Indeed, by enforcing that |h′(b)| < 1, we obtain
the condition

b ≥
(

1
γ
− 9

4

)
. (73)

Since the minimum value of γ is achieved for R = 2, then
Condition #9 and Condition #13 are more restrictive than (73) and
so |h′(b)| < 1 is met, h(b) is a contraction according to Lagrange’s
theorem and the solution to Eq. (56) is unique. Setting b > 0.5 and
taking into account that the minimum value of γ equals π2/2, the
contraction constant is K = 8/(11π2).

Since h(b) is a contraction, then, according to the Banach-
Caccioppoli theorem, Eq. (56) can be solved by a successive
approximation procedure in which the solution bn at the n-th iteration
is

bn = h(bn−1), (74)

and b0 is arbitrarily chosen.
The sequence {bn} in Eq. (74) is convergent and

∣∣bn − b̄
∣∣ ≤ |b0 − b1|

1−K
Kn, (75)

where b1 is the first-order solutions and b̄ is the solution to (74),
provides an error estimate as well as the number of iterations required
to reach the solution.

By setting b0 = 0.5, for the case ε0 = 10−11 and R = 2, the
solution is reached in 4 iterations with an error, given by (75), equal
to 10−4. When necessary, the convergence can be expedited by means
of the Aitken extrapolation scheme [22].
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6.2. Results

First of all, let us summarize that the algorithm parameters are selected
according to the following steps:

(i) A desired accuracy ε0 is selected. ε0 is the value that we desire
our definition of relative accuracy ε is less than. If, for example,
we select ε0 = 10−11 and for a proper choice of the algorithm
parameters, the condition

ε < 10−11 (76)

must be verified.
(ii) R is chosen just slightly larger than the limiting case 2, R = 2.1

in the following, according to Conditions #6 and #10 and to the
discussion in Subsubsection 5.1.1.

(iii) b is chosen according to the successive approximations of Eq. (56)
detailed in foregoing subsection. Throughout the numerical
analysis and without any loss of generality, the first order
approximation

b = −R2 log
(

ε0
11α

)

π2 (R2 − 2)
(77)

has been employed.
(iv) msp is chosen according to msp = 2πb, see the beginning of

Subsection 5.1.
(v) For fixed values of X and S, Mr is chosen as

Mr = 2
[
XS

π
R2 + Rmsp

]
(78)

according to Eq. (63).
(vi) ∆x is chosen as

∆x =
π

RS
(79)

according to Eq. (62)
(vii) ∆s is chosen as

∆s =
2π

∆xMr
(80)

according to Eq. (15).
(viii) τ is chosen as

τ = ∆x2b (81)

according to Eqs. (25) and (53).
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(ix) σ is chosen as
σ = ∆s2b (82)

according to Eqs. (26) and (53).

The parameters choice is summarized in Table 2.

Table 2. Summary of the choice of the APs.

b chosen according to successive approximations of Eq. (56)

msp = 2πb

∆x = π
RS

∆s = 2π
∆xMr

Mr ≥ 2
(

XSR2

π
+ 2πRbn

)

τ = b∆x2

σ = b∆s2

After the parameters selection, to enable a statistical numerical
analysis, test-case values for X and S are fixed and N non-uniformly
spaced, random points with uniform distribution within the intervals
[−X, X] and [−S, S] are generated, for a fixed N . Furthermore,
random complex values for fi with uniformly distributed real and
imaginary parts are generated. The NUFFT-3 algorithm is then
applied and the results F̄k’s are compared to the “exact” values Fk’s
of Eq. (1) by calculating ε.

In Fig. 1, we illustrate the choice of Mr for different values of X
and S and for ε0 = 10−11 and in Table 3 we indicate the choices of

Figure 1. Choices of Mr for different values of X and S and for
ε0 = 10−11.
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Table 3. Choices of msp for different values of ε0.

ε0 msp

10−7 25
10−8 28
10−9 31
10−10 33
10−11 36
10−12 39

msp , which is independent on X and S, for different values of ε0.
Concerning the accuracy (according to the definition in Eq. (20)),

in Figs. 2, 3 and 4 the case is considered when X = 2π and S = 2π
and the required accuracy is ε0 = 10−10, ε0 = 10−11 and ε0 = 10−12,
respectively. As can be seen, the accuracy meets the requirements for
all the considered 25 realizations. We can also observe that the actual
accuracy is much better than the required one. This is due to the fact,
recognized in [20], that the bound in Corollary 2.9 of [15] is somewhat
weak, leading to actual accuracies much better than those foreseen.

Figure 2. Log-log relative error,
according to (20), for X = 2π,
S = 2π, ε0 = 10−10, for different
values of N and for 25 runs.

Figure 3. Log-log relative error,
according to (20), for X = 2π,
S = 2π, ε0 = 10−11, for different
values of N and for 25 runs.

6.3. Parameters Choice of [2]

We finally briefly sketch how the parameters choice in [2] leads to
inconsistent results. The main problems with the approach in [2] are
that the parameter choice is actually lacking, the function f−σ

τ (x) has
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Figure 4. Log-log relative error,
according to (20), for X = 2π,
S = 2π, ε = 10−12, for different
values of N and for 25 runs.

Figure 5. Log-log scale, accu-
racy result for the approach in [2]
when X = 2π and S = 2π.

a non-finite support and the parameter choice is independent of the
requested accuracy, as opposed to our approach.

First, we summarize the parameters selection

∆x ≤ π

S

1
R

, (83)

∆s ≤ π

X + msp∆x

1
R

, (84)

τ ' ∆x

2π

msp

R(R− 1)
, (85)

σ ' ∆s

2π

msp

R(R− 1)
, (86)

and
Mr =

2π

∆x∆s
, (87)

with R =
√

2 [2]. Note that the above parameters choice is independent
on the targeted accuracy. The Authors suggest a value of msp equal
to 18 to achieve twelve digits of accuracy, so we fix msp = 18.
Furthermore, they do not enforce Condition #1. Consequently, if we
consider the above Conditions as equalities (which is an admissible
possibility) then the function f−σ

τ (x) has a non-finite support and
becomes numerically untractable.

On the other side, by enforcing Condition #1, then

Mr ≥
2m2

sp

πR2(R− 1)2
. (88)
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Considering the example of Subsection 6.2 with X = 2π and
S = 2π and the equality sign in (88) so that Mr = 852, let us choose

∆x = 0.001
π

S

1
R

, (89)

∆2 =
2π

∆xMr
, (90)

τ = 0.9
∆x

2π

msp

R(R− 1)
, (91)

and
σ = 0.9

∆s

2π

msp

R(R− 1)
. (92)

The accuracy result (according to (55)) is reported in Fig. 5. As
can be seen, the achieved accuracy is very poor.

7. ELECTROMAGNETIC APPLICATION

In this section, we show that the aggregation and disaggregation stages
of the FMM can be effectively performed by a NUFFT-3 [7]. Without
loss of generality, we here focus the attention on the 2D Electric Field
Integral Equation (EFIE) for the case of a perfectly conducting cylinder
under TM (Transverse Magnetic) illumination.

Let us then consider the perfectly conducting cylinder, embedded
in free-space, with contour C illustrated in Fig. 6. The incident field
Einc

z (ρ) excites a surface current density Jz(ρ) on C, so that the EFIE
is written as [23]

Einc
z (ρ) =

ωµ0

4

∫

C
Jz(ρ′)H

(2)
0

(
k0

∣∣ρ− ρ′
∣∣) dC, ρ ∈ C, (93)

Figure 6. Geometry of the FMM problem.
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where µ0 is the free-space permeability, λ0 the free-space wavelength,
k0 = 2π/λ0, and H

(2)
0 (·) the zero-th order Hankel function of the second

kind.
The EFIE is here discretized by dividing the contour C into N

segments of width ws, s = 1, . . . , N , and by approximating the current
Jz as constant over each segment and equal to Is. For the sake of
simplicity, we approximate the integral in Eq. (93) over each segment
by a simple one-point integration rule [24] and enforce Eq. (93) at the
centers ρ

r
of each segment. Consequently, Eq. (93) can be rewritten

as
V = Z I, (94)

where

Vr = Einc
z (ρ

r
), (95)

Zrs =

{
ωµ0

4 ws

[
1− j 2

π log
(

γk0ws

4e

)]
r = s

ωµ0

4 wsH
(2)
0 (k0ρrs) r 6= s

, (96)

γ = 1.718 is the Euler’s constant and ρrs = |ρ
r
− ρ

s
|. In (96),

the integration for the self-term (i.e., r = s) has been performed by
approximating the Hankel function for small arguments [23].

The O(N2) cost for evaluating Eq. (94) can be mitigated by
associating the segments into M groups and by identifying, for each
segment r of a certain group Gm, two contributions: one related to the
near-field, i.e., to other segments s “near” to r, and one to the far-field
interactions due to the “far” groups Gn. In other words,

Vr =
∑

s “near” to r

ZrsIs +
∑

Gs “far” to r

∑

s∈Gn

ZrsIs, r ∈ Gm. (97)

The first summation in Eq. (97) regards the near-field interactions,
and involves all the “source” segments s belonging to the groups
“near” to the “observation” segment r. On the other side, the second
summation in Eq. (97) concerns the far-field interactions, and involves
all the “source” segments belonging to the groups Gn which are “far”
from the segment r. The FMM simplifies the calculation of the second
contribution. Indeed, consider the relation

H
(2)
0 (k0ρrs)' 1

2π

∫ 2π

0

e−jk0ρrm cos(α−φrm)amn(α)e−jk0ρnm cos(α−φns)dα (98)

where m and n denote the groups containing the segments r and
s, respectively, and ρ

n
− ρ

s
= (ρns cosφns, ρns sinφns), ρ

m
− ρ

r
=

(ρmr cosφmr, ρmr sinφmr), ρ
m

and ρ
n

are the “group centers” of groups



766 Capozzoli et al.

m and n, and

amn(α) =
L∑

l=−L

H
(2)
l (k0ρmn)e−jl(φmn−α+π

2 ), (99)

with ρ
m
− ρ

n
= (ρmn cosφmn , ρmn sinφmn). A value of L leading to

a good approximation of Eq. (98) is given by L = k0R + K ′(k0R),
where R is the radius of the minimum circle containing each group,
K ′ = 1.8(d0)2/3 and d0 is the number of digits of accuracy [25].

On discretizing Eq. (98) by a uniform sampling in the α variable,
then the far-field interactions of Eq. (97) can be rewritten, apart from
the factor (ws∆αωµ0)/(8π), as

∑

k

e−jk0ρrmcos(αk−φφrm )
∑
Gn

amn(αk)
∑

s∈Gn

e−jk0ρns cos(αk−φns)Is

︸ ︷︷ ︸
Aggregation (A)︸ ︷︷ ︸

Translation (T )︸ ︷︷ ︸
Disaggregation (D)

, r ∈ Gm. (100)

where ∆α is the sampling step in α. In Eq. (100), the aggregation,
translation and disaggregation steps are highlighted.

Let us now point out how the aggregation and disaggregation steps
of Eq. (100) can be performed by a NUFFT-3.

Let us consider the aggregation step first. The aggregation
term (A) in Eq. (100) can be rewritten as

(A) =
∑

s∈Gn

e−jk0[(xn−xs) cos αk+(yn−ys) sin αk]Is. (101)

As can be seen and for a fixed n, Eq. (101) is the expression of a
2D DFT from the non-uniform spatial grid (xn − xs, yn − ys) to the
spectral grid (k0 cosαk, k0 sinαk) which arises to be non-uniform being
the αk’s uniformly sampled. Accordingly, the calculations in (101) can
be performed by a NUFFT-3.

Concerning now the disaggregation step, on letting

Bmk =
∑

Gn

amn(αk)
∑

s∈Gn

e−jk0ρns cos(αk−φns)Is, (102)

the Eq. (100) can be rewritten as

D =
∑

k

e−jk0[(xr−xm) cos αk+(yr−ym) sin αk]Bmk . (103)

As can be seen and for a fixed m, Eq. (103) is the expression of
a 2D DFT from the non-uniform spatial grid (xr − xm, yr − ym) to
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the non-uniform spectral grid (k0 cosαk, k0 sinαk). Accordingly, once
again, the calculations in (103) can be performed by a NUFFT-3.

We finally analyze the accuracy of using the NUFFT-3 algorithm
with reference to the canonical case of a circular, perfectly conducting
cylinder having radius r = 3λ0. The cylinder’s surface has been
discretized in 1536 segments, grouped in 32 clusters [24]. Figs. 7
and 8 show the scattered field on the cylinder’s surface as evaluated
according to the far-field interactions only. In order words, for each

Figure 7. Scattered field amplitude on the cylinder’s surface con-
cerning the far-field interactions only. Aggregation and disaggregation
evaluated in an exact way (blue line) and evaluated by a type-3 NUFFT
(red crosses).

Figure 8. Scattered field phase on the cylinder’s surface concerning
the far-field interactions only. Aggregation and disaggregation
evaluated in an exact way (blue line) and evaluated by a type-3 NUFFT
(red crosses).
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surface segment, the only second term in Eq. (97) is considered. More
in detail, we compare the cases when aggregation and disaggregation
are evaluated in an exact way and by a NUFFT-3. The good accuracy
of the NUFFT-based version is witnessed by the very low relative
root mean square error between the two compared cases and equal to
9.64 · 10−11. Note that the accuracy of using the NUFFT-3 could have
been also shown by comparing the results of a “standard” FMM-based
inversion of Eq. (93) and an FMM inversion thereof using the NUFFT-
3 algorithm. However, this has been avoided since the reconstructed
surface current densities would have been also affected by numerical
inversion errors.

8. CONCLUSIONS

We have proposed a parameters’ choice for the Type 3 Non-Uniform
Fast Fourier Transform (NUFFT-3) algorithm based on the Gaussian
gridding.

Appropriate conditions to be satisfied by the algorithm parameters
to meet a desired accuracy level have been derived by exploiting also
the results in [15]. A strategy to choose the NUFFT-3 parameters has
been devised to meet such conditions. For the Reader’s convenience,
the choice of the algorithm parameters is summarized in Table 2. We
have shown how the proposed choice ensures a particularly desired
accuracy in the one dimensional case. It has been also shown how the
parameters choice of [2] leads to inconsistent or poorer results. Finally,
the use of the NUFFT-3 has been highlighted for an electromagnetic
application consisting of the implementation of the aggregation and
disaggregation steps in the fast calculation of the scattered field by the
Fast Multipole Method.
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