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Abstract—Depending on the aperture extension (AE), a high
performance three-dimensional (3D) near-field (NF) source localization
algorithm is proposed with the nonuniform linear array (NLA).
The proposed algorithm first generates some fictitious sensors to
extend the array aperture by constructing a new Toeplitz matrix,
and then obtains a two-dimensional (2D) covariance matrix which
only contains the elevation angle and range parameters, and another
3D covariance matrix which contains the elevation/azimuth angle
and range parameters. Then based on the 2D covariance matrix,
both the elevation angle and range parameters are estimated by
using the NLA along the Z axis. With the estimates of both the
elevation angle and range parameters and combining the 3D covariance
matrix, the estimates of the azimuth angle parameters are obtained
using the NLA along the Y axis. The proposed algorithm has
four main merits: i) unlike some classical NF source localization
algorithms, the quarter-wavelength sensor spacing constraint is not
required and more sources can be located simultaneously by the
proposed algorithm; ii) the 3D parameters of the proposed algorithm
are paired automatically; iii) the 3D search required in conventional
3D multiple signal classification (MUSIC) algorithm is replaced with
only one-dimensional (1D) search, and thus the computational burden
is reduced; iv) the proposed algorithm gains superior parameter
estimation accuracy and resolution.
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1. INTRODUCTION

Passive source localization using an array of sensors is an important
topic in various signal processing fields, including radar, sonar, speech,
communications, etc. [1]. For the 1D and 2D angles estimation
of the far-field (FF) sources, many algorithms [2–11] have been
proposed. However, when a source is in the Fresnel region of
the array aperture [2–5], those algorithms in [2–11] will fail to
locate sources. Therefore, for the NF source localization issue,
some other algorithms [12–25] are also developed. More specifically,
for 2D NF sources localization, Swindlehurst and Kailath proposed
a spatial Wigner distribution approach [12], however, this method
has a less-than-ideal estimation accuracy. Later on, Huang and
Barkat [13] developed a 2D MUSIC method with high resolution, but
it requires 2D search and thus has huge amount of computations. In
addition, some other algorithms, such as the higher order ESPRIT-
Like algorithm [14], the subspace-based (SB) algorithm [15], the two
steps (TS) algorithm [16], and the weighted linear prediction (WLP)
algorithm [17] are also presented to locate the NF source.

However, in many practical applications, different sources are
located at different planes, and thus the 2D NF localization methods
are no longer applicable [18–25] for 3D NF sources. Accordingly,
some valuable algorithms [18–25] have been proposed for 3D NF
sources localization. In [18, 19], based on cumulant matrices, a 3D
NF source localization algorithm with a centro-symmetric cross array
in the X-Y plane was presented, while it has a large amount of
computation, is applicable only for non-Gaussian sources and requires
a parameters pair-matching procedure. With a centro-symmetric cross
array in the X-Y plane, R. N. Challa et al. presented a second-order-
statistics (SOS) based solution [20] to locate the 3D NF sources, while
it also requires a parameters pair-matching procedure. In [21, 22],
at first, a 3D MUSIC localization algorithm is proposed and then
improved so as to decrease the computational cost. Lee et al. [23]
proposed an efficient localization algorithm for three uniform linear
arrays (ULAs) in a Y-shape, whereby source locations are estimated
by solving three nonlinear algebraic equations using three 1D incident
angles obtained from subarrays under the FF assumption. In [24],
with a uniform circular array (UCA), a path-following algorithm
for localizing 3D NF source was proposed. In [25], based on the
expectation and maximization method, a maximum likelihood 3D NF
source localization algorithm was developed which requires a huge
amount of computations.

The above-mentioned 2D [14–17] and 3D [18–25] NF source



Progress In Electromagnetics Research B, Vol. 55, 2013 299

localization algorithms have one or more main constraints: i) the
number of source that they can deal with at most is not more than
the half of number of array sensors; ii) the inter-sensor spacing of
the array is within the quarter-wavelength of sources; iii) the extra
parameters pair-matching procedure is required; iv) the computational
cost is large.

To overcome the shortages of the conventional NF source
localization algorithms [14–25], this paper develops a novel AE-based
NF localization algorithm to jointly estimate the elevation/azimuth
angle and range parameters of the 3D NF sources. Firstly, the
proposed algorithm inserts some “zero” elements into the output
vector z̄(t) of the NLA along Z axis so as to constructs a new array
output vector z̄′(t) which is corresponding to a ULA. Considering
that the covariance matrix R̄z = E{z̄′(t)z̄′H(t)} is not a Hermitain
Toeplitz matrix, by replacing each element with the average value
of all elements on the same each diagonal line which is paralleled
to the main diagonal line, a new Hermitain Toeplitz matrix R̄zT is
constructed from R̄z, and this Hermitain Toeplitz matrix is proved
to be equal to the covariance matrix Rz which is generated by a
ULA. Secondly, based on the constructed matrix R̄zT , the elevation
angle parameters are extracted and then are estimated by means of
1D search, and with the estimated elevation angle parameters, a free-
search method is introduced to obtain the range parameter estimates of
sources. Thirdly, similar to the constructed process of the Hermitain
Toeplitz matrix R̄zT , based on the NLA along Y axis a Hermitain
Toeplitz matrix R̄yT is also constructed and proved to be equal to
the covariance matrix Ry which is generated by a ULA. Finally, with
the elevation angle and range estimates, the estimation process of the
azimuth angle parameters is achieved using the matrix R̄yT . The
main contributions of this paper include: i) a special sparse array is
introduced to extend the array aperture so as to improve resolution
ability through the construction of the new Toeplitz matrix, ii) only
SOS rather than higher-order statistics (HOS), and 1D search are used
to estimate the elevation/azimuth angles parameters (Note that the
range parameters estimation does not require any search procedure),
iii) the 3D parameters can be paired automatically. Compared
with the conventional methods, the proposed algorithm has moderate
computation complexity, and provides superior resolution ability and
improved parameter estimation accuracy.

The following notations will be used throughout. Superscripts T ,
H and ∗ represent the transpose, conjugate transpose and complex
conjugate respectively, while arg(·) is used to calculate phase.
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2. DATA MODEL

2.1. Review of Data Model of the Uniform Linear Array

Consider K narrowband, independent radiating NF sources impinge
on a ULA with 4M − 1 sensors (Fig. 1). Let the array center be the
phase reference point as [14–20].
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Figure 1. The array configuration.

The baseband signal representation of the t-th snapshot of the
ULA output measured is expressed as

z(t) =
K∑

k=1

az(θk, rk)sk(t) + nz(t) = Azs(t) + nz(t) (1)

where z(t) = [z−2M+1(t), . . . , z0(t), . . . , z2M−1(t)]T is a (4M − 1)× 1
complex vector of observations at time t from 4M − 1 sensors,
s(t) = [s1(t), . . . , sK(t)]T is a K × 1 NF sources vector, nz(t) =
[nz,−2M+1(t), . . . , nz,0(t), . . . , nz,2M−1(t)]T is a array noise vector, and
az(θk, rk) is the steering vector [14–20] represented by az(θk, rk) =
[az,−2M+1(θk, rk), . . . , az,0(θk, rk), . . . , az,2M−1(θk, rk)]T with

az(θk, rk) = az(ςz,k, ξz,k)

=
[
ej[(−2M+1)ςz,k+(−2M+1)2ξz,k], ej[(−2M+2)ςz,k+(−2M+2)2ξz,k],

ej[(−2M+3)ςz,k+(−2M+3)2ξz,k], . . . , ej[mςz,k+m2ξz,k], . . . ,

ej[(2M−2)ςz,k+(2M−2)2ξz,k], ej[(2M−1)ςz,k+(2M−1)2ξz,k]
]T

(2)
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where

ςz,k = −2πd

λ
cos θk (3)

ξz,k =
πd2

λrk
sin2 θk (4)

λ is the signal carrier wavelength, θk ∈ [0, π] and rk ∈
(0.62(D3/λ)1/2, 2D2/λ) [14–17] with D representing the array aperture
denote the elevation angle and range of the k-th source, respectively,
and d is the inter-sensor spacing between the ULA sensors. Az is the
array manifold matrix formed by the steering vectors and is given by

Az = [az(ςz,1, ξz,1),az(ςz,2, ξz,2), . . . ,az(ςz,K , ξz,K)] (5)

Based on the definition of the array output covariance matrix [2–
25], it is well known that the array output covariance matrix Rz of the
ULA is a Hermitain Toeplitz matrix, and can be expressed as

Rz =(rz,ij)=E
{
z(t)zH(t)

}
=




ρz,1 ρ∗z,2 ρ∗z,3 . . . ρ∗z,4M−1
ρz,2 ρz,1 ρ∗z,2 . . . ρ∗z,4M−2

ρz,3 ρz,2 ρz,1
. . .

...
...

...
. . . . . . ρ∗z,2

ρz,4M−1 ρz,4M−2 . . . ρz,2 ρz,1




(6)

where rz,ij denotes the (i, j)-th element of the matrix Rz and is given
by

rz,ij =
∑K

k=1
σ2

s,kaz[i](θk, rk)a∗z[j](θk, rk) + σ2
nδij ,

1 ≤ i, j ≤ 4M − 1, 1 ≤ k ≤ K (7)

where az[i](θk, rk) is the i-th element of the vector az(θk, rk), σ2
s,k the

power of the k-th source, and δij the Dirac delta function. Equation (6)
shows the relationship between ρz,i and rz,ij as

ρz,i = rz,i1, 1 ≤ i ≤ 4M − 1 (8)

2.2. Data Model of the Cross Array Composed of the NLA

In this paper, a cross array composed of two NLA is designed to locate
the 3D NF sources. The cross array consists of two symmetric NLA
with 2M + 1 sensors along Y and Z axis, respectively (Fig. 2). In
each branch NLA, both d(−M, −M + 1) and d(M − 1, M) are equal
to d, and d(m, m + 1), m ∈ [−M + 1,M − 2] is equal to 2d, where
d(m, m + 1) is defined as the inter-sensor spacing between the m-th
and (m+1)-th sensors. In Fig. 2, the red and blue solid circles denote
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Figure 2. The array configuration structure.

the real sensors, the green solid square denotes the public real sensor
between the NLAs at Z and Y axes, and the red and blue hollow circles
denote the fictitious sensors (namely there is no sensor, and the output
signal of the fictitious sensor is “zero”).

Let the array center be phase reference point (see Fig. 2), the NLA
output aligned with Z axis is given by

z̄(t) =
K∑

k=1

āz(θk, rk)sk(t) + n̄z(t) = Āzs(t) + n̄z(t) (9)

where z̄(t) = [z̄−M (t), . . . , z̄0(t), . . . , z̄M (t)]T is a (2M +
1) × 1 complex vector from 2M + 1 sensors along Z axis,
n̄z(t) = [n̄z,−M (t), . . . , n̄z,0(t), . . . , n̄z,M (t)]T the array noise vec-
tor, and āz(θk, rk) the steering vector represented by āz(θk, rk) =
[āz,−M (θk, rk), . . . , āz,0(θk, rk), . . . , āz,M (θk, rk)]T with

āz(θk, rk) = āz(ςz,k, ξz,k)

=
[
ej[(−2M+1)ςz,k+(−2M+1)2ξz,k], ej[(−2M+2)ςz,k+(−2M+2)2ξz,k],

ej[(−2M+4)ςz,k+(−2M+4)2ξz,k], . . . , ej[(−2)ςz,k+(−2)2ξz,k],

1, ej[(2)ςz,k+(2)2ξz,k], . . . , ej[(2M−4)ςz,k+(2M−4)2ξz,k],

ej[(2M−2)ςz,k+(2M−2)2ξz,k], ej[(2M−1)ςz,k+(2M−1)2ξz,k]
]T

(10)

and
Āz = [āz(ςz,1, ξz,1), āz(ςz,2, ξz,2), . . . , āz(ςz,K , ξz,K)] (11)
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Similarly, the NLA output along Y axis can be expressed as

y(t) =
K∑

k=1

ay(θk, rk, ϕk)sk(t) + ny(t) = Ays(t) + ny(t) (12)

where θk, rk and ϕk denote the elevation angle, range and azimuth an-
gle of k-th NF source, respectively. y(t)=[y−M (t), . . . , y0(t), . . . , yM (t)]T
is a (2M + 1) × 1 complex vector from 2M + 1 sensors
along Y axis, and ny(t) = [ny,−M (t), . . . , ny,0(t), . . . , ny,M (t)]T is the
array noise vector, and

ay(θk,rk,ϕk) = ay(ςy,k, ξy,k)

=
[
ej[(−2M+1)ςy,k+(−2M+1)2ξy,k], ej[(−2M+2)ςy,k+(−2M+2)2ξy,k],

ej[(−2M+4)ςy,k+(−2M+4)2ξy,k], . . . , ej[(−2)ςy,k+(−2)2ξy,k],

1, ej[(2)ςy,k+(2)2ξy,k], . . . , ej[(2M−4)ςy,k+(2M−4)2ξy,k],

ej[(2M−2)ςy,k+(2M−2)2ξy,k], ej[(2M−1)ςy,k+(2M−1)2ξy,k]
]T

(13)

where

ςy,k = −2πd

λ
sin θk sinϕk (14)

ξy,k =
πd2

λrk

(
1− sin2 θk sin2 ϕk

)
(15)

and
Ay = [ay(ςy,1, ξy,1),ay(ςy,2, ξy,2), . . . ,ay(ςy,K , ξy,K)] (16)

The objective of this paper is to jointly estimate the elevation
angle, range and azimuth angle {θk, rk, ϕk} for k = 1, . . . , K.
Throughout the paper, the following hypotheses are assumed to hold:

1) The incoming source signals are statistically independent, zero-
mean complex Gaussian random processes as [14–20]; 2) The noise is
zero-mean, complex circular Gaussian, and spatially uniformly white,
is statistically independent of all the signals and the noise variance is
σ2

n as [14–20]; 3) For unique estimation of the bearing parameters, we
require d(M − 1,M) = d(−M,−M + 1) = d ≤ λ/4 and d(m, m + 1) =
2d ≤ λ/2 for m ∈ [−M + 1,M − 2], which is different from the
algorithms in [14–20]; 4) The number of sources satisfies K ≤ 2M − 1,
which is also different from the algorithms in [14–20].
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3. PROPOSED ALGORITHM

3.1. Array Aperture Extension

Firstly, we construct a new Hermitain Toeplitz matrix from the
covariance matrix generated by the NLA with 2M +1 sensors along Z
axis.

Because the fictitious sensors (the sensors which are denoted by
the red and blue hollow circles in Fig. 2) are virtually nonexistent,
we assume that the output signal of each fictitious sensor is “zero”.
Thus, based on the real and fictitious sensors, a new vector z̄′(t) can
be constructed from z̄(t) as

z̄′(t) =
[
z̄′−2M+1(t), z̄

′
−2M+2(t), z̄

′
−2M+3(t), . . . ,

z̄′−1(t), z̄
′
0(t), z̄

′
1(t), . . . , z̄

′
2M−2(t), z̄

′
2M−1(t)

]T

=
[
z̄−M (t), z̄−M+1(t), 0, z̄−M+2(t), . . . ,

0, z̄0(t), 0, . . . , z̄M−2(t), 0, z̄M−1(t), z̄M (t)
]T (17)

It is noted that each 0 element in vector z̄′(t) is one to one
corresponding to each fictitious sensor.

Similar to the covariance matrix Rz, the covariance matrix R̄z

can be defined as

R̄z =
(
r̄z,ij

)
= E

{
z̄′(t)z̄′H(t)

}

=




ρz,1 ρ∗z,2 0 ρ∗z,4 . . . ρ∗z,4M−4 0 ρ∗z,4M−2 ρ∗z,4M−1
ρz,2 ρz,1 0 ρ∗z,3 . . . ρ∗z,4M−5 0 ρ∗z,4M−3 ρ∗z,4M−2
0 0 0 0 . . . 0 0 0 0

ρz,4 ρz,3 0 ρz,1 . . . ρ∗z,4M−7 0 ρ∗z,4M−5 ρ∗z,4M−4
...

...
...

...
. . .

...
...

...
...

ρz,4M−4 ρz,4M−5 0 ρz,4M−7 . . . ρz,1 0 ρ∗z,2 ρ∗z,4
0 0 0 0 . . . 0 0 0 0

ρz,4M−2 ρz,4M−3 0 ρz,4M−5 . . . ρz,3 0 ρz,1 ρ∗z,2
ρz,4M−1 ρz,4M−2 0 ρz,4M−4 . . . ρz,4 0 ρz,2 ρz,1




(18)

where r̄z,ij denotes the (i, j)-th element of R̄z.
From (18), we can observe that the matrix R̄z has not the

Hermitain Toeplitz structure unlike Rz, but at least one element is
nonzero on its each diagonal line, which is paralleled to the main
diagonal line, and each nonzero element on each diagonal line is equal
to each other (Note that this result is determined by the structure
of the array in Fig. 2 and is easy to be derived and validated).
Meanwhile, from Equation (6), we can know that the matrix Rz has
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8M − 1 diagonal lines which are paralleled to the main diagonal line.
Therefore, we can construct a Hermitain Toeplitz matrix [7] R̄zT from
R̄z

R̄zT =




ρzT,1 ρ∗zT,2 ρ∗zT,3 ρ∗zT,4 . . . ρ∗zT,4M−4

ρzT,2 ρzT,1 ρ∗zT,2 ρ∗zT,3 . . . ρ∗zT,4M−5

ρzT,3 ρzT,2 ρzT,1 ρ∗zT,2 . . . ρ∗zT,4M−6

ρzT,4 ρzT,3 ρzT,2 ρzT,1 . . . ρ∗zT,4M−7
...

...
...

...
. . .

...
ρzT,4M−4 ρzT,4M−5 ρzT,4M−6 ρzT,4M−7 . . . ρzT,1

ρzT,4M−3 ρzT,4M−4 ρzT,4M−5 ρzT,4M−6 . . . ρzT,2

ρzT,4M−2 ρzT,4M−3 ρzT,4M−4 ρzT,4M−5 . . . ρzT,3

ρzT,4M−1 ρzT,4M−2 ρzT,4M−3 ρzT,4M−4 . . . ρzT,4

ρ∗zT,4M−3 ρ∗zT,4M−2 ρ∗zT,4M−1

ρ∗zT,4M−4 ρ∗zT,4M−3 ρ∗zT,4M−2

ρ∗zT,4M−5 ρ∗zT,4M−4 ρ∗zT,4M−3

ρ∗zT,4M−6 ρ∗zT,4M−5 ρ∗zT,4M−4

...
...

...
ρ∗zT,2 ρ∗zT,3 ρ∗zT,4

ρzT,1 ρ∗zT,2 ρ∗zT,3

ρzT,2 ρzT,1 ρ∗zT,2

ρzT,3 ρzT,2 ρzT,1




(19)

and define ρzT,i as

ρzT,i =
1

Mi

4M−1∑

n=i

r̄z,(n)(n+1−i) =ρz,i, 1≤ i≤4M−1, i≤n≤4M−1 (20)

where Mi is the number of nonzero elements on the i-th lower left
diagonal line, which is paralleled to the main diagonal line, of the
matrix R̄z. Note that all zero elements of the covariance matrix R̄z

are replaced with the corresponding to ρzT,i or ρ∗zT,i (please see the
element remarked by the underline in Equation (19)).

After comparing (6), (8) and (19), (20), one can easily find
Rz = R̄zT (21)

and thus similar to (1), (21) can be obtained as

Rz = E
{

[Azs(t) + nz(t)][Azs(t) + nz(t)]H
}

= R̄zT = E
{[

A′
zs(t) + n′z(t)

][
A′

zs(t) + n′z(t)
]H

}
(22)
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From (22), one can easily obtain the following results:

A′
z =

[
a′z(θ1, r1),a′z(θ2, r2), . . . ,a′z(θK , rK)

]

= [az(θ1, r1),az(θ2, r2), . . . ,az(θK , rK)] = Az (23)

a′z(ςz,k, ξz,k)

=
[
ej[(−2M+1)ςz,k+(−2M+1)2ξz,k], ej[(−2M+2)ςz,k+(−2M+2)2ξz,k],

ej[(−2M+3)ςz,k+(−2M+3)2ξz,k], . . . , ej[mςz,k+m2ξz,k], . . . ,

ej[(2M−2)ςz,k+(2M−2)2ξz,k], ej[(2M−1)ςz,k+(2M−1)2ξz,k]
]T

= az(ςz,k, ξz,k) = az(θk, rk) (24)

n′z(t) =
[
n′z,−2M+1(t), . . . , n

′
z,0(t), . . . , n

′
z,2M−1(t)

]T = nz(t) (25)

Therefore, we can know from Equations (22)–(25) that the new
matrix R̄zT generated by the NLA with 2M + 1 sensors along Z axis
is equivalent to the covariance matrix Rz generated by the ULA with
4M − 1 sensors along Z axis; in other words, the constructed matrix
R̄zT which is from a NLA with 2M + 1 sensors along Z axis can be
considered as the covariance matrix generated by a ULA with 4M − 1
sensors along Z axis.

Then, we construct another new Hermitain Toeplitz matrix from
the covariance matrix by generated by the NLA with 2M + 1 sensors
along Y axis.

Similar to the constructed procedure of the matrix R̄zT , based on
the NLA with 2M + 1 sensors along Y axis, we first construct a new
vector ȳ′(t) from y(t) as

ȳ′(t) =
[
ȳ′−2M+1(t), ȳ

′
−2M+2(t), ȳ

′
−2M+3(t), . . . ,

ȳ′−1(t), ȳ
′
0(t), ȳ′1(t), . . . , ȳ

′
2M−2(t), ȳ

′
2M−1(t)

]T

= [y−M (t), y−M+1(t), 0, y−M+2(t), . . . , 0, y0(t), 0,

. . . , yM−2(t), 0, yM−1(t), yM (t)]T (26)

And, the covariance matrix R̄y can be defined as

R̄y = (r̄y,ij) = E
{
ȳ′(t)ȳ′H(t)

}
(27)

where r̄y,ij denotes the (i, j)-th element of the matrix R̄y.
As the matrix R̄z, R̄y has also not the Hermitain Toeplitz

structure, and thus similar to the constructed procedure of R̄zT , we
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can construct a Hermitain Toeplitz matrix R̄yT from R̄y as

R̄yT =




ρy,1 ρ∗y,2 ρ∗y,3 . . . ρ∗y,4M−1
ρy,2 ρy,1 ρ∗y,2 . . . ρ∗y,4M−2

ρy,3 ρy,2 ρy,1
. . .

...
...

...
. . . . . . ρ∗y,2

ρy,4M−1 ρy,4M−2 . . . ρy,2 ρy,1




(28)

As (21), one easily find

Ry = E
{
y(t)yH(t)

}
= E

{
[Ays(t) + ny(t)][Ays(t) + ny(t)]H

}

= R̄yT = E
{

[A′
ys(t) + n′y(t)][A′

ys(t) + n′y(t)]H
}

(29)

where
A′

y =
[
a′y(θ1, r1, ϕ1),a′y(θ2, r2, ϕ2), . . . ,a′y(θK , rK , ϕK)

]

=
[
a′y(ςy,1, ξy,1),a′y(ςy,2, ξy,2), . . . ,a′y(ςy,K , ξy,K)

]
= Ay (30)

a′y(ςy,k, ξy,k)

=
[
ej[(−2M+1)ςy,k+(−2M+1)2ξy,k], ej[(−2M+2)ςy,k+(−2M+2)2ξy,k],

ej[(−2M+3)ςy,k+(−2M+3)2ξy,k], . . . , ej[mςy,k+m2ξy,k], . . . ,

ej[(2M−2)ςy,k+(2M−2)2ξy,k], ej[(2M−1)ςy,k+(2M−1)2ξy,k]
]T

= ay(ςy,k, ξy,k) (31)

n′y(t) =
[
n′y,−2M+1(t), . . . , n

′
y,0(t), . . . , n

′
y,2M−1(t)

]T = ny(t) (32)

Likewise, similar to the constructed matrix R̄zT , the constructed
matrix R̄yT which is from a NLA with 2M + 1 sensors along Y axis
can be considered as the covariance matrix generated by a ULA with
4M − 1 sensors along Y axis.

3.2. Elevation Angle Estimation

Based on (6) and (7), the anti-diagonal elements of R̄zT (Note that
Rz = R̄zT has been proved above) can be given [16] by

ri,4M−i =
K∑

k=1

σ2
s,ke

−j2(2M−i)ςz,k +σ2
nδi,4M−i, i=1, 2, . . . , 4M − 1 (33)

Hence, from (33) we can form a (4M − 1) × 1 vector x for all
i = 1, 2, . . . , 4M − 1 as

x =
[
x(−2M + 1), x(−2M + 2), . . . , x(−1), x(0),
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x(1), . . . , x(2M − 2), x(2M − 1)
]T

=

[
K∑

k=1

σ2
ske

−j(2M−1)ς̄z,k , . . . ,
K∑

k=1

σ2
ske

−jς̄z,k ,
K∑

k=1

σ2
sk

+σ2
n,

K∑

k=1

σ2
ske

jς̄z,k , . . . ,

K∑

k=1

σ2
ske

j(2M−1)ς̄z,k

]T

(34)

where x(i) is i-th element of the vector x and ς̄z,k = 2ςz,k. Note that
it is easy to find that the vector x only contains the elevation angle
information. Next, we divide the vector x into two subvectors x1 and
x2.

x1 = [x1(0), x1(1), . . . , x1(2M − 1)]T

=

[
K∑

k=1

σ2
s,k + σ2

n,

K∑

k=1

σ2
s,ke

jς̄z,k , . . . ,

K∑

k=1

σ2
s,ke

j(2M−1)ς̄z,k

]T

(35)

x2 = [x2(−2M + 1), . . . , x2(−1), x2(0)]T

=

[
K∑

k=1

σ2
s,ke

−j(2M+1)ς̄z,k , . . . ,

K∑

k=1

σ2
s,ke

−jς̄z,k ,

K∑

k=1

σ2
s,k + σ2

n

]T

(36)

where x1(i) and x2(i) denote the i-th element of the vectors x1 and
x2, respectively.

We construct a 2M ×2M Toeplitz matrix Rx1 whose first column
and row are x1 and xH

1 , respectively

Rx1 =




x1(0) x∗1(1) . . . x∗1(2M − 1)

x1(1) x1(0)
. . .

...
... . . .

. . . x∗1(1)
x1(2M − 1) . . . x1(1) x1(0)


=BRSBH + N̄(37)

and based on Equation (35), we have

B =
[
b(ς̄z,1),b(ς̄z,2), . . . ,b(ς̄z,K)

]
(38)

b(ς̄z,k) =
[
1, ejς̄z,k , . . . , ej(2M−1)ς̄z,k

]T
(39)

RS = E
{
s(t)sH(t)

}
(40)

N̄ = diag
{

σ2
n, 0, . . . , 0

}
(41)

Likewise, we construct another 2M × 2M Toeplitz matrix Rx2
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whose first column and row are x2 and xH
2 in reverse order, respectively

Rx2 =




x2(0) x2(−1) . . . x2(−2M + 1)

x∗2(−1) x2(0)
. . .

...
... . . .

. . . x2(−1)
x∗2(−2M + 1) . . . x∗2(−1) x2(0)


 (42)

According to Equations (35) and (36) and comparing Equa-
tions (37) and (42), one can find that the matrix Rx2 also satisfies
Rx2 = BRSBH + N̄ as Rx1 = BRSBH + N̄, which shows that Rx1

and Rx2 are identical

Rx1 = Rx2 (43)

Further, we can obtain the eigenvalue decomposition of Rx1 or
Rx2 as

Rx1 = Rx2 = UΛUH = UsΛsUH
s + UnΛnUH

n

= [u1, . . . ,u2M ]diag{λ1, . . . , λ2M}[u1, . . . ,u2M ]H (44)

where Λ is the diagonal matrix with the eigenvlues arranged as
λ1 ≥ . . . ≥ λK ≥ λK+1 = . . . = λ2M ; the K × K diagonal
matrix Λs is composed of eigenvalues λ1, . . . , λK ; the 2M ×K matrix
Us, which spans the signal subspace of Rx1 or Rx2 , consists of the
eigenvectors related to u1, . . . , uK . Similarly, the (2M−K)×(2M−K)
diagonal matrix Λn is composed of eigenvalues λK+1, . . . , λ2M , and
the (2M) × (2M −K) matrix Un consists of the eigenvectors related
to uK+1, . . . , u2M , spanning the noise subspace of Rx1 or Rx2 .

Note that it can be seen from the matrixes Rx1 and Rx2 that the
diagonal matrix N̄ will not affect the eigenvalue decomposition of Rx1

or Rx2 .
Finally, the elevation angles of the NF sources can be obtained by

finding the K peaks from the following 1D spectrum function:

P (ς̄z) = 1
/[

bH(ς̄z)UnUH
n b(ς̄z)

]
(45)

By means of only 1D search over θ, the estimates θ̂k =
arccos(−λς̂z,k/(2πd)), k = 1, . . . , K of the elevation angles θk, k =
1, . . . , K corresponding to the estimates ς̂z,k, k = 1, . . . , K of all NF
sources can be obtained.

Note that the elevation angles estimation of the multiple NF
sources can be implemented through only once 1D search.
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3.3. Range Estimation

It can be observed from (24) that virtual steering vector a′z(ςz,k, ξz,k)
can be written into another form as:

a′z(ςz,k, ξz,k) = a′z,1(ςz,k)a′z,2(ξz,k) (46)

where a′z,1(ςz,k) is a (4M − 1) × (2M) matrix and only contains the
elevation angle parameters information.

a′z,1(ςz,k) =




ej(−2M+1)ςz,k 0 . . . 0

0 ej(−2M+2)ςz,k
. . .

...
... 0

. . . 0
0 . . . 0 1
... 0 . . . 0

0 ej(2M−2)ςz,k . . .
...

ej(2M−1)ςz,k 0 . . . 0




(47)

a′z,2(ξz,k) is a 2M×1 matrix and contains the azimuth angle and range
parameters information.

a′z,2(ξz,k) =
[
ej(−2M+1)2ξz,k , ej(−2M+2)2ξz,k , . . . , 1

]T
(48)

To estimate ξz,k, similar to (44), we eigendecompose R̄zT to
construct the (4M − 1) × (4M − 1 − K) noise-subspace matrix Ūn,
whose columns are the (4M − 1)× 1 eigenvectors associated with the
(4M − 1−K) smallest eigenvalues of R̄zT .

Based on the conventional MUSIC algorithm and substituting
estimates ς̂z,k into (24) (Equation (24) is equal to Equation (2)) we
can find the minima of the following function:

ξ̂z,k , min
ξz

{
a′Hz (ς̂z,k, ξz)ŪnŪH

n a′z(ς̂z,k, ξz)
}

= min
ξz

{
a′Hz,2(ξz)a′

H
z,1(ς̂z,k)ŪnŪH

n a′z,1(ς̂z,k)a′z,2(ξz)
}

(49)

the minimal value of which indicates estimation ξ̂z,k. To avoid such a
search in (49), we derive the following method.

Note that in fact, (49) implies that a′z,2(ξz,k) is the eigen-
vector corresponding to the smallest eigenvalue of Hermitian ma-
trix a′Hz,1(ς̂z,k)ŪnŪH

n a′z,1(ς̂z,k) [9]. Therefore, based on the eigen-
vector a′z,2(ξz,k) obtained from the eigenvalue decomposition of
a′Hz,1(ς̂z,k)ŪnŪH

n a′z,1(ς̂z,k), we define a (2M − 2)-dimensional vector
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e, the i-th element of which has the following form:

e(i) =

(
a′z,2

(
ξ̂z,k

)
[2M − i]

)
·
(
a′z,2

(
ξ̂z,k

)
[2M ]

)
(
a′z,2

(
ξ̂z,k

)
[2M + 1− i]

)
·
(
a′z,2

(
ξ̂z,k

)
[2M − 1]

)

= ej2(i−1)ξ̂z,k , i = 1, . . . , 2M − 2 (50)

where a′z,2(ξ̂z,k)[2M−1] denotes the (2M−1)-th element of a′z,2(ξ̂z,k).
From (49), ξ̂z,k can be easily obtained as follows:

ξ̂z,k =
1

2(2M − 3)

2M−3∑

i=1

arg
(

e(i + 1)
e(i)

)
(51)

3.4. Azimuth Angle Estimation

We can see from (29) and (30) that R̄yT contains 3D parameters,
namely elevation/azimuth angles and range.

Since the constructed matrix R̄yT , which is from a NLA with
2M + 1 sensors along Y axis, can be considered as the covariance
matrix generated by a ULA with 4M − 1 sensors along Y axis, thus
the eigendecomposition of the constructed matrix R̄yT can be written
as

R̄yT = EsΩsEH
s + EnΩnEH

n (52)

where Ωs and Ωn are the diagonal matrices that contain the signal-
and noise-subspace eigenvalues of R̄yT , respectively, whereas Es and
En are the orthonormal matrices that contain the signal- and noise-
subspace eigenvectors of R̄yT , respectively. Based on the MUSIC
method and (31), a 3D MUSIC spectrum function is given by:

P (θ, r, ϕ) = 1
/[

a′Hy (θ, r, ϕ)EnEH
n a′y(θ, r, ϕ)

]
(53)

With the elevation angle and range estimates {θ̂k, r̂k}, k =
1, . . . , K, (53) can be rewritten as

P (ϕ) = 1/[a′Hy (θ̂k, ϕ, r̂k)EnEH
n a′y(θ̂k, ϕ, r̂k)], k = 1, . . . , K (54)

By means of 1D search over ϕ, the estimates ϕ̂k, k = 1, . . . , K of
the azimuth angles ϕk, k = 1, . . . , K of all NF sources can be obtained.

3.5. Summary of the Proposed Algorithm

The proposed algorithm can be described as follows:
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Step 1: Construct (4M −1)×1 output vector z̄′(t) from (2M +1)×1
output vector z̄(t) and then obtain the (4M − 1) × (4M − 1)
covariance matrix R̄z. Based on (18) and R̄z, construct the
(4M −1)× (4M −1) Hermitain Toeplitz matrix R̄zT . Meanwhile,
in the same method, construct the (4M−1)×(4M−1) Hermitain
Toeplitz matrix R̄yT ;

Step 2: Construct one Toeplitz matrix Rx1 or Rx2 , and then
implement the eigenvalue decomposition of Rx1 or Rx2 to obtain
its noise subspace Un;

Step 3: Based on the MUSIC method, obtain the estimates θ̂k, k =
1, . . . , K of the elevation angles θk, k = 1, . . . , K of all NF sources
from θ̂k = arccos[−ς̂z,kλ/(2πd)].

Step 4: Implement the eigenvalue decomposition of R̄zT to ob-
tain its noise subspace Ūn, and substitute the estimates
ς̂z,k into az(ςz,k, ξz,k) so as to form Hermitian matrix
aH

z,1(ς̂z,k)ŪnŪH
n az,1(ς̂z,k);

Step 5: Implement the eigenvalue decomposition of aH
z,1(ς̂z,k)ŪnŪH

n

az,1(ς̂z,k) to obtain the eigenvector corresponding to the smallest
eigenvalue, i.e., az,2(ξ̂z,k);

Step 6: Estimate ξ̂z,k from (51), and obtain the estimates r̂k, k =
1, . . . , K of the ranges rk, k = 1, . . . , K of all NF sources from
r̂k = [πd2 sin2(θ̂k)]/(λξ̂z,k).

Step 7: Implement the eigenvalue decomposition of R̄yT to obtain its
noise subspace En. And then with the elevation angle and range
estimates {θ̂k, r̂k}, k = 1, . . . , K and based on 1D search MUSIC
method, obtain the azimuth angle estimates ϕ̂k, k = 1, . . . , K.

3.6. Discussion

In this Section, we analyze the performance of the proposed
algorithm in four aspects: Array aperture, Parameter pairing,
Computational Complexity and Estimation Accuracy.

3.6.1. Array Aperture

According to the subspace theory [2, 3], the number of sources to be
processed must be less than the minimal value between the number
of rows and that of columns of the constructed matrix. The methods
addressed in [14, 15] can construct (M + 1) × (M + 1)-dimensional
matrix using a ULA of 2M + 2 sensors, and the algorithms addressed
in [16, 17, 20] can construct (M + 1) × (M + 1)-dimensional matrix
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with a ULA of 2M + 1 sensors, whereas the proposed algorithm can
construct 2M × 2M -dimensional matrix Rx1 or Rx2 using a NLA of
2M + 1 sensors. Therefore, when considering the number of sources
to be processed, the methods in [14, 15] can locate at most M sources
using a ULA of 2M + 2 sensors, and the algorithms in [16, 17, 20] can
locate at most M sources with a ULA of 2M +1 sensors, however, the
proposed algorithm is able to locate 2M − 1 using a NLA of 2M + 1
sensors. The analysis above indicates that the proposed algorithm has
larger array aperture than the algorithms in [14–17, 20].

3.6.2. Parameter Pairing

Many 2D [14–17] and 3D [18–20] NF sources estimation algorithms
need to pair parameters so as to achieve the source localization.
However, the failure in pairing will cause severe performance
degradation. In this paper, the proposed algorithm first estimates the
elevation angle θ̂k, then with the elevation angle estimate θ̂k obtains
the range estimate r̂k, and last achieves the estimation of azimuth
angle ϕ̂k with the estimate {θ̂k, r̂k}. Therefore, the proposed algorithm
avoids parameter match operation and extra computational load for
the parameters match procedure.

3.6.3. Computational Complexity

In this discussion, we only consider the major computations. Although
these algorithms in [13, 21, 22, 25] also have not parameters match
procedure, these algorithms have large amount of computational cost
for the high-dimensional search or complex iterative process. More
specifically, the algorithm in [13] needs to perform 2D search process
for localizing the 2D NF sources, the algorithms in [21, 22] performs
3D search process for localizing the 3D NF sources, and the algorithm
in [25] requires complex iterative procedure. However, the proposed
algorithm needs to form two (4M−1)×(4M−1) covariance matrixes for
Z and Y axes respectively, to construct two (4M−1)×(4M−1) Toeplitz
matrixes for Z and Y axes respectively, to perform eigendecomposition
of the Toeplitz matrix, and to execute once one-dimensional search for
the elevation angle estimation. Then the proposed algorithm utilizes
a free-search method to estimate the range parameters, and at last
executes only 1D search to obtain the estimates of azimuth angle.
Therefore, the proposed algorithm has a low computational load.
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3.6.4. Estimation Accuracy and Resolution

On the one hand, based on the virtual cross-correlation computer
theory [26], the estimation accuracy increases as the number of
virtual sensors increases. The number of virtual sensors formed
in [20] and that of the proposed algorithm are M + 1 and 2M + 1,
respectively. Therefore, the proposed algorithm is expected to obtain
better estimation performance than [20]. On the other hand, when the
number of sensors are 2M + 1, the array aperture of the algorithms
in [14–20] is D = (2M + 1 − 1) × λ/4 = Mλ/2, however the array
aperture of the proposed algorithm is D = (4M−2)×λ/4 = Mλ−λ/2.
Since (Mλ − λ/2) > Mλ/2 when M > 1, therefore, the proposed
algorithm has larger array aperture than the algorithms in [14–20],
which indicates that the proposed algorithm is expected to have better
parameter estimation resolution than the algorithms in [23, 24].

4. SIMULATIONS

In this Section, to verify the performance of the proposed algorithm,
various typical numerical experiments are performed. In the
conventional classical 3D NF localization algorithms [18–25], the
algorithms in [18, 19] are developed to deal with non-Gaussian sources,
the algorithms in [21, 22, 25] are based on the complex high-dimensional
search or iterative process, and the algorithms in [23, 24] are based
on a special Y-shape and circular shape array, respectively; however
the algorithm in [20] is developed to deal with the Gaussian sources
based on the cross array and SOS just like the proposed algorithm.
Therefore, in this paper, we choose the proximal 3D NF source
localization algorithm proposed in [20] to compare the parameter
estimation performance with the proposed algorithm.

We consider a cross array placed in the Y -Z plane, and each NLA
branch (see Fig. 2) consists of 9 (M = 4) omnidirectional sensors with
d = λ/4. The input signal-to-noise ratio (SNR) of the k-th source is
defined as 10 log10(σ2

k/σ2
n). The parameter estimation performance of

the proposed algorithm and the algorithm in [20] is compared in terms
of the root mean square error (RMSE) [25, 29], and the RMSE of the

k-th signal source is defined by RMSE =
√

(1/Q)
∑Q

q=1 (∂̂(q)
k − ∂k)2,

where Q is the number of independent Metropolis-Hastings Monte
Carlo [29, 30] trials and ∂̂

(q)
k denotes the estimates of the parameter ∂k

(∂k can denotes the elevation angle, range or azimuth angle) of the k-th
source in the q-th trial. Monte Carlo method is algorithm for solving
various kinds of computational problems by using random numbers.
Because of the repetitive nature of a typical Monte Carlo algorithm,
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as well as the large number of calculations involved, the Monte Carlo
method is particularly suited to calculation using a computer [29, 30].
In the following each experiment, the elevation/azimuth angle and
range RMSE of the proposed algorithm and the algorithm in [20] is
derived from 500 independent trials. Note that the algorithm in [20]
uses a cross array placed in the X-Y plane, and each ULA branch
consists of 2M+1 = 9 omnidirectional sensors with inter-sensor spacing
λ/4. And thus, the Fresnel zone (NF zone) of [20] is (1.75λ, 8λ)and
that of the proposed algorithm is (4.05λ, 24.5λ).

4.1. Parameter Estimation Performance

In the first experiment, we investigate the change of the RMSE of the
estimated parameter as the SNR changes. Without loss of generality,
two NF sources case is considered. The two NF sources are located at
{θ1 = 40◦, r1 = 5λ, ϕ1 = 80◦} and {θ2 = 60◦, r2 = 5.8λ, ϕ2 = 50◦},
respectively. The SNR varies from −5 dB to 25 dB, and the number
of snapshots is fixed at 1000. We can note from Figs. 3, 4 and 5 that
the proposed algorithm outperforms the algorithm in [20] in elevation
angle, range and azimuth angle estimates, which is because that the
proposed algorithm has larger array aperture and is able to locate
more sources than the algorithm in [20] as the analysis in Section 3.6.
Further, from Fig. 4, it can be seen that the range estimation accuracy
for the first source, which is closer to the array, is higher than that
of the second source, which is consistent with the analysis results
in [14]. Moreover, from Figs. 3, 4 and 5, we can find that the

Figure 3. The RMSE of
elevation angle estimates of both
the algorithm in [20] and proposed
algorithm versus SNR.

Figure 4. The RMSE of range
estimates of both the algorithm
in [20] and proposed algorithm
versus SNR.
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Figure 5. The RMSE of
azimuth angle estimates of both
the algorithm in [20] and proposed
algorithm versus SNR.

Figure 6. The spatial spectrum
of elevation angle of the proposed
algorithm.

RMSE difference of the elevation angle estimates of both the proposed
algorithm and algorithm in [20] is larger than the RMSE difference of
their range estimates, and the RMSE difference of their azimuth angle
estimates is the smallest, which can be explained by the fact that in
the proposed algorithm the range estimates are based on the elevation
angle estimates and the azimuth angle estimates are based on both
the elevation angle and range estimates; however, in the algorithm
in [20], both the estimates of both the elevation and azimuth angles
are obtained in the similar method, and thus the algorithm in [20]
obtains approximate estimation accuracy of both the elevation and
azimuth angles. Besides, in low SNR, the estimation performance
of the proposed algorithm is more superior to that of the algorithm
in [20], and thus the proposed algorithm is able to be used even in the
environment of low SNR.

4.2. Capacity of Dealing with the Number of Signal Sources

In the second experiment, the capacity that the proposed algorithm
simultaneously deals with the number of sources is examined. The
seven NF sources are located at {θ1 = 20◦, r1 = 11λ, ϕ1 = 150◦},
{θ2 = 40◦, r2 = 8λ, ϕ2 = 105◦}, {θ3 = 60◦, r3 = 9λ, ϕ3 = 65◦},
{θ4 = 75◦, r4 = 10λ, ϕ4 = 45◦}, {θ5 = 110◦, r5 = 15λ, ϕ5 = 130◦},
{θ6 = 120◦, r6 = 12λ, ϕ6 = 80◦} and {θ7 = 150◦, r7 = 18λ, ϕ7 = 30◦},
respectively. The snapshot number is set equal to 1000 and SNR is
5 dB. According to the analysis in Section 3.6, when each branch of
the cross array is composed of 9 (M = 4) omnidirectional sensors, the
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algorithm in [20] at most locates M = 4 sources, while the proposed
algorithm can at most locate 2M − 1 = 7 sources. From Figs. 6, 7
and Table 1, we observe that the proposed algorithm has the ability to
accurately and simultaneously deal with seven sources, and thus these
results are consistent with the theoretical analysis results in Section 3.

Figure 7. The spatial spectrum
of azimuth angle of the proposed
algorithm.

Figure 8. The RMSE of eleva-
tion angle estimates for two NF
sources using the proposed algo-
rithm and the algorithm in [20]
when the elevation angle of the
second source varies.

Table 1. The true value and estimated value of the range parameters
of the proposed algorithm.

Source (Range) 1 2 3 4
True value 11λ 8λ 9λ 10λ

Estimated value 11.013λ 8.009λ 8.996λ 10.011λ

Source (Range) 5 6 7
Ture value 15λ 12λ 18λ

Estimated value 15.017λ 11.985λ 18.019λ

4.3. Resolution [26, 27]

In the third experiment, we evaluate the resolution of the elevation
angle, when the elevation angle of one NF source is close to that
of another source. Two NF sources are located at {θ1 = 90◦, r1 =
6λ, ϕ1 = 60◦} and {θ2 = 75◦ + η1θ, r2 = 6λ, ϕ2 = 60◦} respectively,
with η1θ varying in the range [0◦, 10◦] by steps of 2◦. The SNR is
fixed at 5 dB and snapshots number is set to 800. Fig. 8 shows that
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when the angular gap of the elevation angle of the two NF sources
becomes small gradually, the RMSEs of the elevation angle estimates
of both the proposed algorithm and the algorithm in [20] increase,
whereas the RMSEs of the proposed algorithm are always smaller
than that of the algorithm in [20], which indicates that the proposed
algorithm has better elevation angle resolution and estimation accuracy
than the algorithm in [20]; this can be explained that the number of
virtual sensors in the proposed algorithm is larger than that in the
algorithm in [20]; in other words, the proposed algorithm has larger
array aperture. Also, it can be seen from Figs. 9 and 10 that the
proposed algorithm still has better estimation performance in range
and azimuth angle estimates than the algorithm in [20]. Moreover, the
range estimation of the algorithm in [20] is more sensitive to the angular
gap of the elevation angle than the proposed algorithm; however, the
elevation and azimuth angle estimation of the algorithm in [20] is
more insensitive to the angular gap of the elevation angle than the
proposed algorithm, which is consistent with the results in [20]. The
results in this experiment validate the theoretical analysis result that
the proposed algorithm has larger array aperture and is able to locate
more sources than the algorithm in [20].

In the fourth experiment, considering the range of one NF source
is close to that of another NF source, the resolution of the range is
investigated. Two NF sources are located at {θ1 = 30◦, r1 = 6λ, ϕ1 =
40◦} and {θ2 = 60◦, r2 = 6λ + η2λ, ϕ2 = 70◦} respectively, with

Figure 9. The RMSE of range
estimates for two NF sources
using the proposed algorithm and
the algorithm in [20] when the
elevation angle of the second
source varies.

Figure 10. The RMSE of az-
imuth angle estimates for two NF
sources using the proposed algo-
rithm and the algorithm in [20]
when the elevation angle of the
second source varies.
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η2λ varying in the range [−0.5λ, 0.5λ] by steps of 0.1λ. SNR is
fixed at 5 dB and snapshots number is set to 800. We can observe
from Figs. 11, 12 and 13 that the proposed algorithm generally
outperforms the algorithm in [20] with the range of the second
source increasing, because of the large array aperture of the proposed
algorithm. Moreover, from Fig. 11, it can be seen that the elevation
angle estimates in both algorithms are insensitive to the change of
range of second source. This is because that when estimating the
elevation angle parameters, both the algorithm in [20] and proposed
algorithm are separated from the range parameters. In Fig. 12, we can
see that owing to the unchangeable range of first source, the RMSEs of
range estimates of first source remain about the same; while due to the
continuous change of range of second source from small to large, the
RMSEs of range estimates of second source continually change from
small to large. These phenomena agree with the analysis results in [14].
In Fig. 13, the RMSEs of the azimuth angle estimates in the algorithm
in [20] is insensitive to the change of range of the second source, because
the process of estimating the azimuth angle is independent with that
of estimating the range; however, in the proposed algorithm since the
azimuth angle are obtained based on the range estimates, the changing
trends of the RMSEs of the azimuth angle estimates is similar to that
of RMSEs of the range estimates.

In the fifth experiment, we test the resolution of the azimuth angle,
when the azimuth angle of one NF source is close to that of another NF
source. Two NF sources are located at {θ1 = 70◦, r1 = 6λ, ϕ1 = 145◦}
and {θ2 = 120◦, r2 = 5λ, ϕ2 = 135◦ + η3ϕ}, with η3ϕ varying in the

Figure 11. The RMSE of eleva-
tion angle estimates for two NF
sources using the proposed algo-
rithm and the algorithm in [20]
when the range of the second
source varies.

Figure 12. The RMSE of range
estimates for two NF sources
using the proposed algorithm and
the algorithm in [20] when the
range of the second source varies.
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Figure 13. The RMSE of az-
imuth angle estimates for two NF
sources using the proposed algo-
rithm and the algorithm in [20]
when the range of the second
source varies.

Figure 14. The RMSE of eleva-
tion angle estimates for two NF
sources using the proposed algo-
rithm and the algorithm in [20]
when the azimuth angle of the sec-
ond source varies.

range [0◦, 10◦] by steps of 2◦. SNR is 5 dB and snapshots number is
500. Figs. 14 and 15 tell us that when the azimuth of the second source
changes, the RMSEs of the elevation angle and range estimates of the
proposed algorithm are almost unchanged; this is because that their
estimates are independent with the azimuth angle parameter according
to (45) and (51). However, as the azimuth angle of the second source
is close to that of the first source, the estimation performance of the
azimuth angle degrades slowly. It can be seen from Figs. 14, 15 and 16
that in the proposed algorithm the RMSEs of azimuth angle estimates
are higher than that of range estimates and the RMSEs of elevation
angle estimates are the lowest; because in the proposed algorithm, the
range estimates are obtained based on the elevation angle estimates,
and the azimuth angle estimates are estimated with both the elevation
angle and range estimates. Moreover, in the whole change process of
the azimuth angel of the second source, the proposed algorithm has
better estimation accuracy of the elevation angle, range and azimuth
angle than the algorithm in [20] because of the large array aperture of
the proposed algorithm.

In the last experiment, the computational complexity and
execution time of the proposed algorithm are compared with the 3D
search algorithm in [21, 22]. The number of sensors and signal source
are set to 18 and 2, respectively. Define ∆θ = 0.1◦, ∆r = 0.1λ and
∆ϕ = 0.1◦, where ∆θ, ∆r and ∆ϕ are the search step of elevation
angle θ ∈ [0, π], range r ∈ (0.62(D3/λ)1/2, 2D2/λ) and azimuth
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Figure 15. The RMSE of range
estimates for two NF sources
using the proposed algorithm and
the algorithm in [20] when the
azimuth angle of the second
source varies.

Figure 16. The RMSE of az-
imuth angle estimates for two NF
sources using the proposed algo-
rithm and the algorithm in [20]
when the azimuth angle of the sec-
ond source varies.

angle ϕ ∈ (0, 2π], respectively. In order to obtain the 3D estimation
parameters {θ̂k, r̂k, ϕ̂k} of all sources, the proposed algorithm spends
1.236 seconds execution time, while the 3D search algorithm in [21, 22]
spends 3.627 seconds execution time. This is because that the proposed
algorithm requires only 1D search, while the 3D search algorithm
in [21, 22] needs to execute 3D search.

5. CONCLUSION

In this paper, based on the AE we present a 3D NF source localization
algorithm to jointly estimate the elevation angle, range and azimuth
angle parameters. Compared with the conventional 3D NF sources
localization algorithm, the proposed algorithm has the following
merits:

i): being different from the conventional algorithms, the proposed
algorithm overcome the quarter-wavelength sensor spacing
constraint so as to gain larger array aperture, and thus obtains
better estimation performance than the conventional algorithms

ii): being different from the conventional algorithms, the number of
sources which the proposed algorithm at most locates can exceeds
the number of the sensors in each branch of the cross array.

iii): the proposed algorithm does not require extra parameters match
procedure.
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iv): the proposed algorithm replaces the 3D search required in
conventional 3D MUSIC algorithms with 1D search, and HOS
required in conventional 3D NF source localization algorithms
with SOS, and thus reduces the computational burden.

v): based on the large array aperture and superior parameters
estimation performance, the proposed algorithm gains higher
parameters estimation resolution.
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