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Abstract—This article describes a method of guiding a moving
ferromagnetic sphere. By using a magnetic field, it is possible to
confine a moving object such as a steel sphere to motion along a
curve. We have designed and built a device that uses the magnetic
field in the gap of a steel tube to trap and guide a steel sphere along a
circular path solely by a magnetic restoring force. A simple relationship
between tangential velocity and magnetic field strength in the gap
is developed. Excellent correlation between analytic, simulated, and
measured results are shown.

1. INTRODUCTION

A force that confines an object to a specified path has been the object
of public and scientific interest for many years, and much of this
effort has been in the field of magnetic levitation [1–3]. Much effort
over a long period of time has been applied to moving objects with
magnetic forces [4, 5], with application in the fields of mass drivers and
electromagnetic braking [6–8]. Moving an object with magnetic forces
while mechanically confined to a curve has been applied to magnetically
levitated trains and magnetic actuators [9]. Di Puccio et al. have done
some interesting work with magnetic bearings that includes off-axis
development of force equations [10], which is related to the work we will
present in this paper. However, we have developed a unique expression
concerning the confining of a non-atomic scale projectile to a curve with
magnetic forces alone.
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We have developed a method to guide a steel sphere such as a ball-
bearing along a curved path. One can view the sphere as suspended
along an arc in the plane of motion since a balance is obtained between
the centripetal and magnetic forces. Figure 1 illustrates the concept
of what we are trying to achieve; a steel sphere is injected into a steel
pipe bent into a half-toroid. The tube has a slot cut on the outer
edge, and current-carrying conductors on the inner edge. This creates
a magnetic field in the slot. If a steel sphere is injected in the slot,
it will either leave the confinement of the slot and exit the tube, or
continue along the slot and exit the tube on the opposite side.

Figure 1. A conceptual method to restrain a steel sphere along curved
path with magnetic forces: a steel sphere is injected (1) into a curved
steel tube with a slot cut on the outer edge and a coil wrapped along
its interior edge (2), the sphere will either exit the slot if travelling too
fast (3) or be confined to the slot and exit out the other side (4).

This paper contains a unique development of the force equations
from first principles, and in conjunction with two-dimensional (2D)
Finite-Element Method (FEM) simulations and experimental results,
a simple expression is derived which relates the magnetic field in the
gap acting on the sphere to its tangential velocity.

2. THEORETICAL DEVELOPMENT

A cross-section of the tube in Figure 1 is shown in Figure 2. This
is simply the C-shaped core familiar to students of magnetic circuit
theory. The windings around the core carry current, and the core is
made from a material such as mild steel with relative permeability µr

much greater than 1.
There will be a force drawing the steel sphere into the centre of

the gap, since there exists a magnetic field gradient in every direction
away from this center-point. For our problem, the magnetic force ~Fm



Progress In Electromagnetics Research M, Vol. 32, 2013 247

Figure 2. An enlarged cross-section of the gap in a C-core with
a current carrying coil providing a magnetic field in the gap. The
cross-section of the C-core ends and sphere resemble three magnetic
conductors in free space. On the far left is the free-body diagram of
the magnetic forces on the sphere.

can be understood as the gradient of the magnetic energy density Um

multiplied by the volume V the magnetic field occupies:
~Fm = −~∇UmV (1)

Fm(x, y) = − 1
2µ0

dB2(x, y)
dx

V = −B(x, y)
µ0

dB(x, y)
dx

V (2)

where B is the magnetic field strength, and an isotropic medium and
motion in the x-direction is assumed. If the sphere is free to move in
any direction, slight changes in its vertical position with respect to the
poles will cause the sphere to become stuck on one of the poles. In
other words, the y-component of the force will become imbalanced and
the sphere will move toward the pole. For our case, we will purposely
design a slight offset in the y position of the sphere to insure the sphere
will stay near the middle of the gap in the y-dimension. We can do
this by utilzing the intrinsic weight of the sphere to hold it down along
a non-magnetic guide, and also implementing 0.15mm offset to insure
the vertical component of magnetic force is slightly downward. Then
with these precautions in place, we can focus on the magnetic force
require to suspend the sphere in the x-direction as it travels around
the curve.

In a magnetic circuit, the majority of the magnetic energy is
concentrated in the air gap, and it is this change in air gap that occurs
if the ferromagnetic object is free to move. In a general sense, an
infinitesimal displacement of the object will cause the gap volume to
change, which is the surface area A times air gap length. Equation (2)
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then becomes:

Fm = − 1
2µ0

dB2

dLg
AdLg = −B2A

2µ0
(3)

which is the familiar magnetic force equation between two magnetized
bodies.

In order for the sphere to travel on a curve with radius of curvature
a, the magnetic field may provide enough force necessary to allow the
sphere to travel in a curved path. A simple relationship can then be
developed between the magnetic and centripetal forces Fc:

Fm = Fc =
mv2

t

a
(4)

vt =

√
Fma

m
(5)

where m is the mass of the object and vt is the tangential velocity of
the sphere. By substituting into Equation (5) an explicit expression for
the magnetic force, which will depend on the geometry and magnetic
field strength in the gap, we can obtain an expression for the upper
limit of ferromagnetic sphere velocities that will be confined.

2.1. Analytic Derivation of Magnetic Force

With the advent of powerful 2D and 3D electromagnetic simulation
tools, complicated geometries such as this one can be solve numerically.
However, by attempting to solve the problem analytically, we believe
further insights will be found and scalings will be revealed that are
hard to see by relying solely on simulated results.

In order to develop the magnetic force equation, we will simplify
the C-core tips in Figure 2 into cross-sections of long parallel cylinders.
The magnetic force on the cross-section of the sphere in the x- and y-
directions is then the vector sum of the components due to the lower
and upper core ends, i.e., the core ends are assumed to be 2D cross-
sections of cylinders with magnetic surface charge and floating in free
space. The magnetic circuit is then the C-core plus sphere (both of
the same ferromagnetic material) in series with two air gaps.

The magnetic force is proportional to the gradient of the
permeance (P) multiplied by the square of the “magnetomotive
force” (essentially, the total applied Amp · turn product). The
magnetomotive force can be written in simplified form:

NI =
φ

P (6)
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If we can find the magnetic flux φ of the circuit, it can then be
written in a general sense:

Fm =
1
2

(
φ

P
)2 dP

dR
=

B2A2

2P2

dP
dR

(7)

where R is the distance between centres as in Figure 2. In our
configuration, the sphere will have a non-magnetic standoff to ensure
the sphere is near the y=0 plane, thus removing the vertical degree of
freedom of its motion.

The value of φ can be estimated by solving the magnetic circuit
equation:

NI = (Rcore + 2Rgap +Rsphere) φ (8)

NI =
(

Lc

µrµoW
+

2Lg

µoW
+

Ls

µrµoW

)
φ (9)

where reluctance R is the inverse of permeance, the flux path length
for each element is L, and flux path width W is simplified to the width
of the core. A classic problem with magnetic circuits is what to choose
for the relative permeability µr for a non-linear material such as mild
steel, something we will return to later.

Once we have an estimate for magnetic flux, we can leverage
the analysis described by Roters [11] and utilize the fact that the
permeance from the C-core ends to the sphere can be derived from
potential theory, which is essentially the solution to Laplace’s equation.
For our 2D parallel cylinder configuration it is equal to:

P =
µoπ

ln
(

R
2r +

√(
R
2r

)2 − 1
) [p.u.l.] (10)

where µo is the magnetic permeability of free space. The derivative of
the permeance with respect to spacing R is then:

dP
dR

=
−µoπ

2r

(√(
R
2r

)2 − 1
)[

ln
(

R
2r +

√(
R
2r

)2 − 1
)]2 (11)

Substituting Equations (11) and (10) into (7), the magnetic force
per unit length is then obtained:

Fm =
φ2

4πrµo

√(
R
2r

)2 − 1
(12)

We can then take the x-component of the force and multiply by
two since there are two 2D cylinders acting on the sphere. By placing
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φ=BA into Equation (12) and substituting into Equation (5), we can
obtain an expression for tangential velocity in terms of B:

vt =

√√√√ B2A2a

4πrmµo

√(
R
2r

)2 − 1
(13)

Since all terms except B2 are constant for a given geometry and
material, we can write:

vt =
√

constant ∗B2 (14)
vt = k ∗B (15)

where k is a constant that depends on geometry and mass of the object.
This elegant result states that the maximum tangential velocity of the
sphere traveling around a curve is linearly related to the magnetic field
strength acting on the sphere.

2.2. Simulation Method to Obtain Magnetic Force

We would like to validate the accuracy of our magnetic force
Equation (12), and for that we turn to a two-dimensional magnetic field
solver such as Ansoft 2D Extractor — an excellent tool for obtaining
the magnetic field strength in a 2D environment. In fact, Ansoft-2D
will directly provide the per unit length (p.u.l) force on an object as
part of the solution. It does this by calculating on the surface of an
object the magnetic field strength and gradient of the meshed magnetic
field values and applying Equation (2).

Our first simulation had a 6.35 mm (1/4”) diameter cross-section
of a ball-bearing placed between C-core ends with a center-to-center
vertical separation of 18.0 mm (11.6 mm between core ends) and offset
4.7mm from the horizontal center of the C-core ends. For this case, 260
Amp-turns constitute the coil magnetomotive force. The simulation
results are shown in Figure 3, which is a cross-section of the B-field
strength in the plane of the gap.

The magnetic force per unit length obtained from the simulation
was 1.44N in the positive x-direction (to the right in the figure). To
solve this analytically, we used Equation (9) to find the magnetic flux in
the circuit, then applied Equation (12) to get the force. As mentioned
before, the relative permeability of mild steel is non-linear. Ansoft
2D supplies material properties in their materials database, and for
1010 steel, the µr changes from 0 at no excitation, to 600 at 0.21 T.
The simulation indicates that at the excitation coil, the magnetic field
strength in the core is around 0.15 T, while at the core tips it is near
0.05T (due to leakage to free space). A reasonable assumption for the
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Figure 3. Simulated magnetic fields for 1/4” diameter marble and
rounded C-core ends.

µr in the steel is around 100. In fact, if we complete the calculation
of magnetic force using µr of 70, the calculated magnetic force equals
1.43N, which matches the simulation results.

This procedure highlights both the strength and weakness of the
analytic approach to a geometry such as ours. The great strength is
we can see the factors that affect the magnetic force on the sphere,
which is important for magnetic circuit design. The weakness of the
method is we need to obtain an accurate value for one of the magnetic
parameters (B-field, φ, or µr) by some other method for an accurate
calculation of force.

For comparison, we also ran simulations with the core ends
flattened in the cross-section of Figure 3. Flattening the core ends
will also make it easier to construct when manufacturing the test
apparatus. Figure 4 shows the simulated B-field of the flattened pole
face C-core. This provided a larger gradient and greater magnetic field
strength on the surface of the sphere, thus increasing the magnetic
force retaining the sphere along the guide. We used a Gaussmeter to
measure the field in the gap without a sphere involved for the case
of 400 Amp-turns. Simulated value in the middle of the gap was
0.0378T, and the measurement provided approximately 0.039 T, which
is good agreement and provide more confidence that the field values
from simulations with a sphere involved are accurate. One can see in
Figure 4 the peak magnetic field on the surface of the sphere is now
0.064T, compared to 0.045T in Figure 3.
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Figure 4. Simulation of force for a flattened C-core ends. The sphere
is close to where the horizontal peak force is acting on it as it moves
from left to right.

3. EXPERIMENTAL RESULTS

For this paper, we conducted two experiments. The first measured the
magnetic force acting on a sphere in the gap of a C-core as the sphere
is pulled out of the gap, and the second determined the relationship
between centripetal and magnetic forces in the C-core gap. The cross-
section used in these experiments is given in Figure 5.

A simple method to measure the peak force on the sphere as it
moves laterally across the gap is to glue a thread between it and a force
meter lever. The sphere is placed at the center of the gap and current
is then applied to the coil. The force meter is then dragged away from
the slot and the peak magnetic force is recorded on the display.

Figure 5. Flattened core end simulation and experimental setup.
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In our setup, we designed a slight offset for the sphere in the
vertical direction to create a small downward net magnetic force, which,
in addition to its weight, helps reduce any bounce as the projectile
leaves the ramp and enters the tube.

The measured peak magnetic force as the sphere is translated in
Figure 5 is recorded in Table 1. Table 1 also includes the peak magnetic
force from 2D simulations. In order to obtain the force acting on a
three dimensional sphere from 2D simulations, we multiply the 2D
results by the characteristic dimension of the sphere (the diameter of
0.00635 meters). Good agreement can be seen between measured and
2D simulated results multiplied by the correction factor. Note we have
not corrected for thread weight or sliding friction, both of which are
regarded as negligible.

Table 1. Peak force measured and simulated for 6.35 mm steel sphere.

Amp-Turns
(A)

Measured
(N)

2D Simulated
(N)

2D Simulated
w/Correction

(N)
400 0.0294 4.94 0.0313
600 0.0736 11.48 0.0729
784 0.108 20.18 0.128

So far, we have only worked with low magnetic field values, to
insure we are in a linear region of the BH curve in order to validate
Equation (12). But what happens to the magnetic field in the gap and
the force on the sphere as the Amp-Turns are increased? At some point,
the permeability of the C-core steel becomes saturated and significant
leakage flux bypasses the gap. This will have the effect of limiting the
magnetic flux acting on the sphere and the force on the sphere will
not change no matter what the Amp-Turn value. Table 2 contains
simulated 2D data that shows for low values of magnetomotive force,
there is a square relationship between Amp-Turns and force on the
sphere, just as Equation (12) implies, meaning, for every doubling in
Amp-Turns, the B-field doubles and force quadruples. However, for
large Amp-turn values, the B-field and force saturate.

In the next phase of our experimentation, we have corroborated
Equation (15) with experimental data by using a pipe section known
in industry as a “180◦-Return”, as shown in Figure 6. Although the
actual magnetic permeability of this mild steel was not known, using
the values for 1010 steel provided good results in measurements and
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Table 2. Force and magnetic field as a function of Amp-turns.

Amp-Turns
(A)

B
(T )

2D Simulated
(N)

Square Dependency
(Equation (12)) (N)

256 0.052 1.98 1.98
512 0.107 8.24 7.92
1280 0.275 53.7 49.5
2560 0.471 158 198
5120 0.556 221 792
25600 0.684 332 19800

Figure 6. Experimental setup. The marble ramp is the red tube, the
black pipe on the right is the curved core, the blue acrylic guide insures
the marble is near the center of the gap. If the marble is confined, it
will exit the pipe section near the oscilloscope.

simulations. The radius of curvature to the outside edge of the pipe is
approximately 168mm (6-5/8”).

A steel ball-bearing is released down the ramp (red) and it enters
the 180◦-Return gap (black tube). The sphere is offset in the gap
by the acrylic guide (blue). By adjusting the amount of current in
the coil and/or the release height of the marble so that it (just) exits
from the arc, a relationship of maximum marble entry speed versus
gap magnetic strength can be obtained. The injection velocity of the
marble was calculated from v =

√
2gh, where g is the acceleration due

to gravity (9.81m/s2) and h is the fall height in meters. In reality, if
one includes the rotational energy gained, it will lower the translational
velocity calculation by 15%. However, since the sphere is entering
a region of B-field gradient as it exits the ramp, the projectile will
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Figure 7. Injection velocity versus simulated peak magnetic field
strength on surface of the sphere. The curve fit to measured data is
v [m/s] = 26.6B [T].

speed up slightly, and this partially makes up for the rotational energy
not accounted for. The net effect is calculating the entry velocity by
neglecting rotational energy provided good agreement.

The results of our experiment are shown in Figure 7. For guided
motion, we obtained a linear relationship between injection velocity
and magnetic field strength, as predicted.

The reader should note we did not correct for systematic velocity
errors such as air or eddy current drag as the sphere travels around
the curve. Recent papers regarding magnets moving near conductors
indicate that at such low velocities, the eddy current drag will not play
a significant role in slowing the projectile [12–14]. However, since there
are losses, we have found if the sphere stays confined in the first 45
degrees of the 180 degree arc, it will stay confined the rest of the way
around.

4. CONCLUSION

This paper describes the governing equations of a ferromagnetic
sphere confined by a magnetic field and traveling on a curve. We
have obtained excellent correlation between the developed theory,
simulation, and experimental results. These results can be used
for applications where ferromagnetic objects are required to move
along non-linear trajectories, such as with directed energy and mass
launcher applications. In addition, since many aspects of physics and
engineering are developed in the paper (rotational motion and energy,
magnetic forces, and magnetic circuits to name a few), the device would
make an excellent classroom demonstration or lab experiment.
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