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Abstract—This paper introduces a modified enhanced transmission-
line theory to account for higher-order modes while using a standard
transmission line equation solver or equivalently a Baum, Liu and
Tesche (BLT) equation solver. The complex per-unit-length parameters
as defined by Nitsch et al. are first cast into an appropriate per-unit-
length resistance, inductance, capacitance and conductance (RLCG)
form. Besides, these per-unit-length parameters are modified to
account for radiation losses with reasonable approximations. This
modification is introduced by an additional per-unit-length resistance.
The reason and explanations for this parameter are provided. Results
obtained with this new formalism are comparable to those obtained
using an electromagnetic full-wave solver, thus extending the capability
of conventional transmission line solvers.

1. INTRODUCTION

Complex systems such as automobiles or other vehicles have to meet
electromagnetic compatibility (EMC) requirements. Design engineers
need to predict the performances of their products in the early stage
of their development. EMC simulation tools should be able to help
developers to analyze the EMC performances of the vehicle and its
electrical and electronic architecture.
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The most vulnerable point of a vehicle is its equipment,
since faults caused to the equipment modules may lead to various
types of malfunctions. These faults may be the consequence of
the induced currents and voltages on the wires of the harnesses.
The electromagnetic interference calculations at the end of harness
networks are still a challenge for many equipment modules or systems.
Topology of harnesses and the important number of individual wires
is one obvious reason for this.

Hopefully, given the relative proximity of wires to the surrounding
large metallic or conducting structures, the transmission line theory
(TLT) is applied in most cases. It thus reduces the complexity and
the cost of calculations. Using the field to transmission line (TL)
coupling formalism such as Agrawal’s model [1], it is possible to split
calculations into two decoupled problems. First, the field calculation
along the routes of the harnesses in absence of the wiring is performed
by the means of a 3D Maxwell’s equation solver. Then, a multi-
conductor transmission line solver is used to calculate currents and
voltages induced on the wires, using the field values calculated in the
first step.

However, TLT is limited by some assumptions that are not always
under control and cannot always be used. Indeed, the classical
TLT equations can easily be derived from Maxwell’s equations after
approximating the Green’s function relating the sources (incident
electromagnetic field) to the reaction of the wire (induced currents
and voltages) [2]. The main assumption is that the distance between
the TL and its return path should be much smaller than the minimum
considered wavelength of the current flowing in it. As a consequence
of this simplification, the result of the Green’s function integral along
the TL contains no imaginary part, i.e., the radiation resistance is
altogether neglected and the wave is considered totally guided along
the TL.

Nevertheless, there are some situations for which this approxima-
tion may not stand. Obviously, it’s difficult to establish a definite limit
of the separation distance that must not be exceeded unless one im-
poses an arbitrary criterion. Moreover, this approximation may yield
to inaccurate current estimations at the resonance frequencies, since in
this case the radiation resistance may play an important role.

For these reasons, extending the ability of the TLT to handle
higher order modes while keeping the simplicity of its formalism would
be a significant improvement.

Numerous advanced studies have met some success in this
direction. Some new models have been directly derived from Maxwell’s
equations without the height limitation. However, most of these
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models are based on iterative time- and memory-consuming solutions,
and are rather suitable either for mono conductor situations [3] or for
short conductors such as the interconnects [4].

The more general and rigorous formalism is the one known as the
transmission line super theory [5]. This theory presents a rigorous
derivation of Maxwell’s equations for non-uniform transmission lines
into a set of coupled equations which resembles the telegrapher’s
equations. The per-unit-length (p.u.l.) parameters, which are position-
and frequency-dependent, are calculated through a rather complex
iterative procedure. Besides, the computation of the solution of these
equations remains cumbersome and needs an entire new software
development.

The enhanced transmission line p.u.l. parameters defined in [6]
allow taking into account higher-order modes for uniform transmission
lines using a rigorous derivation of the integral of the Green’s function.
However, these enhanced p.u.l. parameters cannot directly be used in
a TLT solver (like the Baum, Liu and Tesche (BLT) equation-based
solver [7, 8]) and therefore require an entire new software development.

The purpose of this paper is, on the one hand, to derive a
proper representation of these parameters easy to embed in a classical
TL solver or in its BLT form solver and, on the other hand, to
show how the energy related to the radiation is dissipated. Indeed,
putting the complex p.u.l. parameters defined in [6] under a resistance,
inductance, capacitance, conductance (RLCG) form leads only to the
decomposition of the modes in terms of TEM modes supported by
the real part of the characteristic impedance, and radiating modes (or
antenna mode) supported by the imaginary part of the characteristic
impedance. Therefore, in this paper, we will also present a modified
version of these enhanced parameters that will converge to the solution
of the differential currents at the ends of the TL. This solution
allows calculating these currents using a classical BLT solver with a
good approximation, even at critical resonant frequencies or when the
conditions of application of the classical TLT are not fulfilled. In this
paper, we present and validate this method for a single wire above a
perfect ground plane.

2. ENHANCED TRANSMISSION-LINE THEORY

Let us consider a lossless TL above a perfectly conducting (PEC)
ground plane in presence of an external electromagnetic field as shown
in Fig. 1.

From Maxwell’s equations, and using the thin wire approximation,
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Figure 1. Geometry of the studied problem.

the field-to-transmission line coupling equations are given by [2]:

dV s(z)
dz

+ jω
µ0

4π

L∫

0

g(z − z′)I(z′)d(z′) = Ee
z(h, z) (1)

d

dz

L∫

0

g(z − z′)I(z′)dz′ + jω4πε0V
s(z) = 0 (2)

with

g(z − z′) =
e−jk

√
(z−z′)2 + a2

√
(z − z′)2 + a2

− e−jk
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√
(z − z′)2 +4h2

(3)

V s(z) represents the scattered voltage as defined in the classical
TLT [1, 2], I(z′) the current amplitude, Ee

z(h, z) the incident tangential
electric field, g(z−z′) the Green’s function of this configuration, and z
and z′ stand respectively for the position of the observation point and
the source points to the origin.

Thus, considering the observation point being far enough from the
ends of the wire and the current locally constant, the integral limits
can be taken from −∞ to +∞ and the current distribution placed
out the integral [2]. Then, from [6] and using some Bessel functions
properties, we can easily find:

+∞∫

−∞
g

(
z − z′

)
dz′ = π[Y0(2hk)− Y0(ak)] + jπ[J0(2hk)− J0(ak)] (4)



Progress In Electromagnetics Research M, Vol. 32, 2013 261

Here J0 and Y0 are, respectively, the 0-order Bessel functions of first
and second kind.

Now, using the expansion form of Y0 as given in [9]:
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(5)

and after some rearrangements the above integral (4) can be rewritten
as:
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The classical approximation for this integral consists in assuming that
all terms are negligible with respect to the first one on the right-hand
side of (6). In the following these terms are considered as a correction
factor.

Hereafter, we express the real part of this correction factor as:
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{
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(7)

and the imaginary part as:

= (CF ) = π [J0 (2hk)− J0 (ak)] (8)

Using these definitions and substituting them in (1) and (2), we get:

dV s(z)
dz

+ I(z)
(
jωLHF + RHF

)
= Ee

z(h, z) (9)

dI(z)
dz

+ V s(z)
(
jωCHF + GHF

)
= 0 (10)
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where the explicit forms of these p.u.l. parameters are given by:

LHF = L
′
0 +

µ0

4π
< (CF ) (11)

RHF = −ω
µ0

4π
= (CF ) (12)
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[
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]
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and where the classical p.u.l. parameters are given by:

L
′
0 =

µ0

2π
ln

(
2h

a

)
(15)

and
C
′
0 =

2πε0

ln
(

2h
a

) (16)

Note that (9) and (10) have exactly the same form as the classical
ones. Hence, to solve this system all the known methods of resolution
in the classical case can be used here. In our case, we use the BLT
formulation of the TL equations.

Besides, the new enhanced p.u.l. parameters are now frequency-
dependent and are not limited to the quasi-static approximation but
reduced to the classical ones where the classical TLT assumptions are
fulfilled.

The resistance and the (negative) conductance parameters account
for higher-order modes whereas the frequency-dependent inductance
and capacitance can differ significantly from the classical ones,
especially when the quasi-static approximation is no longer valid.

Since the p.u.l. parameters are enhanced and become frequency-
dependent, we can expect that the characteristic impedance is also
frequency-dependent.

From (4), (1) and (2), we find that the enhanced p.u.l. impedance
is given by:

z = jω
µ0

4π
{π [Y0 (2hk)− Y0 (ak)] + jπ [J0 (2hk)− J0 (ak)]} (17)

The enhanced per-unit-length admittance is written as:

y = jω
4πε0

π [Y0 (2hk)− Y0 (ak)] + jπ [J0 (2hk)− J0 (ak)]
(18)
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Using the classical definition of the characteristic impedance as the
square root of the ratio between the impedance and the admittance:

Zc =
√

z

y
(19)

It can easily be proven that the enhanced characteristic impedance is
complex and is given by:

Zc =
1
4π

√
µ0

ε0
{π [Y0 (2hk)− Y0 (ak)] + jπ [J0 (2hk)− J0 (ak)]} (20)

Thus, the characteristic impedance, even for a lossless transmis-
sion line, becomes complex and frequency-dependent (Fig. 2).

Figure 2. Comparison between the classical and enhanced
characteristic impedance for a lossless TL above a PEC ground, height
= 0.3m, radius = 1mm.

Now, we investigate the effect of the enhanced p.u.l. parameters
on the propagation constant.

The propagation constant, in its general form is given by:

γ = α + jβ (21)

where α and β are, respectively, the attenuation and phase constants.
The propagation constant is calculated through:

γ2 = ZY =
(
RHF + jLHF ω

) (
GHF + jCHF ω

)
(22)
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Replacing ZY in (22) by (17) and (18), we get:

γ2 = −ω2µ0ε0 (23)

Since the result of the product is a pure negative real value, the
propagation constant is a pure imaginary term. This means that the
use of these new p.u.l. parameters will not lead to energy dissipation.
In other words, the energy is still stored in the TL. Nevertheless, these
enhanced parameters allow to split the energy propagating on the TL
into TEM and radiated modes as shown below.

Indeed, (19) can also be written as:

Zc =

√
RHF + jωLHF

GHF + jωCHF
(24)

Considering that GHF ¿ ωCHF and using (8), (12) and (20) we can
easily get:

Zc =

√
LHF

CHF
− j

RHF

k
(25)

The energy of the TEM mode is related to the real part of the
characteristic impedance whereas the energy of the radiated mode is
related to the imaginary part.

3. MODIFIED-ENHANCED P.U.L. PARAMETERS

As shown above, the enhanced p.u.l. parameters lead only to the
separation of the TEM mode and radiated mode on a TL. It means
that the currents and voltages at the ends of the TL are not affected
and using these enhanced parameters does not provide more accurate
results. In order to dissipate the radiated energy, a possible method is
to calculate appropriate reflection coefficients at the ends of the TL [2].
We rather introduce a more convenient and new method that consists
in adding another p.u.l. resistance that will be related to the radiated
energy.

This additional resistance R+ is inserted in series with RHF and
LHF . The following developments present the theory related to this
additional resistance in the case of a single wire above a ground plane.

Since an additional resistance R+ is introduced, the attenuation
constant α is non-null.

The wave attenuation factor for the square of the current (or of
the voltage) over the length L of the TL can be written as:

A(L) = exp(−2αL) (26)
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The power to be radiated can be associated with the ratio between
the imaginary part and the real part of the characteristic impedance,
which is shown, in the following, to be equivalent to the definition of
the quality factor Q of the TL.

From (25) this Q factor can easily be written as:

Qline =
β

RHF

√
LHF

CHF
=

ωLHF

RHF
(27)

When an additional resistance R+ is added to the p.u.l. parame-
ters, (22) becomes:

γ2 =
(
RHF + R+ + jLHF ω

) (
GHF + jCHF ω

)
(28)

Considering the property RHF CHF = −LHF GHF and after
rearrangement, we get:

γ2 =
(
RHF + R+

)
GHF − LHF CHF ω2 + jR+CHF ω (29)

In the following, we assume that
∣∣(RHF + R+

)
GHF

∣∣ ¿ LHF CHF ω2.
Nevertheless, this assumption will be verified a posteriori. It must be
noted that this condition is also equivalent to:

(
RHF + R+

)
RHF ¿ LHF 2

ω2 (30)

If this assumption is fulfilled, then γ2 can be approximated as:

γ2 ≈ −LHF CHF ω2 + jR+CHF ω (31)
Since γ = α + jβ, it follows that:

2α2 ≈ LHF CHF ω2 − LHF CHF ω2

√(
1− R2

+

LHF 2ω2

)
(32)

The second term under the square root is verified to be much smaller
than one.

Then, a first order series expansion can be used to extract α2:

α2 =
(R+)2 CHF

4LHF
(33)

Using the definition of the attenuation factor in (26), (27) and (33),
we find that the attenuation on the TL introduced by R+ is equal to:

A(0)−A(L) = 1− exp

(
R+

√
CHF

LHF
L

)
=

RHF

ωLHF
(34)

In order to determine R+, this attenuation is identified with the inverse
of the Q factor of the TL. Finally, we obtain:

R+ =
1
L

√
LHF

CHF
ln

(
1− RHF

ωLHF

)
≈ RHF

βL
(35)
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As expected, the p.u.l. additional resistance is equivalent to the
imaginary part of the characteristic impedance (25) distributed along
the TL and is frequency-dependent (Fig. 3(a)). Besides, this additional
resistance does neither affect the phase constant nor the characteristic

(b)

(a)

Figure 3. Characteristics of the modified enhanced p.u.l. parameters
for a lossless TL above a PEC ground, height = 0.3m, radius = 1mm.
(a) The additional correction resistance. (b) Characteristic impedance
and propagation constant.
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impedance but only the attenuation constant (Fig. 3(b)). This is due to
the fact that it is relatively small compared to the p.u.l. resistance (35).

4. RESULTS

In order to validate this new model, some simulations have been
carried out. The p.u.l. parameters are calculated either using their
classical form or using their modified enhanced version presented
previously. They are inserted in a BLT equation solver. Both results
are compared to those obtained with an electromagnetic full-wave
method of moments (MoM) solver (FEKO). The current in the load
is calculated as a function of the frequency of the excitation signal.
Though the p.u.l. parameters, the associated characteristic impedance
and the propagation constant were calculated up to 2 GHz, in the
following the currents will be calculated only up to 500 MHz to keep
the clarity of the figures.

The configuration studied is presented in Fig. 4. It consists in
a perfectly conducting and non-coated wire of 5 m length and 1 mm
radius at 30 cm above a perfectly conducting ground plane. It is fed
by a sinusoidal voltage source e of 1 V at one end and loaded with a
resistance R of 1 Ω at the other end.

Figure 4. Setup of the studied circuit.

Figure 5 shows the current that flows in the resistance calculated
from three different methods. The black curve is calculated with the
classical TL equations. It highlights that the resonance levels are quite
high and their amplitude does not follow a regular pattern since they
depend strongly on the frequency sampling points. Since no losses are
taken into account, the highest peak level is expected to be 0 dBA.
The green curve shows the result of our modified enhanced version
of the TL solver. The level of the resonances follow a much more
regular evolution with frequency and calculations predict much lower
peak levels as expected. For comparison, the calculation performed
with the MoM solver is presented in red.

Below roughly 300 MHz, results obtained with our model are in
good agreement with the full-wave solver. Beyond this frequency,
the modified enhanced model does not provide results in agreement
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Figure 5. Current amplitude as a function of the frequency at the
end of the TL, using the modified enhanced p.u.l. parameters.

Figure 6. Current amplitude as a function of the frequency at the end
of the TL, using the modified enhanced p.u.l. parameters and including
the vertical wires.

with the MoM calculations. This can be explained by the effect of
the vertical wires that are only modeled in the full-wave solver (for
practical reasons) and not in the TL approach. The effect of these
vertical wires can be approximately taken into account through the
addition of a p.u.l. resistance of these wires calculated from the
radiation resistance of a monopole antenna [10, 11]. As expected
(Fig. 6), this produces slightly better results (5 dB beyond 400MHz).
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However, even with this correction, if we compare to the MoM results
in Fig. 5, there are still some differences higher in frequency. This is
due to the monopole model used for the vertical wires and possibly
to the effect of the coupling between the horizontal and vertical wires.
Nevertheless, in real cases, wires are not perfect conductors and as a
consequence, the amplitudes of the current induced in the loads are
even lower than predicted by the results in Figs. 5 and 6. Therefore,
the proposed model leads to responses much more realistic than the
classical TLT model, and provides, in general, a better approximation
especially for the most critical first resonances.

5. CONCLUSIONS

In this paper, we have presented a modification to the enhanced
per-unit-length (p.u.l.) parameters of a single transmission line (TL)
which were first explicitly extracted from [6]. This modification was
necessary since the enhanced parameters only enable to split the energy
propagating on the TL into TEM and radiated modes. Thus, to
dissipate energy, an innovative solution has been demonstrated which
consists in adding a supplementary p.u.l. resistance to the enhanced
p.u.l. resistance and inductance. This additional p.u.l. resistance
corresponds approximately to the imaginary part of the characteristic
impedance of the TL. The results obtained are comparable to those
obtained with a full-wave software even at resonant frequencies. This
new formalism is currently being generalized to take into account multi-
conductor configurations and coated wires.
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