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Abstract—This paper proposes an amplify-and-forward (AF) dis-
tributed relay network consisting of a one-source-one-destination pair
and two-level N relays. Optimal relay amplifying matrices (or vectors)
at the relays in the first and second levels are determined based on the
minimum mean square error (MMSE) criterion. Power is globally, lo-
cally, and aggregately constrained at the relays in the first and second
levels, independently or separately. With the derived optimal relay
amplifying matrices, bit error rate (BER), mean square error (MSE)
behavior, and the achievable rate are investigated. It is also proven
that minimizing the MSE is equal to maximizing the signal-to-noise
ratio (SNR) in a three-hop AF wireless relay network.

1. INTRODUCTION

Relay communication is well known for increasing the gain of diversity
order, extending the propagation range, and improving communication
reliability [1–5]. In addition, due to the lowest complexity and
shortest delay at the relays compared to some protocols, such as
decode-and-forward and compute-and-forward [2, 3], an amplify-and-
forward (AF) relay protocol has become more attractive in wireless
relay networks [4, 5]. Hence, over the past years, the two-hop AF
wireless nondistributed and nondistributed relay systems have been
investigated in most of the literature [6–8].

However, the three-hop AF wireless relay network has not been
studied much in the literature. In particular, the three-hop AF
wireless distributed relay network can be applicable in a 5G candidate
system, e.g., the cloud radio access network if the distributed relays
are connected through optical fibers to a central service station in the
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cloud radio access network. The three-hop AF wireless distributed
relay system is of more considerable practical importance compared to
the two-hop AF one. Hence, recently, Gomadam and Jafar in [9] made
a large contribution in the three-hop AF wireless distributed relay
system. Their effort in determining the optimal relay amplification
matrices (or vectors) for the three-hop wireless relay network is
valuable. An iterative algorithm was proposed for solving the relay
optimization problem of the three-hop AF distributed relay network
under a total relay power constraint based on the signal-to-noise ratio
(SNR) at the destination [9].

Additionally, the authors of this paper have proposed the three-
hop AF wireless distributed relay system in designing optimal relay
amplifying matrices under various power constraints during data
transmission [10]. Here, the relay amplifying matrix is an N × N
matrix in order to minimize the mean square error (MSE) between
the equalized signal at the destination and the originally transmitted
signal from the source, where N is the number of relays at each hop.

Furthermore, according to the roles of relay, the relay amplifying
matrix can be either diagonal or nondiagonal. For example, the relay
amplifying matrix in [10] is nondiagonal, assuming that the relays can
exchange their channel coefficients with each other. In other words,
the diagonal relay amplifying matrix was not investigated [10]. In
particular, the diagonal relay amplifying matrix in the three-hop AF
wireless distributed relay system consisting of all nodes with only
a single antenna is more practical than the nondiagonal one. The
local power constraint (LPC) in the first and second levels was not
considered [9, 10]. Hence, the authors of this paper were motivated
to determine the optimal diagonal relay amplifying matrix in the
three-hop AF wireless distributed relay network based on minimizing
the MSE. Moreover, power will be globally, locally, and aggregately
constrained at the relays during data transmission. The definition
of the global power constraint (GPC) means that total power usage
at the relays in the first and second levels is limited to p1 and p2,
respectively, i.e., p1 =

∑N
i=1 p1i and p2 =

∑N
i=1 p2i , while the definition

of LPC means that the individual relay transmission power at the
i -th relay in the first and second levels is limited to p1i and p2i ,
respectively. Additionally, the definition of aggregate power constraint
(APC) means that the sum of transmit power at the relays in both the
first and second levels is limited to p1 + p2 = pT [11, 12]. Depending
on the locations of power constraint, the different overall system
performance can be yielded. Moreover, if either the first or the third
stage power in Fig. 1 is very high, then the three-hop AF wireless
distributed relay network can be reduced to the two-hop one. In
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Figure 1. Three-hop AF wireless distributed relay network with one-
source-one-destination pair and two-level N relay nodes.

particular, if both the first and third stage powers are very high, then
it can be reduced to the point-to-point multiple-input multiple-output
wireless network. This is one of characteristics of the three-hop AF
wireless distributed relay network proposed in this paper. Finally, it is
proven that minimizing the MSE is identical to maximizing the SNR
in a three-hop AF wireless relay network.

2. SYSTEM MODEL AND DATA TRANSMISSION

An AF wireless distributed relay network with 2N -relay nodes between
a source and a destination is shown in Fig. 1. A three-stage protocol
is employed for data transmission. In Stage I, a source transmits a
signal symbol s ∈ C1×1 to the relays in the first level. In Stage II,
relays in the first level multiplied by a relay amplifying matrix F1

retransmit their received signals to the relays in the second level; then
they retransmit their received signals to a destination multiplied by
another relay amplifying matrix F2 in Stage III. Here, the uppercase
boldface (e.g., F1 and F2) and italic characters (e.g., s) are denoted,
respectively, by a matrix and a scalar.

The complex received signal column vector r ∈ CN×1 at the relays
in the first level is written as

r = hss + vs (1)

where vs ∈ CN×1 is a zero mean complex thermal additive white
Gaussian noise (AWGN) column vector with covariance matrix σ2

vs
IN ,

and hs ∈ CN×1 is the channel coefficient complex column vector from
the source to the relays in the first level as

hs = [hs,1, hs,2, . . . , hs,N ]T . (2)

Here, the lowercase boldface character (e.g., r, vs, vs) is denoted by a
vector. The amplified signal complex column vector x1 ∈ CN×1 at the
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relays in the first level with the transmitted power xH
1 x1 = p1 is given

by

x1 = F1r (3)

where F1 ∈ CN×N is a relay amplifying matrix for the linear processing
operation at the relays in the first level. Here, (·)H stands for the
Hermitian of (·). The complex received signal column vector y ∈ CN×1

at the relays in the second level can be represented as

y = Hrx1 + vy (4)

where vy ∈ CN×1 is also a zero-mean, complex, thermal AWGN
column vector with covariance matrix σ2

vy
IN , and Hr ∈ CN×N is the

channel coefficient complex matrix from relays in the first level to relays
in the second level as

Hr = [hr,1,hr,2, . . . ,hr,N ]T . (5)

Here, hr,n =
[
hr,n,1, . . . , hr,n,N

]
, n = 1, . . . , N , is a row vector,

representing the channel coefficients from all relays in the first level
to the n-th relay in the second level. Additionally, here, (·)T denotes
the transpose of (·). The amplified signal complex column vector
x2 ∈ CN×1 at the relays in the second level with the transmitted
power xH

2 x2 = p2 is given by

x2 = F2y (6)

where F2 ∈ CN×N is also a relay amplifying matrix for the linear
processing operation at the relays in the second level. Finally, the
received complex signal d ∈ C1×1 at the destination can be written as

d = hyx2 + vd (7)

where vd ∈ C1×1 is a zero-mean, complex, thermal AWGN variable
with variance σ2

vd
, and hy ∈ C1×N is the channel coefficient complex

row vector from the i-th relay in the second level to the destination as

hy = [hy,1, hy,2, . . . , hy,N ]. (8)

Substituting (1), (3), (4), and (6) into (7), the received complex signal
d ∈ C1×1 at the destination can be rewritten as

d = hyF2HrF1hss + hyF2HrF1vs + hyF2vy + vd. (9)

Each channel coefficient hs,i, hr,n,i, and hy,i, i = 1, . . . , N , is assumed
to be independent identically distributed (i.i.d.) with a zero-mean,
circular, complex Gaussian of unit variance and quasi-static Rayleigh
fading so that they stay fixed during data transmission. Obtaining
knowledge of channels at the relays and destination can be performed
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through pilot symbols. In addition, the signal d in (9) is equalized by
a scalar gain factor α−1 to produce the estimated ŝ, i.e., ŝ = α−1d.
Using (9), the cost function J(F1,F2) , E

[|ŝ− s|2] at the destination
can be written, using the MSE [13], as

J(F1,F2) = α−2σ2
s |hyF2HrF1hs|2−2α−1σ2

sRe[hyF2HrF1hs]

+α−2σ2
vs
||hyF2HrF1||2 + α−2σ2

vy
||hyF2||2

+α−2σ2
vd

+ σ2
s . (10)

Here, E[ · ] and Re[A] = (A+A∗)/2 represent the expectation and real
operators, respectively. Additionally, the notations | · | and || · || denote
the absolute value of any scalar and 2-norm of any vector, respectively.
In (10), the scalar gain factor α−1 is in fact the Wiener filter [14], which
is given as

α−1 = σ2
sp
−1
d hyF2HrF1hs (11)

where pd = σ2
s |hyF2HrF1hs|2 + σ2

vs
||hyF2HrF1||2 + σ2

vy
||hyF2||2+σ2

vd
.

Substituting (11) into (10), J(F1, F2) in (10) can be rewritten as

J(F1,F2) = σ2
s(SNR + 1)−1 (12)

where

SNR =
σ2

s |hyF2HrF1hs|2
σ2

vs
||hyF2HrF1||2 + σ2

vy
||hyF2||2 + σ2

vd

(13a)

= hyHtH−1
w HH

t hy (13b)

where Hw = σ2
vy

(Hy ¯ IN ) + σ2
vd

p−1
2 (H ¯ IN ), Hy = hH

y hy, H =
σ2

sHrF1hshH
s FH

1 HH
r + σ2

vs
HrF1FH

1 HH
r + σ2

vy
IN , Ht = diag(ht), ht =

HrF1hs, E[vd] = 0, E[|s|2] = σ2
s , and E[vs] = E[vy] = 0N . Here,

Hw is a symmetric positive definitive Hermitian matrix with rank N .
In addition, an N × N identity matrix, a diagonal matrix, and an
N×1 zero vector consisting of all zero entries are denoted, respectively,
by IN , diag(·), and 0N . The notations ¯ and (·)−1 are denoted,
respectively, by the Hadamard (elementwise) product operator and
the inverse of (·). From (12), it can be seen that minimizing the
MSE is equivalent to maximizing the SNR. However, it is difficult
to directly solve the SNR maximization problem because the power
constraints are interdependent, as shown in (3) and (6). Hence, this
paper focuses on the MSE minimization problem using the Karush-
Kuhn-Tucker conditions [15], unlike [9].

Additionally, as stated earlier, the relay amplifying matrices F1

and F2 will be diagonal, i.e., F1 = diag(f1) = diag(f11 , . . . , f1
N

) and
F2 = diag(f2) = diag(f21 , . . . , f2

N
), similar to [9]. Let the N × 1
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vector a = diag(A) denote the diagonal elements of A. Hence, using
this notation, F1 and F2 can be expressed by f1 = diag(F1) and
f2 = diag(F2), respectively.

3. MMSE RELAY SCHEMES

3.1. Global Power Constraint (GPC)

As stated in the previous section, in order to determine optimum
relay amplifying matrices F1 and F2, the minimum mean square error
(MMSE) criterion between the equalized signal ŝ at the destination
and the originally transmitted signal s from the source will be applied
by constraining the total power at the relays in the first and second
levels, independently and separately. Hence, the desired MMSE
formulation to derive optimum relay amplifying matrices under relay
power-constraint conditions in the first and second levels can be written
as (

F†1,F
†
2

)
= arg min

F1,F2

J(F1,F2) (14a)

s.t. E
[||x1||2

]
= p1 and E

[||x2||2
]

= p2 (14b)

where the superscript † denotes the optimum. Using vector forms f1,
f2, and the Hadamard product operator, the cost function J(F1, F2)
in (14a) can be written as

J(F1,F2) = α−2fH1
(
HT

a ¯Hc

)
f1 − 2α−1σ2

sRe
[
fH1 hb

]
+ σ2

s

+α−2σ2
vy

fH2
(
Hy ¯ IN

)
f2 + α−2σ2

vd
(15a)

= α−2fH2
(
HT¯Hy

)
f2−2α−1σ2

sRe
[
fH2 ha

]
+α−2σ2

vd
+σ2

s (15b)

where Ha = σ2
shshH

s + σ2
vs

IN , Hc = HH
r FH

2 hH
y hyF2Hr, hb =

diag(HH
r FH

2 hH
y hH

s ), and ha = diag(hH
y hH

s FH
1 HH

r ). Here,
(15a) and (15b) will be used for determining f1 and f2, respectively.
The total power constraints at the relays in the first and second levels
can be represented from (3) and (6), respectively, as

p1 = fH1
(
Ha ¯ IN )f1 (16)

p2 = fH1
(
HT

a ¯Hb)f1 + σ2
vy

fH2 f2 (17a)

= fH2
(
H¯ IN )f2 (17b)

where Hb = HH
r FH

2 F2Hr. Here, (17a) and (17b) will be used for
determining f1 and f2, respectively. Since the total power at the relays
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in the first and second levels is constrained, respectively, to p1 and p2,
the constrained Lagrangian optimization [15] can be formulated as

L(F1,F2, α, λ1, λ2) =J(F1,F2) + λ1

(
E

[||x1||2
]− p1

)

+ λ2

(
E

[||x2||2
]− p2

)
(18)

where λ1 and λ2 are Lagrangian multipliers. For expositional
convenience, L(F1, F2, α, λ1, λ2) in (18) is henceforth simply stated
as L(F, λ). Taking the partial derivatives of (18) with regard to {fH1 ,
fH2 , α, λ1, and λ2}, respectively, and using the linear and nonlinear
properties of the complex vector derivative [16], and equating the
derivatives to zero result in

∂L(F, λ)
∂fH1

= α−2
(
HT

a ¯Hc

)
f1 + λ2

(
HT

a ¯Hb

)
f1

− α−1σ2
shb + λ1

(
Ha ¯ IN

)
f1 = 0N (19)

∂L(F, λ)
∂fH2

= α−2
(
HT ¯Hy

)
f2 + λ2

(
H¯ IN

)
f2

− α−1σ2
sha = 0N (20)

∂L(F, λ)
∂α

=−2α−3fH2
(
HT ¯Hy

)
f2 + 2α−2σ2

sRe
[
fH2 ha

]

− 2α−3σ2
vd

= 0 (21)
∂L(F, λ)

∂λ1
= fH1

(
Ha ¯ IN

)
f1 − p1 = 0 (22)

∂L(F, λ)
∂λ2

= fH1
(
HT

a ¯Hb

)
f1 + σ2

vy
fH2 f2 − p2 = 0 (23a)

(
or fH2

(
H¯ IN

)
f2 − p2 = 0

)
. (23b)

Here, (23a) and (23b) will be used for determining f1 and f2,
respectively.

Using the trace property, i.e., tr(Re{A}) = tr(A) if tr(A) =
tr(AH) (here, tr(·) is trace of (·)), the optimal solutions f†1, f†2, α†, λ†1,
and λ†2 for the GPC at the relays in the first and second levels can be
written, respectively, as

f†1 =
H−1

z hb
√

p1√
hH

b H−1
z (Ha ¯ IN )H−1

z hb

(24)

f†2 =
H−1

t ha
√

p2√
hH

a H−1
t (H¯ IN )H−1

t ha

(25)
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α† =
√

p2√
σ4

sh
H
a H−1

t (H¯ IN )H−1
t ha

(26)

λ†1 = ησ4
sp
−1
1 hH

b H−1
z (Ha ¯ IN )H−1

z hb (27)

λ†2 = σ4
sσ

2
vd

p−2
2 hH

a H−1
t (H¯ IN )H−1

t ha (28)
where

Hz =
(
HT

a ¯Hc

)
+ η(Ha ¯ IN ) + σ2

vd
p−1
2

(
HT

a ¯Hb

)
(29)

η = σ2
vy

p−1
1 fH2 (Hy ¯ IN )f2 + σ2

vd
σ2

vy
p−1
1 p−1

2 ||f2||2 (30)

Ht =
(
HT ¯Hy

)
+ σ2

vd
p−1
2 (H¯ IN ). (31)

Note that the corresponding optimal relay amplifying matrices F†1 and
F†2 are given by F†1 = diag(f†1) and F†2 = diag(f†2), respectively.

3.2. Local Power Constraint (LPC)

The power of each relay in the first and second levels can be
constrained to p1i , i.e., p1i = |f1i |2σ2

ri
, and p2i , i.e., p2i = |f2i |2σ2

yi
,

where σ2
ri

= σ2
s |hsi |2 + σ2

vs
, and σ2

yi
= σ2

s

∑N
k=1

∣∣hsk

∣∣2∣∣f1k

∣∣2∣∣hrik

∣∣2 +
σ2

vs

∑N
k=1 |f1k

|2|hrik
|2 + σ2

vy
, respectively. As in the case of the

GPC in the previous subsection, the desired constrained Lagrangian
optimization L1(F1, F2, α λ1, λ2)(, L1(F, λ)) for the LPC can be
written as

L1(F, λ) = α−2σ2
s

∣∣∣∣∣

(
N∑

i=1

(
N∑

k=1

hyk
f2k

hrki

)
f1ihsi

)∣∣∣∣∣

2

+ α−2σ2
vs

N∑

i=1

∣∣∣∣∣

(
N∑

k=1

hyk
f2k

hrki

)
f1i

∣∣∣∣∣

2

− 2α−1σ2
sRe

[
N∑

i=1

(
N∑

k=1

hyk
f2k

hrki

)
f1ihsi

]

+ α−2σ2
vy

N∑

i=1

|hyi |2|f2i |2 + α−2σ2
vd

+ σ2
s

+
N∑

i=1

λ1i

(|f1i |2σ2
ri
− p1i

)
+

N∑

i=1

λ2i

(|f2i |2σ2
yi
− p2i

)
. (32)
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Similarly, to determine the optimal solutions of L1(F, λ) in (32), taking
the partial derivative of L1(F, λ) with respect to {f1i , f2i , λ1i , and λ2i},
the optimal solutions {f †1i

, f †2i
, λ†1i

, and λ†2i
} for the i -th relay in the

first and second levels can be written, respectively, as

f †1i
=

(γ1 − λ2iγ2)
√

p1i∣∣γ1 − λ2iγ2

∣∣
√

σ2
ri

(33)

f †2i
=

(σ2
sγ3 − γ4)

√
p2i∣∣σ2

sγ3 − γ4

∣∣√σ2
yi

(34)

λ†1i
=

σ2
s

∣∣γ1 − λ2iγ2

∣∣
√

σ2
ri

p−1
1i
− γ5 − γ6

α2σ2
ri

(35)

λ†2i
=

∣∣σ2
sγ3 − γ4

∣∣
√

σ2
yi

p−1
2i
−|hyi |2

(
σ2

vy
+ |γ7|2

)

α2
(
|hyi |−2|γ7|2+σ2

vs

∑N
k=1 |hrik

|2|f1k
|2+σ2

vy

) (36)

where

γ1 =
N∑

k=1

h∗yk
f∗2k

h∗r∗kihsi


α−

N∑

t=1,t6=i

N∑

k=1

hstf1thrkt
f2k

hyk


 (37)

γ2 = α2h∗si

N∑

k=1,k 6=i

N∑

t=1

h∗rti
f∗2k

hsk
f1k

hrtk
f2k

(38)

γ3 =
N∑

k=1

h∗rik
f∗1k

h∗sk
h∗yi


α−

N∑

t=1,t6=i

N∑

k=1

hytf2thrtk
f1k

hsk


 (39)

γ4 = σ2
vs

hyi

N∑

t=1

N∑

k=1,k 6=i

h∗rit
f∗1t

hyk
f2k

hrkt
f1t (40)

γ5 =
∣∣∣∣

N∑

k=1

hyk
f2k

hrki

∣∣∣∣
2(

σ2
s

∣∣hsi

∣∣2 + α2σ2
vs

)
(41)

γ6 = σ2
vs

N∑

k=1

∣∣hrki

∣∣2∣∣f2k

∣∣2 + σ2
s

∣∣∣∣∣
N∑

k=1

hyk
f2k

hrki

∣∣∣∣∣

2

(42)

γ7 =
√

σ2
s

N∑

k=1

hrik
f1k

hsk
hyi . (43)
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Note that the identical optimal α† can be determined by taking the
partial derivative of L1(F, λ) with regard to α. Note also that,
unlike (5), as a special case of the three-hop wireless relaying system,
Hr can be a diagonal matrix, i.e., Hr , diag(hr) = diag(hr1 , . . . , hr

N
).

Applying a diagonal matrix Hr, the optimal solutions f †1i
and f †2i

can
be written as

f †1i
=

h∗yi
f∗2i

h∗ri
h∗si

√
p1i

|hyif2ihrihsi |
√

σ2
ri

(44)

f †2i
=

h∗si
f∗1i

h∗ri
h∗yi

√
p2i

|hsif1ihrihyi |
√

σ2
yi

. (45)

As shown in (44) and (45), the optimal f †1i
and f †2i

only depend on
each local channel coefficient (hsi , hri , hyi). In this case, there is no
need for relays to have the knowledge of all channel coefficients.

3.3. Aggregate Power Constraint (APC)

During data transmission, the sum of the transmit power at the relays
in both the first and second levels can be constrained to pT , i.e.,
p1 + p2 = pT . Accordingly, as in the case of the power constraints at
the relay nodes in both the first and second levels, the desired MMSE
formulation L(F1, F2, α, λT) in (18) is modified to

L(F1,F2, α, λT)=J(F1,F2, α)+λT

(
E

[||x1||2
]
+E

[||x2||2
]−pT

)
. (46)

Following the previous procedures, the solutions of L(F1, F2, α, λT)
in (46) can be obtained, respectively, as

f†1 =
H−1

d hb
√

κ1√
hH

b H−H
d HkH−1

d hb

(47)

f†2 =
H−1

o ha
√

κ2√
hH

a H−H
o (H¯ IN )H−1

o ha

(48)

α† =
√

κ2√
σ4

sh
H
a H−H

o (H¯ IN )H−1
o ha

(49)

λ†
T

= ω2σ
4
sp
−1
T

hH
a H−H

o (H¯ IN )H−1
o ha (50)

where

Hd =
(
HT

a ¯Hc

)
+ ω1Hk (51)
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Table 1. Iterative algorithm for GPC.

Step 1 Initialization: k = 0
F2 = IN , J(F1,F2) = 0

Step 2 Iteration: k ← k + 1
F1k

= fF1k−1
(F2k−1

)
F2k

= fF2k
(F1k

)
αk = fαk

(F1k
)

J(F1k
,F2k

) = fJ(F1k
,F2k

)(F1k
,F2k

, αk)
Step 3 If 0 ≤ J(F1k−1

,F2k−1
)− J(F1k

,F2k
) ≤ $ go to Step 4

and stop, otherwise go back to Step 2 ($ = 0.0001)
Step 4 F1 = F1k

; F2 = F2k

Hk =
(
HT

a ¯Hb

)
+ (Ha ¯ IN ) (52)

Ho =
(
HT ¯Hy

)
+ ω2(H¯ IN ) (53)

ω1 = κ−1
1

(
σ2

vy
fH2 (Hy ¯ IN )f2 + σ2

vd

)
(54)

ω2 = σ2
vd

(
pT − fH1 (Ha ¯ IN )f1

)−1
(55)

κ1 = pT − σ2
vy

fH2 f2 (56)

κ2 = pT − fH1 (Ha ¯ IN )f1. (57)

4. ITERATIVE ALGORITHM

As shown in (24), (25), (33), (34), (44), (45), (47), and (48), the
optimal F†1 and F†2 in the GPC, LPC, and APC cases are functions
of each other. Thus, using the property of J(F1, F2), i.e., gradually
decreasing, they can be solved by an iterative algorithm where variables
are calculated one at a time while fixing the others, as shown in Table 1.

In addition, as in the case of the GPC, using the iterative
algorithm, all optimal values for the LPC and APC cases can be solved.

5. SIMULATION RESULTS

To evaluate bit error rate (BER) and MMSE performances of the
proposed three-hop AF MMSE relay strategy under GPC, LPC, and
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APC at the relays in the first and second levels, the Monte-Carlo
simulation is performed. In addition, using (13), the achievable rate
under GPC, LPC, and APC at the relays will also be performed. The
channel coefficient vectors (hs and hy) and matrix Hr are generated
from independent Gaussian random variables with zero mean and unity
variance. The originally transmitted signal at the source is assumed
to be modulated by a quadrature phase shift keying constellation with
unit power. And the GPC is set to p1 = p2 = 1, while the LPC is set
to p1i = p2i = 1/N . Additionally, the APC is set to pT = 2. All nodes
have the same thermal noise power, i.e., σ2

vs
=σ2

vy
=σ2

vd
.

Figure 2 shows the convergence of the proposed iterative algorithm
for N = 2 and 3 and SNR = 10 dB under property according to the
number of relays (N = 2 and 3) with SNR = 10dB under both
GPC and APC at the relays, numerically. As shown in Fig. 2, the
proposed algorithm in this paper can converge within 10 iterations to
find the optimal solutions. That is, the proposed algorithm has a low
computational load to determined the optimal solutions. It is observed
that the convergence values in the case of both GPC and APC decrease
as N increases.

Figure 3 provides the following: (a) MMSE versus number of
relays, (b) MMSE versus input SNR, and (c) BER versus input SNR
in a three-hop AF wireless relay network under the GPC, LPC, and

0 10 20 30
0.2215

0.222

0.2225

0.223

0.2235

M
M

S
E

Number of iterations

 

 

0 10 20 30
0.134

0.135

0.136

0.137

0.138

Number of iterations

M
M

S
E

 

 

0 10 20 30

0.277

0.278

0.279

0.28

Number of iterations

M
M

S
E

 

 

0 10 20 30

0.166

0.168

0.17

Number of iterations

M
M

S
E

 

GPC, N=2 GPC, N=3

APC, N=2 APC, N=3

Figure 2. Convergence property according to number of relays (N = 2
and 3) with SNR = 10dB under both GPC and APC at relays.
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Figure 3. (a) MMSE versus number of relays, (b) MMSE versus input
SNR, and (c) BER versus input SNR in three-hop AF wireless relay
network under GPC, LPC, and APC at relays with different number
of relays, respectively.

APC at the relays with different number of relays, respectively. As
analyzed, as N increases, the MMSE performance decreases, as shown
in Figs. 3(a) and 3(b). This is because the cost function in this paper is
defined as the MSE. In other words, the smaller the MSE performance,
the better the BER performance. As a result, as N increases, the BER
performance improves, as shown in Fig. 3(c). Additionally, the MSE
performance of the GPC case is the smallest in all power constraint
cases for the same N , as shown in Fig. 3(b). As a result, it can be seen
that when power is globally constrained at the relays, the best BER
performance is observed, as shown in Fig. 3(c). Finally, it can also
be seen that the nondiagonal Hr relay strategy shows approximately
1.9 dB better performance at BER = 10−1 than the diagonal one when
N = 3.

Figure 4 presents the achievable rate versus input SNR and the
number of relays N in a three-hop AF wireless relay network under
the GPC, LPC, and APC at the relays. It is observed in Fig. 4(a)
that the GPC relaying strategy outperforms, compared to the other
two relay strategies for the same given N . In addition, it is also
shown in Fig. 4(b) that the degree of freedom to make an efficient
relay amplifying matrix grows as N increases. Finally, the case of the
GPC is slightly better than that of the APC for the same given N , as
shown in Fig. 4(b).
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Figure 4. (a) Achievable rate versus SNR and (b) achievable rate
versus number of relays in three-hop AF wireless relay network under
GPC, LPC, and APC at relays.

6. CONCLUSION

This paper investigated three-hop AF wireless distributed relay
strategies consisting of a one-source-one-destination pair and two-level
2N -relay nodes. Based on the MMSE criterion, the optimal relay
amplifying matrices (or vectors) for the GPC, LPC, and APC at
the relays were derived. It was proven that minimizing the MSE is
equivalent to maximizing the SNR in a three-hop wireless distributed
relay network. It was also shown that the proposed iterative algorithm
has a low computational complexity to solve the optimization problem.
In particular, compared to the two-hop AF wireless distributed relay
system, the three-hop AF wireless distributed relay system proposed
in this paper can be realizable in cloud radio access network to improve
spectral efficiency because of the multipoint processing.

It was observed that the BER performance of the proposed
strategies under all power constraint cases keeps enhancing as N
increases because the MMSE decreases as N increases. That is,
it can be seen that increasing N results in a gain of diversity
order. Additionally, when power is globally constrained at the relay
during data transmission, the best BER performance was achieved.
Furthermore, the achievable rate of the GPC relaying scheme was
superior to those of LPC and APC relaying schemes. In summary,
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the better BER and larger achievable rate when the power usage is
globally constrained were observed.
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