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Abstract—In this paper the derivation of a rigorous expression of
the input admittance of a coaxially fed, infinite, lossy parallel plate
waveguide (PPWG) is presented. The derivation makes use of the
dyadic Green’s function of the PPWG expressed as series a cylindrical
wave-functions. Losses into the dielectric plates and on the conductors
are considered rigorously. The approximation used in results presented
in the past literature are critically discussed. Numerical experiments
are performed to show the effects of the finite conductivity on the input
impedance of the PPWG.

1. INTRODUCTION

The parallel plate waveguide, PPWG henceforth, is the simplest
waveguiding structure available and is studied in every textbook of
engineering electromagnetics. In spite of its simplicity, PPWG has
been used to realize several microwave devices such as PPWG-based
antennas [1–3]. Also, the PPWG theoretical model has been employed
to ascertain equivalent circuits to be used in the design phase of
complex devices [4–6]. Recently, the authors have modeled SIW
(Substrate Integrated Waveguide) as a PPWG populated with metallic
via holes [7, 8]. This method has been applied to the efficient analysis of
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antennas [9] and of resonators [10–12], for which the method presented
in [13] was used. For many of this application the availability of an
analytical expressions of the input admittance of a coaxially fed PPWG
is of a primary importance. For this reason, analytical formulas of
the input admittance have been presented in the past in a number
of papers [14–18]. However, to the best of the authors’ knowledge,
the presence of losses has never been taken into account. In this
paper, a rigorous derivation of the input admittance of a lossy, infinite
PPWG fed by a coaxial probe is given. An approach which makes
use of the dyadic Green’s function follows. In fact, this method allows
for a straightforward inclusion of both losses on the conductors and
into the dielectric layer. However, notice that while the inclusion of
losses into the dielectric substrate does not pose major problems, finite
conductivity of top and bottom plates has to be carefully modeled.
In fact, to rigorously take into account the presence of plates with
finite conductivity, one should consider both equivalent electric and
magnetic current sources to model the coaxial probe [19]. Notice that
in [7, 8, 19] the Green’s function is expressed first in the spectral domain
and then transformed back into the spatial domain with the help of
the theorem of residues. In the case at hand, losses on the top and
bottom conducting plates directly affect the positions of the residues
in the complex plane. In spite of the previous consideration, in [8]
and [19] only magnetic current sources were considered, and a first
order approximation was used for the residues. Results given in those
papers were correct because good conductors were considered. In this
paper, the input admittance will be studied widening the range of
metals considered, including conductors with conductivity four order of
magnitude lower than the one of copper, like low conductivity steel [20].
In the following, the dyadic Green’s function of the parallel plate
waveguide will be briefly discussed, and a rigorous expression of the
input admittance of a coaxial probe radiating into the parallel plate will
be calculated. Results from numerical experiment will be presented
to evaluate the effects of conductivity and of the approximations
introduced.

2. DYADIC GREEN’S FUNCTION OF THE LOSSY
PARALLEL PLATES WAVEGUIDE

The dyadic Green’s function of the parallel plate [7, 8, 19] is derived
from a general expression in terms of cylindrical waves given for a
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general multilayer structure

¯̄GPPW (r, r′) = − j

4π
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n
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dkρkρ
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(
∇′×∇′×ẑ
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(1)

with k = ω
√

µ0(ε
′
r − jε′′r)ε0, kz =

√
k2 − k2

ρ in which kρ is the spectral
variable and correspond to the radial component of the propagation
constant. Furthermore, ω = 2πf , where f is the frequency in Hz, µ0

the vacuum permeability, ε0 the vacuum permittivity, and ε′r− jε′′r the
complex permittivity of the dielectric between the conducting plates.
Expression (1) refers to a cylindrical system of coordinates, like the
one in Figure 1. Primed quantities are relevant to point of the space
in which sources are present. Functions Φ in expression (1) have the
following form:

Φn (kρ, ρ, φ) = Jn (kρρ) e−jnφ (2)

where Jn is the Bessel function of order n.

(a) Side view (b) 3D view

Figure 1. Geometry of the coaxially fed parallel plate waveguide.

Functions F TM , F TE depend on the boundary conditions imposed
on the top and bottom plates and on the position of the sources.
In the present case only magnetic current sources placed in z′
are considered. Functions F TM , F TE can be derived considering
equivalent transmission lines, one for the TE mode and one for the
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TM mode, closed on loads determined by the appropriate boundary
conditions on the top and bottom plates. In particular F TM is
proportional to the current I(z) in circuit in Figure 2(a) due to a unit
voltage generator v placed in z′. Furthermore, F TE is proportional to
the voltage V (z) in circuit in Figure 2(b) due to the current generator
i in z′.

(a) (b)

Figure 2. Equivalent transmission lines for determine functions F TM

and F TE .
Functions F TM , F TE , for a magnetic source placed in z′ = 0,

have the following forms:
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In the previous equations h is the thickness of the parallel plate
and ΓTM

c , ΓTE
c are given by

ΓTM
c =

ZTM
c − ZTM

0

ZTM
c + ZTM

0

ΓTE
c =

ZTE
c − ZTE

0

ZTE
c + ZTE

0

(5)

Impedances ZTM
c , ZTE

c depend on the boundary conditions
imposed on the top and bottom plates. When plates are of a good
conductor, they can be considered as semi-infinite layer of dielectric
with dielectric constant εc = ε0(1 − jσ/(ωε0)), where σ is the
conductivity of the conductor, and expressions (5) become

ΓTM
c =

kzc

ωεc
− kz

ωε
kzc

ωεc
+

kz

ωε

=
kzcε− kzεc

kzcε + kzεc
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kz
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(6)

with ε = εrε0 and kz =
√

ω2εµ0 − k2
ρ, kzc =

√
ω2εcµ0 − k2

ρ,
furthermore the following expressions have been used

ZTM
0 =

kz

ωε

ZTE
0 =

ωµ0

kz

(7)

It is easy to show that for a good conductor where σω/ε0 À 1, the
Leontovich boundary condition holds, i.e.,

ZTM
c = ZTE

c ≈ Zs = (1 + j)/σδ (8)

with δ =
√

2
ωµ0σ . Expression (8) can be used in relations (6) to

express ΓTM , ΓTE . Equation (1) is manipulated further extending
the integration path to [−∞, +∞] and introducing in the integrand
Hankel’s functions. With a proper choice of the integration path in the
complex plane and by applying the residue theorem [19] one obtains
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the following form for the Green’s function:
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ẑẑδ

(
r− r′

)− 1
4

∑
m[

(∇× ẑ)
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In Equation (9), H
(2)
0 is the Hankel function of second kind of zero

order, m is the indexrelevant to the summation over the residues, kρm

is the mth residue and kzm =
√

k2 − k2
ρm. As shown in Equation (3),

the expression valid for z < z′ is obtained interchanging z with z′.
DTM ′

(kρ), DTE′(kρ) are the first derivatives of equations
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taken with respect to kρ and, when they are evaluated on residues kρm,
assume the following expressions:
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in which
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Quantities kρm, kzm are found evaluating the roots of the following
equations

DTM (kρm) = 0

DTE (kρm) = 0
(13)
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Roots of Equation (13) have to be computed numerically, however if
top and bottom plates are made of a good conductor the following
approximated analytical expression can be derived:

kzm =
mπ

h
+ ∆kTM,TE

z with

∆kTM
z =





√
2jZsωε

h m = 0
2jZsωε

mπ m = 1, 2, 3 . . .

∆kTE
z =

2jZsmπ

ωµ0h2
m = 1, 2, 3 . . .

(14)

The previous expressions have been found considering that
Zs/Z

TM,TE
0 ¿ 1 and under the hypothesis that ∆kTM,TE

z ¿ π/h.

3. INPUT ADMITTANCE OF THE LOSSY PARALLEL
PLATES WAVEGUIDE

For the case at hand, when perfectly conducting plates are considered,
using the theorem of equivalence one can consider a ring of magnetic
current placed in z′ = 0 and directed along φ̂ as a source:

M
(
r′

)
=Ecoax×ẑ= − V

log
(

b
a

) 1
ρ′

δ(z′)φ̂ (15)

Quantities a, b are the inner and outer radius of the coaxial
probe as shown in Figure 1. In (15) a field Ecoax, Hcoax relevant
to the TEM mode is considered to be present in the coaxial cable.
When a ground plane with finite conductivity is considered instead,
the theorem of equivalence prescribes an additional electric current
source. However, even under this condition, an equivalent magnetic
current can be considered as [21]:

M
(
r′

)
= (Ecoax−Zsẑ×Hcoax)× ẑ (16)

where Zs is the impedance of the ground plane defined in Equation (8).
When the expression of the electric and magnetic fields in a coaxial
cable are substituted in (16) one has:

M
(
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)
= − V
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(

b
a

) 1
ρ′

(
1 +

Zs

η0

)
δ(z′)φ̂ (17)

with η0 =
√

µ0

εrcoaxε0
. The magnetic component of the electromagnetic

field radiated into the PPWG by the source has the following form

H (r)= −jωε

∫

V
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)
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which becomes

H (r) = jωε
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In expression (19) TE modes are omitted because of their convolution
with the source gives zero contribution. Expression (19) gives the
magnetic field due to the ring of the magnetic current in the PPWG
which once solved gives the following expressions:
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+(∇×ẑ) H
(2)
0 (kρmρ) [J0 (kρma)−J0 (kρmρ)]

}

[(
1−ΓTM

c

) (
e−jkzmz−ΓTM

c e−2jkzmhejkzmz
)

DTM ′ (kρm)

]
b>ρ>a (21)

H (ρ) =
V

log
(

b
a

)jωε
π

2

(
1 +

Zs

η0

) ∑
m

(∇× ẑ)H
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Notice that in expression (21) the curl operator acts on the function
out of the brackets. The presence of the inner conductor of the coaxial
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probe extending into the PPWG is taken into account considering the
scattering by the pin when the field given in Equation (20) (or (21)),
considered for ρ = a, is impinging. To this end on the surface of the
inner conductor is imposed the following condition:

ρ̂×∇× (Hi + Hs) = −jωεrε0Zs (Hi+Hs)t (23)

where the pedice t indicates tangential component respect to ρ̂, and
pedices i and s indicate incident and scattered fields. The field
scattered by the pinis expressed as a sum of outgoing cylindrical
functions

Hs (r) =
∑
n,m

Am
n (∇× ẑ) H(2)

n (kρmρ) e−jn(φ−φ′)

[(
1− ΓTM

c

) (
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c e−2jkzmhejkzmz
)

DTM ′ (kρm)

]
(24)

where the index n indicates the sum over cylindrical harmonics. In (24)
the same dependence along z of the Green’s function has been taken.
Coefficients Am

n are calculated testing both sides of Equation (22) with
functions F TM . One finds
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n = − V

log
(

b
a

)jωε
π

2
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] (
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Zs

η0

)
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where

Zm=
jωεrε0

kρm
Zs (26)

The expression of the total field radiated by the probe into the parallel
plate is the sum of (24) and (21) (for b > ρ > a) or (22) (for ρ > b).

Self admittance is computed considering the reaction between the
total field and the magnetic current source

Yin = −

∫

Sp

drH (r) ·M (r)

|V |2 (27)

in which Sp is the annular region occupied by the magnetic current.
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Expression (27) gives
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Input impedance is straightforwardly computed as Zin = 1/Yin.

4. NUMERICAL RESULTS

In this section, numerical results for the input impedance of the
parallel plate waveguide with different conductivities are presented and
discussed. A first check for the expression (28) is obtained considering
the lossless case, derived for σ → ∞ and reported in Appendix A. As
can be seen, the input impedance for the lossless case coincides with
the one given in [14]. Formula (28) has been implemented in MATLAB
code. Figure 3, Figure 4 and Figure 5 present the plots of the input
impedance as a function of the thickness of the PPWG. Results refer to
the case considered in [4], in which, however, only the lossless case was
taken into account. A frequency of 2 GHz with εr = 2.2 was considered
as in [4]. A 50 ohm coaxial probe with inner radius a = 0.635mm, outer
radius b = 2.2mm and filled with a dielectric with εr = 2.2 was used to
feed the PPWG. Figure 3 shows the comparison of the input impedance
as a function of the thickness h simulated with HFSS and obtained
using expression (28) and using roots of (13) calculated with a Muller
search in the complex plane. Three values of conductivity have been
taken (5e7 S/m, 5e4 S/m, 5e3 S/m) in the range measured in [20]. As
can be seen, results are in very good agreement. Notice that in HFSS
simulations, a layered impedance condition has been used to terminate
the PPWG. As it was already pointed out in [4], this condition does
not provide a perfect matching, so slightly different values are obtained
for different PPWG radius. Plots in Figure 3 have been obtained with
a radius of 300mm, which roughly corresponds to three wavelengths
at the considered frequency. Results in Figure 3 show that for lower
values of σ the impedance experiences a more significant change. This
can be explained considering that the penetration depth is inversely
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proportional to
√

σ. So for lower conductivities the field penetrates
considerably more into the conductor. In the analysis presented in
the paper this effect is taken into account by the surface impedance
Zs. In fact, Zs is inversely proportional to

√
σ as well, and it also

changes more significantly for lower values of σ. In the previous section,
formula (28) gives a rigorous expression of the input admittance of the
PPWG. However, two approximations can be considered. The first
one is to use the approximated expressions of the roots presented in
formula (14) in place of the exact roots obtained with a numerical
method; the second one is to neglect the electric current contribution.
To show the effects of these approximations and to determine their
range of validity, Figure 4 presents the comparison with the input
impedance, given by formula (28), using residues obtained numerically
and the impedance using the approximated expression of the residues
in (14). As it could be expected, differences are more evident for
low conductivity. The same effect is observed in Figure 5 where we
compare plots obtained with formula (28), in which both magnetic and
electric sources are considered, with cases where the electric current
contribution is neglected, i.e., in which Zs = 0. Results in Figure 5
show that for σ smaller than 5e4 S/m electric currents are no more
negligible.

Figure 3. Plots of input impedance as a function of the PPWG
thickness obtained with HFSS and expression (28). Residues are
obtained solving Equation (13) numerically. Results were obtained
at a frequency of 2 GHz and with εr = 2.2. Conductivity σ is in S/m.



164 Amendola, Angiulli, and Arnieri

Figure 4. Plots of input impedance as a function of the thickness
of the PPWG. Curves refer to approximated and numerical values of
residues. Results were obtained at a frequency of 2GHz and with
εr = 2.2. Conductivity σ is in S/m.

Figure 5. Plots of the input impedance as a function of the PPWG
thickness. Comparison between the case with equivalent magnetic and
electric current source and with magnetic current source only. Results
were obtained at a frequency of 2 GHz and with εr = 2.2. Conductivity
σ is in S/m.
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5. CONCLUSIONS

A closed form expression for the input impedance of a coaxial probe
radiating into a parallel plate waveguide has been present. At a
variance of formulas known in literature, the expression takes into
account both conducting and dielectric losses. The effects of neglecting
the electric contribution to the equivalent source distribution have been
pointed out. Also, the range of validity of a first approximation for the
residues has been underlined. Results show that when conductors with
a σ lower than 104 S/m are considered equivalent electric current have
to be considered and a numerical evaluation of the residues is needed.

APPENDIX A. LOSSLESS CASE

Expression (28) is easily tested against and equivalent expression given
in [14] for the lossless case considering the limit of (28) as σ →∞.

In particular considering that

ΓTM → −1

kzm → mπ

h

kρm →
√

k2 −
(mπ

h

)2

DTM ′
(kρm) → 2jk2

ρmh

One has

Yin → −j
ωεrε02π2

log
(

b
a

)2

∑
m

2j

π
log

(
b

a

)

+ [J0 (kρmb) Y0 (kρma)− J0 (kρma)Y0 (kρmb)]
H

(2)
0 (kρmb)

H
(2)
0 (kρma)

as was reported in [14].
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