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Abstract—The specific features of TM -polarized surface electromag-
netic waves in a finite structure fabricated by a periodic alternating
semiconductor and dielectric layers are investigated. Dispersion char-
acteristics of eigenwaves are analyzed numerically and analytically.
The complex Poynting energy flux and the surface wave’s distribution
are calculated. The influence of geometrical and physical parameters
of the structure on the properties of surface waves is studied.

1. INTRODUCTION

The terahertz (THz) regime is that promising slice of the
electromagnetic (EM) spectrum that lies between the microwave and
the optical, corresponding to frequencies of about 1012. . . 1013 hertz.
Feature of THz spectrum range is that its inherent wavelength is
too long to be used in a well-developed optical technology and
yet is too short for transferring radio methods into it. Classical
electrodynamics and electronics are used for analytical describing of
physical processes in the microwave, infrared and at shorter frequency
ranges — the methods that correspond to quantum electronics and
optics. Submillimeter waves are at the junction between these
studies [1].

THz radiation does have some uniquely attractive qualities. For
example, it can yield extremely high-resolution images and move
vast amounts of data quickly. The waves also stimulate molecular
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and electronic motions in many materials — reflecting off some,
propagating through others, and being absorbed by the rest [1].
Nowadays many researchers struggle with challenge of turning such
phenomena into real-world applications [2–6]. Compared to the
relatively well-developed science and technology at microwave, optical
and x-ray frequencies, basic research, new initiatives and advanced
technology developments in the THz band are very limited and remain
relatively unexplored [7].

At the same time, we believe that many technical problems can be
solved through the use of periodic structures and metamaterials [8–10].
In recent years, there has been an increasing interest in development
and fabrication of new type of materials with characteristics that
may not be found in nature. Moreover, there has been also a
remarkable attention to properties of materials which have either
negative permittivity or permeability in some frequency range owing
to their novel applications potential in microwave circuits [8, 11–15].
Examples are various types of artificial periodic structures of different
nature, metamaterials, in particular negative index materials (NIM),
chiral media, and composite materials. A broad range of applications
has been suggested including artificial dielectrics, lenses, absorbers,
antenna structures, optical and microwave components, sensors, and
frequency selective surfaces [8, 10, 16, 17].

For effective practical application of such types of structures first
of all we need to know how the EM waves behave in materials, how to
construct and design such materials, what characteristics may be useful
for practical applications and what new applications can be identified
to utilize new wave characteristics [18]. This paper deals with the
first of the above questions through the study of THz surface waves
properties in the semiconductor periodic structure.

Surface EM waves (SW) are waves that propagate along the
interface between differing media and decrease in the transverse
direction exponentially. Having, in linear case, the field maximum
on the interface, SW are a very sensitive and convenient tool for
studying the surfaces physical properties. Thus, the studies of SW are
of great importance for both fundamental and practical interest [19–
22]. For example, it was shown recently that SW were responsible
for the extraordinary high transmission through a silver film with
subwavelength hole arrays and for the subdiffraction-limit focusing
effect using a slab of negative index material. In some other situations,
the absence of a SW is desired since its excitation costs unfavorable
loss of energy and unwanted interference [23, 24].

In this regard, during the last few years, different fundamental
issues have been addressed. Many significant papers have been
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devoted to SW at the interfaces between periodic structures and
metamaterials [25–36]. While tremendous progress has been made
in the physics and practical applications of periodic structures and
metamaterials, the effects associated with the influence of external
fields in complex composites still remain relatively unexplored.

For further clarification of interesting properties of multilayer
periodic structures and metamaterials, we present in this paper a
comprehensive analysis of SW existence at the interface between
a finite semiconductor-dielectric periodic structure in an external
magnetic field and two semi-infinite isotropic media. We concentrate
our attention here on the properties of SW in the terahertz range.

The purpose of this paper is to identify the ranges of TM -
polarized SW existence depending on system parameters and to study
in more details their peculiar features in the considered structure.
In our paper we have shown that the properties of SW in such
structure depend heavily on the permittivity tensor components of the
constitutive layers, thicknesses of the layers, operating frequency, and
external magnetic field. Moreover, we have shown that SW at different
interfaces have quite rich different spectra with different properties, the
study of which provide additional information about unique properties
of such types of materials. To get deeper insight into the physics of
such waves, we have calculated their complex Poynting energy flux
along with the dispersion law.

2. GEOMETRY OF THE STRUCTURE. BASIC
EQUATIONS

Let us consider a layered periodic structure that consists of alternate
semiconductor and dielectric layers of thickness d1 and d2, and
permittivities εs and ε2, respectively. We assume that the thickness
of the structure is L (L = Nd, where N is the number of periods,
d = d1 + d2 is the period of the structure). We introduce a coordinate
system such that the x-axis is parallel to the boundaries of the layers
and z-axis is perpendicular to the layers. The structure is placed into
an external magnetic field H0 along y-axis (Fig. 1). We suppose that
the structure is homogeneous in the x and y directions and we put
∂/∂y = 0. Then, Maxwell’s equations split into two independent
modes or polarizations. The first mode is the transverse magnetic
(TM ) with Ex, Hy, Ez EM field components and the second is the
transverse electric (TE ) with Hx, Ey, Hz EM field components. Since
the expressions for the TE -polarization are independent of the external
magnetic field, and, moreover, for TE waves SW do not exist, we
further consider only the TM -polarization.
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Figure 1. Geometry of the periodic structure.

To solve the problem, we use Maxwell’s equations in the
semiconductor and dielectric layers, the equations of continuity and the
motion of charge carriers. We seek the variables in these equations in
the form of exp[ikxx + ikzz − iωt]. We also apply boundary conditions
for the tangential field components at the layer interfaces.

The permittivity of semiconductor layer is a tensor for the
investigated THz region. It can be given as [9]
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Here ε01 is the permittivity part attributed to the lattice, ωP

is the plasma frequency, ωC is the cyclotron frequency and ν is the
collision frequency. The permeability for nonmagnetic semiconductor
and dielectric layers is µ = 1.

The dispersion relation for TM waves in the infinite periodic
structure, which relates the frequency ω, the longitudinal wave number
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kx and the Bloch wave number k, can be written as [9]
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where kz1,2 = ((ω/c)2εf1,2 − k2
x)1/2 are the transversal wave numbers of

the semiconductor and dielectric layers, respectively; the Bloch wave
number k̄ is an effective transverse wave number that characterizes
the periodicity of the structure; εf1 = ε‖ + ε2

⊥/ε‖ is the Voigt effective
permittivity of the semiconductor layer.

3. ANALYTICAL AND NUMERICAL INVESTIGATION
OF DISPERSION RELATION FOR AN INFINITE
PERIODIC STRUCTURE

The dispersion relation (3) defines the band structure of the infinite
periodic media. Let us assume that the collision frequency in the
semiconductor is zero (ν = 0) and the losses in the dielectric can be
neglected. The numerical simulation was carried out for the layered
structure consisting 4 periods (N = 4) of alternating layers with the
following parameters: the first layer is an n-InSb type semiconductor
(ε01 = 17.8, d1 = 70µm, ωP = 1.6 × 1012 s−1) and the second layer
is a SiO2 dielectric (ε2 = 4.0, d2 = 30µm). These materials have a
great applied interest for microwave applications. Among III–V family
of binary semiconductors indium antimonide has the smallest band
gap and the smallest effective mass of conduction electrons. Moreover,
since InSb has a record value of room-temperature electron mobility,
InSb-based devices are attractive for field effect transistors, magnetic
field sensors, ballistic transport devices, and other applications where
the performance depends on a high mobility or a long mean free path.
On the other hand, quartz (SiO2) crystals are widely used in today’s
electronics as high quality tuned circuits or resonators [9].

The analytical analysis of dispersion Equation (3) reveals 3
characteristic frequencies:
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where ωps = ωP

√
ε01/(ε01 + ε2) is the surface plasmon frequency

at the semiconductor-dielectric interfaces; at the hybrid resonance
frequency ωg the (εp

xx ) component of the semiconductor permittivity
tensor diverges and εf1 → ±∞.
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(a) (b)

Figure 2. Band structure of the infinite layered periodic media in
the case of weak ((a) H0 = 7.9 kA/m) and strong magnetic fields
((b) H0 = 39.8 kA/m).

The band structure of the spectrum for different values of
magnetic field H0 is depicted in Fig. 2 (the transmission bands are
indicated by hatching). In the case of weak magnetic fields, when
ωC < ωcr = ωps(ε2/ε01)

√
ε01/(ε01 − ε2), characteristic frequencies

for the “acoustic” (ω01) and “optical” (ω02) branches of surface
magnetoplasmons are below the hybrid frequency, that is ω01 < ω02 <
ωg (see Fig. 2(a)). On the contrary, in the case of strong magnetic
fields, when ωC > ωcr: ω01 < ωg < ω02 (see Fig. 2(b)).

SW existence at the interfaces between the layers of the periodic
structure is connected with the position of light lines of semiconductor
(i.e., (ω/c)√εf1 = kx) and dielectric (i.e., (ω/c)

√
ε2 = kx). In Fig. 2

the dielectric light line is marked as line D, whereas the semiconductor
light line is marked as S. When the allowed and forbidden bands
are located to the right of the dielectric light line, the wave number
kz2 is pure imaginary. Similarly for semiconductor. Thus, when the
transverse wave numbers of the layers kz1, kz2 are simultaneously
imaginary, the EM waves have the surface nature in both layers. On
the other hand, when the transverse wave number in one of the layers
is purely real, whereas in another layer is purely imaginary, then the
corresponding layers support bulk and exponentially damped waves,
respectively. And, finally, when both wave numbers are purely real,
each layer of the periodic structure supports only bulk waves.

A complete analysis of the infinite periodic media band structure
can be found in [37].
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4. DISPERSION RELATION FOR SW IN THE LAYERED
PERIODIC STRUCTURE OF FINITE LENGTH

Surface nature of EM field distribution in the layers of the structure is
associated with the negative value of permittivity in one of the layers,
and, consequently, with the imaginary values of wave numbers [20].
However, the possibility of SW existence on the interfaces between the
entire multilayer periodic structure and surrounding half-spaces can be
considered only when the Bloch wave number is imaginary.

Now consider the case when the finite multilayered periodic
structure is placed between two homogeneous media with the
permittivities εa and εb. Transverse wave numbers in media a and
b should be purely imaginary and take the form:

kza = −i
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k2

x −
ω2

c2
εa

)1/2

, kzb = i

(
k2

x −
ω2

c2
εb

)1/2

. (5)

Such a choice of signs in (5) ensures that the wave amplitudes
decrease exponentially on both interfaces between the multilayer
periodic structure and two semi-infinite dielectric media.

To describe the finite in the z-direction periodic structure we use
the Abeles’ theory and raise the transfer matrix m for one period
(expressions for the components of this matrix are textbook values
and they can be found, for example, in [9]) to the N -th power(
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)
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)
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Using the Abeles’ theorem, the matrix MN for N periods of the
structure can be written as Chebyshev polynomials of second kind [9].

We represent the wave functions within the periodic structure
in the form of Bloch functions. Taking into account the boundary
conditions for tangential components of the EM field at z = 0 and
z = Nd, we arrive at the system of homogeneous linear equations:(
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Here A and D are indefinite coefficients. A non-trivial solution
of (7) exists only if the determinant of the system is zero, and, in this
way, we obtain the following dispersion relation for SW in the finite
periodic structure:[
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This equation relates the propagation constant of SW kx and
frequency ω. Assume that the periodic structure is placed into the
vacuum, so that εa = εb = εv = 1, and kza = kzb = kzv. In this case
the dispersion relation (8) can be significantly simplified:
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From (9) it also follows a well-known physical result, that the
dispersion relation has N roots for each transmission band of periodic
structure [38].

In the electrostatic case, when kx À ω/c, using the equations for
the transverse wave numbers of the layers, the dispersion relation (9)
for SW can be reduced to(

ε‖ − iε⊥ + ε2

) (
ε‖ + iε⊥ + εv

)
= 0. (10)

The Equation (10) is independent of the spatial dispersion, period
of the structure, thicknesses of the layers and number of periods N .
As the result, we have two surface modes. As before, let us define
them as an acoustic and an optical surface mode. It is evident that
the acoustic mode depends on the permittivity of semiconductor and
dielectric, whereas the optical mode is associated with the permittivity
of semiconductor and vacuum.

From the dispersion Equation (10) we obtain two characteristic
frequencies for the acoustic and optical surface modes in the
electrostatic approximation:
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Thus, in the electrostatic case, the ranges of surface modes
existence depend only on the magnetic field, frequency, parameters
of materials forming the periodic structure and permittivities of
surrounding media.

Figure 3 shows the results of numerical calculations of the
dispersion relation (9). It should be noted that all dispersion curves
of SW lie to the right of the vacuum light line (i.e., (ω/c)

√
εv = kx,

line V ) and in the forbidden bands of periodic structure, due to the
imaginary values of the vacuum transversal wave number kzv, and
Bloch wave number k̄.

In Fig. 3 the black solid lines are the surface modes. As is generally
known, in the finite periodic structure instead of transmission bands,
we are dealing with the waveguide modes. In the considered THz
frequency range there are (N −1) modes within the transmission band
and one is a SW mode [38].
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(a) (b) (c)

Figure 3. Dispersion curves for surface modes in the case of weak
((a) H0 = 7.9 kA/m) and strong magnetic fields ((b) H0 = 39.8 kA/m);
for various thicknesses of the layers ((c) d = 0.01 cm): 1 — d1/d2 = 7/3,
2 — d1/d2 = 1, 3 — d1/d2 = 3/7.

As can be seen, the external magnetic field does not affects the
shape of the surface modes curves, whereas only affects the values
of characteristic frequencies ω01,02 and ωs1,s2. It should be noted
that the acoustic surface mode tends asymptotically to the frequency
ωs1, whereas below this frequency it changes monotonously along
the vacuum light line. At the same time, the optical surface mode
tends asymptotically to the characteristic frequency ωs2. Fig. 3(c)
shows the dispersion relation of surface modes versus the ratio of the
layer thicknesses d1/d2. It is obviously that when the dielectric layer
thickness d2 is greater than the semiconductor layer thickness d1 the
dispersion curve lies closer to the transmission band (curve 3). In
the opposite case, the dispersion curve becomes steeper (curve 1).
For the optical surface mode the dependency of d1/d2 is negligible.
Note also, that for kx → ∞, the width of the transmission bands
tends to zero and, according to (10), the ratio of the layer thicknesses
has no impact, and both surface modes tend asymptotically to the
corresponding characteristic frequencies ωs1 and ωs2.

Thus, SW can be supported by a finite multilayer periodic
structure in specific frequency ranges. Effective control of SW
parameters is possible by means of altering the parameters of the
layers forming the periodic structure. Moreover, as shown above, the
transverse wave numbers of the layers of the unit cells can be both real
and imaginary, so that within the layers both bulk and exponentially
decaying waves may propagate. However, the resultant Bloch wave has
the surface nature.



238 Baibak, Fedorin, and Bulgakov

5. EM FIELD DISTRIBUTION AND ENERGY FLUX OF
SW

Here, we show that in the considered periodic structure there are two
independent SW, localized near the interfaces between the vacuum and
periodic structure.

To this end, let us consider the EM field distribution in the
periodic structure and the imaginary part of the Poynting vector. It is
generally known, that the Poynting energy flux vector S is a complex
quantity [39, 40]

divS = −1
2
σEE∗ + iω

(µ

2
HH∗ − ε

2
EE∗

)
. (12)

As stated in [39], the imaginary part of the complex Poynting
theorem conveys additional information about physical processes
within the periodic structure, as it is the difference between the time-
averaged magnetic and electric energies.

Let us analyze the EM field distribution for acoustic surface mode
for different values of ω and kx. The calculations were performed for
4 periods (N = 4). The electric and magnetic field distribution in
the whole multilayer periodic structure is a property of the EM waves
interference. Nature of EM field interference in the periodic structure
can be determined by means of the transfer matrix MN . No less helpful
is to study the energy storage in the electric and magnetic fields [39].

Figure 4 shows the results of numerical calculations of the EM
field distribution and the difference in the magnetic and electric field
energies for three different values of ω and kx.

As is evident from Fig. 4, depending on frequency ω and
propagation constant of SW kx, the EM field of SW may exist either at
one of the boundaries of the periodic structure or at both boundaries
simultaneously. These two SW are independent. The reasonable
question is under what conditions and at what boundary SW occur?

To solve this problem it is convenient to consider the complex
Poynting energy flux. Despite the fact that this quantity has no
direct physical meaning, it allows us to say whether the waves are
independent on both boundaries.

From Fig. 4, we can also see that when the electric and magnetic
field energies are concentrated at the left boundary of the structure, the
complex Poynting energy flux is concentrated at the same boundary
(Fig. 4(a)). The similar behavior occurs at the right boundary of the
structure (Fig. 4(c)) and, in the case, when there are two independent
SW at both boundaries of the structure (Fig. 4(b)).

It should be noted that such antisymmetric behaviour of SW
field and energy becomes possible due to the peculiarities of the
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(a) (b) (c)

Figure 4. Normalized EM field (Hy and Ex) and complex energy
flux (∆W = (µ

2 HH∗ − ε
2EE∗)) distribution of SW (H0 = 7.9 kA/m).

(a) ω = 1.41 · 1012 s−1, kx = 110 cm−1; (b) ω = 1.384 · 1012 s−1,
kx = 600 cm−1; (c) ω = 1.382 · 1012 s−1, kx = 785 cm−1.

multilayer periodic structure, as well as the fact that the first
(vacuum/semiconductor) and second (dielectric/vacuum) interfaces
are various. If both interfaces are the same, then the distribution
of SW field and energy flux will be symmetric.

6. PENETRATION DEPTH OF SW AND THE
INFLUENCE OF DISSIPATION PROCESSES

Let us now consider the penetration depth (PD) δ of acoustic and
optical SW modes versus frequency for various magnetic fields (Fig. 5,
d1 = 70 µm, d2 = 30 µm, N = 4). The PD is the depth at which the
intensity of the SW field inside the structure falls to 1/e (about 37%)
of its original value at the surface. The PD into the periodic structure
varies slightly and is within 20–140 microns for the acoustic surface
mode and 10–90 microns for optical mode. So that, the maximum
values of PD occur at a distance of one and a half periods of the
structure, when the SW dispersion curves cross the dielectric light
line.

Here, we examine how the dissipative processes affect the
properties of SW. When the collisions in the semiconductor layer
are taken into account, then the semiconductor permittivity tensor
components (2), Bloch wave number, and SW propagation constant
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Figure 5. PD of acoustic (1, 1′) and optical (2, 2′) SW modes in the
multilayer periodic structure and vacuum (index v) versus frequency
at H0 = 7.9 kA/m (1, 2) and H0 = 39.8 kA/m (1′, 2′).

(a) (b)

Figure 6. Dispersion curves for (a) real and (b) imaginary parts of SW
propagation constant kx for acoustic surface mode at H0 = 7.9 kA/m.
1 — ν = 5 · 1010 s−1, 2 — ν = 1 · 1011 s−1, 3 — ν = 0.

are complex values: ε = ε′ + iε′′, kx = k′x + ik′′x, k̄ = k̄′ + ik̄′′ [41].
Figure 6 shows the numerical calculations of SW dispersion curves

for different values of collision frequency ν. The presence of losses
in the structure leads to the dispersion curves smoothing, absence of
resonances and changes in the SW properties. In particular, at large
values of collision frequency the optical SW mode is degenerated due
to the peculiarities of the semiconductor components of permittivity
(εf1 becomes positive in the neighborhood of hybrid frequency ωg).

The imaginary part of the propagation constant kx determines
an attenuation constant (AC) of SW λ′. The maximum value of
SW AC reaches 190µm at ν = 5 · 1010 s−1 and 100µm at ν =
1 · 1011 s−1. That is, with increasing electron collision frequency in the
semiconductor layer, the AC of SW decreases. The AC becomes large
at the transmission bands boundaries then decreases when approaching
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the characteristic frequencies ωs1,2 and becomes minimum at the
boundaries of SW existence.

It should be noted that by means of external magnetic field one
can effectively control the value of AC and PD into the multilayer
periodic structure.

7. CONCLUSIONS

In summary, we have studied the properties of SW that are localized
at the interface between the finite multilayered periodic structure and
vacuum. It has been shown that there are two frequency ranges of
SW which are characterized by several characteristic frequencies and
magnetic fields and located below and above plasma frequency.

The effect of dissipation in the layers on the PD and AC of SW
has been examined. It has been shown that by means of frequency,
magnetic field, and thicknesses of the layers one can effectively control
the parameters of SW as well as physical parameters of the considered
structure. In addition, the distribution of SW field and the complex
Poynting energy flux in the layered periodic structure were discussed.
It was found that the complex energy flux can be concentrated on the
right- or left-edge boundary of the structure depending on frequency,
magnetic field and physical parameters of the structure.

The presence of resonance phenomena of different origin in
the studied structure allows their use for numerous practical and
technology application, for example, as electronically controllable
microwave and optical devices, waveguides, frequency filters, etc..
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