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Abstract—The complex dispersion characteristics of the surface wave
modes of plasma column loaded closed cylindrical waveguides have
been investigated. The numerical results for partially or fully plasma
loaded waveguides have been obtained from the Method of Moment
(MOM), the exact dispersion equation and the quasistatic dispersion
equation. A numerical technique based on the solution of the MoM has
been proposed in order to obtain the complex propagation constant
from the exact solution. The surface wave modes obtained from these
methods have been presented comparatively in the figures. Thus, the
insufficiency of the quasistatic approximation to obtain the complex
surface wave modes has been shown. Additionally, the study involves a
comprehensive literature review including physical descriptions and/or
behavior in different physical media of surface wave modes and complex
wave modes.

1. INTRODUCTION

The propagation possibility of surface electromagnetic waves in the
media having an interface with a phase velocity which does not exceed
the velocity of light in the medium is an important aspect of the
media [1]. In the literature, there are many studies which describe
and discuss the concept of the surface waves and classify them in
accordance with their physical phenomena. As a result of the studies
performed onsurface waves in the 1950s and 1960s, there was confusion
for definition of the surface waves. Although conclusion of General
Assembly of URSI held in London in 1960 was that “there is no neat
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definition which would encompass all form of waves which could glide
or be guided along a interface” [2], the generally accepted definition of
the surface wave is that electromagnetic surface waves are waves which
propagate along an interface between two different media without
radiation or losing energy [3, 4]. Radiation or losing energy in the
definition means that average energy converts from the surface wave
field to some other forms.

The surface waves were explained separately for two subclasses
of waveguide, closed waveguides and open waveguides in [5] which
presents some comments on the classification of waveguide modes.
A comprehensive review of electromagnetic surface waves, which
included studies from 1960 to 1987 was reported by Overfelt [6].
The report emphasized the mathematical analysis of surface waves
supported by different structures. Some of these structures were:
planar interfaces between two homogenous isotropic media composed
of different material properties, or ferrite slabs, or various dielectric
layers on coaxial cables; or the electric rod waveguide; or spherical
structures such as the dielectric-coated conducting sphere; or elliptical
dielectric waveguides. Interestingly, the surface wave that exists in
plasma or the interface between plasma and a second medium was not
included in the report. A surface wave produced by a plasma column
is an electromagnetic surface wave which uses the plasma column as its
sole propagating medium. This propagation can be considered to result
from a periodic interchange of energy in the wave field with ordered
kinetic energy of electrons. The wave damps while it propagates since
it transfers some of its energy to the plasma at each point along the
column [7]. The power flow along the surface wave of an axially
magnetized plasma column has been investigated in [8–10] and the
power carried by the surface wave modes have been presented as a
function of frequency for different values of the column radius and the
magnetostatic field in [8].

The surface waves in partially stationary plasma of finite
transverse cross section were observed for the first time by
Trivelpiece and Gould [11–13]. They obtained the field equations by
using quasistatic approximation and also presented analytically and
experimentally two types of propagation. The first described as a
body wave involved change in density variation within the plasma and
the second described as surface wave involved a perturbation of the
surface of the plasma. In later studies, the surface wave modes of
plasma column loaded cylindrical waveguides were examined in detail.
Carlile examined both theoretically and experimentally the surface
wave mode for the constant azimuthal variation (n = 1) and reported
that this mode is a backward wave [14]. The studies of Trivelpiece &
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Gould and Carlile are true, theoretically and experimentally consistent
with each other, but their results were approximate because they
used the quasistatic approximation as theoretical method. In fact,
surface wave modes arise as forward waves and turn into backward
waves at higher frequencies except in the structures with fully plasma
loaded waveguides and small plasma-waveguide radii ratio with weak
dc magnetic fields. This case has been shown by [15] and [16] using
the exact solution as theoretical method. It has also been reinforced
with experimental results in [16]. In our study, the characteristics
of the surface wave modes have been investigated by using the exact
solution and the quasistatic solution together and the deficiency of the
quasistatic approximation has been shown numerically on the figures.
Nevertheless the exact dispersion function is a twovalued function at
the frequency points where the dispersion curves turn from forward
wave to backward wave. At this point, the dispersion curves bifurcate
and the complex waves appear. As a result of our study, the complex
surface wave modes have been investigated in detail and it has been
shown that the quasistatic solution does not supply the complex wave
modes.

The complex wave mode implies that the phase constant and the
attenuation constant of the propagation constant are both nonzero.
The complex wave represents the propagating waves with fading
power [17]. For a physical implementation, the complex wave modes
can be equivalent to evanescent modes because the electromagnetic
wave expeditiously loses its power and disappears in the waveguide.
In lossy guides, modes appear whose propagation constants are
complex rather than purely real or purely imaginary, and the wave
then propagates with attenuation due to power being absorbed
into the lossy medium [18]. Complex modes can be supported by
lossless guiding structures [19]. For lossless structures, the complex
propagation constant always has a complex conjugate pair, which
means conservation of the losslessness condition. One of the complex
conjugate represents giving the energy into the system and the other
represents taking the energy from the system. Thus the energy
is conserved and the losslessness condition is supplied. Complex
modes for closed guiding structures have been tackled in a wide range
of studies. A good review of complex modes has been given by
Mrozowski [20]. In this review, the complex modes in isotropic guides
and gyrotropic guides and discontinuity structures have been presented
by referring to studies in the literature. In the study, the complex
modes in gyrotropic medium loaded guides have been investigated
predominantly for gyromagnetic medium loaded waveguides.

It was shown numerically and theoretically in different studies
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that the slope of the dispersion curve is infinite at the onset
of a complex propagation constant and when the backward wave
modes exist the complex wave modes also exist. This was shown
in the dielectric loaded cylindrical waveguide [21, 22], the two-
layer circular shielded waveguides with different permittivity or
permeability [23], the shielded rectangular dielectric image [24, 25] and
the rod waveguides [26], the planar transmission lines [27], the shielded
suspended coupled microstrip line [28], the nonreciprocal finline [29],
the suspended ferrite loaded strip lines [30], and the multilayered
parallel plate waveguide with ferrite layers [31]. Some studies purpose
to give a theoretical proof of the existence of complex wave modes [32]
or the co-existence of complex and backward wave modes [19, 33] for
different waveguide structures. These studies base on the matrix
equivalent of the waveguide structures and derive the theoretical proof
using the fundamental properties of equivalent matrix. The existence
of complex and backward wave modes was proved for the general
case of only inhomogeneous or only anisotropic filled waveguides with
arbitrarily shaped cross sections [19]. The necessary condition for
existence of complex waves was given in [32] and it is also shown that
complex waves may exist in slightly perturbed homogenous guides. In
later studies, the necessary and sufficient conditions for the existence
of backward waves in metallic waveguides filled the media which
do not include coupling between transverse and longitudinal fields
(simultaneously inhomogeneous and anisotropic) were given in [34] and
the proof that whenever there is a frequency region of a backward
wave then there exists an adjacent region with a complex propagation
constant was presented in [33].

The possibility of the existence of the complex propagation factor
in bidirectional gyroelectric guides, such as plasma, was shown by
applying Poynting’s theorem to a standing complex wave and giving
the analytical relationship between energy, power and group/phase
velocity by Chorney in [35, 36]. Firstly, phase velocity was expressed
in terms of pseudo energy and power flow. Later, a useful theorem was
derived that related group velocity and phase velocity directly through
the true energy and the pseudo energy. Privately, these theorems
are used to illustrate the dispersion characteristics of a plasma filled
waveguide and it was shown that when the slope of the dispersion curve
is infinite for a finite propagation constant, it indicated the onset of
complex roots. In his study, Chorney stated that the answer to the
question of whether this might be the onset of a complex propagation
constant, or not, could only give direct computation of the dispersion
relation [36]. Chorney is probably the first author to describe these
new modes as complex waves and give a physical explanation for
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their existence [20]. In later studies, it was shown that it was not
essential in the derivation of the theorems obtained by Chorney to
use a standing wave and the theorems were extended further to apply
more generally [17, 37, 38]. The complex modes for the plasma column
loaded cylindrical waveguide were obtained approximately in [39]
where the phase constant and the attenuation constant were computed
together. In the study, the structure was transformed into a multilayer
dielectric structure by taking the plasma as a complex dielectric
dependent on frequency and the transverse-equivalent network of
the structure, based on the studies in [40, 41], was generated. It
was emphasized in [39] that the transverse wavenumbers and the
propagation coefficients could become complex with the introduction
of complex permittivities for one or any layer of the structure. In
our study the complex wave modes whose possibility of existence was
shown by Chorney for plasma column loaded cylindrical waveguides,
have been presented numerically by using the exact solution and the
MoM. Additionally, the insufficiency of the quasistatic approximation
to obtain the complex wave modes has been shown numerically.

In the study, the method of moment (MoM) has been used as
the main method in order to obtain the complex surface wave modes.
This is because this method gives the propagation constant directly
with regard to the frequency without much computing load after
obtaining the transmission line equivalent of the structure analytically.
Obtaining the complex propagation constant from the exact solution
would have a very high computing cost, as explained in Section 3.
The MoM is a widely used technique for the numerical simulation of
propagation and scattering problems [42]. Harrington used the MoM
in electromagnetics problems and gave its details in his fundamental
book [43]. The MoM technique is based on reducing the operator
equation to a system of linear equations that is written in matrix
from. One of the advantages of using this method is that the results
are very accurate because the equations that his method uses are
essentially exact and the MoM provides a direct numerical solution for
these equations. Another advantage is that it is practically applicable
to geometrically complex scatter [44]. In solving an electromagnetic
problem with the MoM, the dimension of the linear system in matrix
form directly determines the accuracy of the solution and the duration
of the computation which includes the time for constituting the
coefficient of the linear equations system in matrix form and the time
for solving the system. In this study, “Generalized Telegraphist’s
Equations” [45] or transmission line equations for closed waveguide
are utilized to generate the linear equation system of the MoM for
the plasma column loaded cylindrical waveguide. In this technique,
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the dimension of the linear equations system is determined from
the number of eigenfunctions used in the series expansion. For
the cylindrical structure, the eigenfunctions are in terms of Bessel
functions.

The plasma column loaded closed cylindrical waveguides have
been tackled in different studies using the quasistatic approxima-
tion [11–14, 46] or the exact solution [16, 47–51] or both [15, 52]. In
these studies, the propagation characteristics of the structures have
been presented on the frequency-propagation constant (ω-γ) plane
called the Brillouin diagrams, because these diagrams are easily in-
terpreted and therefore more useful to engineers and physicists [48]. A
general structure of field components for anisotropic medium loaded
cylindrical waveguides was given in [53]. In particular, the exact dis-
persion relation of the plasma column loaded cylindrical waveguide was
presented in different forms with different notations in [15, 48, 51, 52].
As a contribution of our study, the complex surface wave modes of
plasma column loaded cylindrical waveguides have been obtained from
the exact solution for the first time. A numerical technique based
on the solution of the MoM has been proposed in order to obtain
the complex propagation constant from the exact solution. The sur-
face wave modes obtained from the exact solution, the MoM and the
quasistatic solution have been presented comparatively in the figures.
Thus, the insufficiency of the quasistatic approximation to obtain the
complex surface wave modes of the structure has been shown. This is
important as it explains why the complex surface wave modes of the
structure were not reported in the literature although it was tackled
in many studies which usually used the quasistatic approximation.

The organization of the paper is as follows. The methods
used to obtain the surface wave modes are explained in the next
section. The proposed numerical technique to compute the complex
propagation constant is given in Section 3.1. The dispersion curves of
the complex surface wave modes are presented in the numerical results
in Section 3.2. The study is finalized in the conclusion of the paper.

2. METHODS

The cross-section of the plasma column loaded cylindrical waveguide
investigated in the study is given in Figure 1.

The variation of the field in the cylindrical guide is taken as
Equation (1). The medium has been assumed as lossless and sourceless.

F (r, ϕ, z) = F (r)eγz+j(nϕ−ωt) (1)
where γ is the complex propagation constant and described as γ =
α ± jβ, where α is the attenuation constant, β the phase constant,
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Figure 1. The cross-section of the plasma column loaded cylindrical
waveguide.

n the azimuthal variation number, ω the operating frequency, and r,
ϕ, and z are the cylindrical coordinates. The normalized propagation
constant is described as Γ = γ/γ0, where γ0 is the waveguide number
in free space.

The permittivity in the waveguide is given in Equation (2).

ε(r) =
{

ε̃ 0 < r < b
ε0 b < r < a

(2)

where, the plasma column tensor permittivity is given in Equation (3).

ε̃ = ε0

[
ε1 jε2 0
−jε2 ε1 0

0 0 ε3

]
(3)

here,

ε1 = 1 +
1

R2 − Ω2
, ε2 =

−R

Ω(R2 − Ω2)
, ε3 = 1− 1

Ω2
(4)

and, Ω is the normalized frequency and R is the normalized cyclotron
frequency. Expressions of Ω and R are given in (5).

Ω =
ω

ωp
, R =

ωc

ωp
(5)

where, ωp is the plasma frequency and ωc the cyclotron frequency.
Permeability of the structure for any point of the cross-section is equal
to free space permeability (µ0).

There may be four groups of mode types for a metallic closed
waveguide structure where the variation of the field along the
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propagation direction is eγz, in which the propagation constant may
be a complex number. They are forward wave modes, backward wave
modes, evanescent wave modes and complex wave modes. A wave
is considered a forward (backward) wave if the group velocity, as
indicated by the slope of the dispersion curve, is in the same (opposite)
direction as the phase velocity [54]. The phase velocity (υph) and the
group velocity (υgr) are described in Equation (6).

υph =
ω

γ
, υgr =

dω

dγ
(6)

2.1. The Exact Solution

The transverse field components of anisotropic medium loaded
cylindrical waveguides are in the form of the equation below [53].

Ft(r, ϕ, z) =
{

A
∂Ez

∂r
+ B

1
r

∂Ez

∂ϕ
+ C

∂Hz

∂r
+ D

1
r

∂Hz

∂ϕ

}
erz+j(nϕ−ωt) (7)

where, Ft is any transverse field component, Ez the z component of
the electric field, Hz the z component of the magnetic field, and A,
B, C, and D are coefficients obtained from Maxwell’s equations. The
exact dispersion equation is derived directly from Maxwell’s equations
by imposing the boundary conditions which are Ez =0 and Br =0 at
r = a and the continuity conditions of Ez, Hz, Dr and Eϕ at r = b.
The exact dispersion equation was given below in order to correct some
misstatements in [15].

fϕ(u1)
fr(u1)

=
fϕ(u2)
fr(u2)

(8)

where,

u2
1,2 = γ2

0

− (
Γ2 − 1

) [
2

(
Ω2 − 1−R2

)
+ R2

Ω2

]
− 2

Ω2

(
Ω2 − 1

)

2 (Ω2 − 1−R2)

±γ2
0

R2

Ω2

√
(Γ2 − 1)2 + 4Γ2

R2 (Ω2 − 1)

2 (Ω2 − 1−R2)
(9)

and,

fϕ(ui) = −n

b

{
u2

i + γ2 − γ2
0(ε1 ∓ ε2)(

γ2
0ε1 − γ2

)
u2

i + ∆
− 1

γ2
0 − γ2

}

− k2
0ε2(

γ2
0ε1 − γ2

)
u2

i + ∆

{
u2

i u0

γ2
0 − γ2

Hn(u0, b)
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−
[±uiJn∓1(uib)

Jn(uib)

]}
, i = 1, 2 (10)

fr(ui) =
n

b

{
−γ2

0(ε2 ± ε1)
[
u2

i + γ2 − γ2
0(ε1 ∓ ε2)

]
+

γ4
0ε2u

2
i

γ2
0 − γ2

}

1(
γ2

0ε1−γ2
)
u2

i +∆
+

[
1+

γ2
(
u2

i +γ2−γ2
0ε1

)
(
γ2

0ε1−γ2
)
u2

i + ∆

][±uiJn∓1(uib)
Jn(uib)

]

− γ2
0u0

γ2
0 − γ2

Gn(u0, b), i = 1, 2 (11)

where,

∆ = γ4
0

[
ε2
2 −

(
ε1 − Γ2

)2
]

(12)

Hn(u0, b) =
N ′

n(u0a)J ′n(u0b)− J ′n(u0a)N ′
n(u0b)

N ′
n(u0a)Jn(u0b)− J ′n(u0a)Nn(u0b)

(13)

Gn (u0, b) =
J ′n(u0b)Nn(u0a)− Jn(u0a)N

′
n(u0b)

Jn(u0b)Nn(u0a)− Jn(u0a)Nn(u0b)
(14)

The exact dispersion solution has a very complex expression.
Obtaining purely real or purely imaginary dispersion curves from the
exact solution is easily done by using numerical techniques like the
bisection method. But obtaining the complex modes is rather difficult
because of the complexity of the expression. The numerical technique
used to obtain the complex modes is explained in Section 3.1.

2.2. The Quasistatic Approximation

For anisotropic medium loaded cylindrical waveguides, one of the most
important semi analytic methods is the quasi-static approximation
which has been used in numerous studies [11–15, 46, 52]. For quasi-
static approximation, the field solutions are derived on the assumption
that the phase velocities of waves are much less than the velocity of
light. In this case, the a.c. magnetic field can be neglected and it is
permissible to calculate the electric fields from a scalar potential.

~E = −∇Φ (15)
The plasma is regarded as a dielectric with a permittivity tensor.

There is no free charge as below. So the scalar potential can be
obtained from Laplace’s equation.

∇ · ~D = ∇ · (ε̃ · ∇Φ) = 0 (16)
The electric field and the electric displacement field can easily be

obtained from the expression of the scalar potential. The quasi-static
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dispersion relation is obtained as in Equation (10) by imposing the
boundary conditions (Eϕ = 0 at the metallic wall, r = a and the
continuity of Eϕ and Dr at the interface r = b).

ε1u
J ′n(ub)
Jn(ub)

− ε2
n

b
= γ

I ′n(γb)Kn(γa)− In(γa)K ′
n(γb)

In(γb)Kn(γa)− In(γa)Kn(γb)
(17)

where, I and K arethe modified Bessel functions of the first and second
kind, respectively, and u is described as in Equation (18).

u =
√
−γ2

ε3

ε1
(18)

The quasi-static approximation for plasma column loaded cylindrical
waveguides was presented in detail by Trivelpiece and Gould [11–
13]. In their study, the resulting modes are slow modes and are
transverse magnetic (TM). Yip and Le-Ngoc extended the quasi-static
approximation results by investigating a wide frequency interval and
they compared the results obtained from the quasistatic approximation
with the exact solution [15].

2.3. Method of Moment

Maxwell’s equations are partial differentials equations. In their general
form, these contain three derivatives with respect to space variables
and time. As is well known, closed form solutions of Maxwell’s
equations cannot be given for a general physical structure. When the
exact solution does not exist for any physical structure a numerical
solution, such as the finite difference method or the finite element
method, or a semi analytical solution, such as the transmission
line method or the MoM, is investigated in order to obtain the
solution. One of the best known semi-analytical methods for closed
and sourceless waveguides was given in “Generalized Telegraphist’s
Equations for Waveguide” by Schelkunoff in 1952 [45]. In a classic
study, Schelkunoff derived the transverse field component from the
potential and the stream functions for the general structure of closed
waveguides. He also gave the potential and the stream functions in
terms of voltage (v), current (i) and eigen functions of the empty
structure. The method is summarized briefly and the ordinary
differential equations system for plasma column loaded cylindrical
waveguides is obtained below. The transverse field components for
the gyroelectric region are derived from the Maxwell equations by
eliminating the longitudinal field components as in (19) and (20)

∂ ~Et

∂z
= −

[
jωµ0 +

1
jωε0

∇t
1
ε3
∇t

]
. (~ez ×Hz) (19)
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∂ ~Ht

∂z
= −

[
jωε̃t − 1

jωµ0
∇t∇t

]
. (Et × ~ez) (20)

where, ~ez is the unit vector in the direction of propagation and t the
transverse components. the two dimensional derivative operator is
described as ∇t = ∇− ~ez(∂/∂z).

Independent transverse electromagnetic fields ~Et and ~Ht may be
expanded in terms of the orthogonal eigenfunctions T(n) and T[n] of the
empty metallic waveguide with mode voltages v(z) and mode currents
i(z).

~Et =
∞∑

n=1

v(n)(z)∇tT(n) +
∞∑

n=1

v[n](z)∇tT[n] × ~ez (21)

~Ht = −
∞∑

n=1

i(n)(z)∇tT(n) × ~ez +
∞∑

n=1

i[n](z)∇tT[n] (22)

where, T(n), T[n] and n represent TM modes, TE modes and mode
number, respectively. The orthogonal eigenfunctions are presented in
the terms of Bessel functions for the cylindrical structure.

T(n) = AnJ1(αnr)ejϕ (23)

T[n] = jBnJ1(βnr)ejϕ (24)

The normalization coefficients An and Bn are obtained from
Equation (25).∫∫

S

∇T(n)∇T(n)dS ≡ χ2

∫∫

S

T 2dS = 1 (25)

where, χ is equal to αn for TM modes and βn for TE modes. They
obtained from boundary conditions that the T -function vanishes for
TM modes and the normal derivation of the T -function vanishes for TE
modes on the boundary. The telegraphist’s equations for the structure
are obtained by substituting (22), (23), (24) and (25) into (19) and
(20) as in the following equations.

dv(m)(z)
dz

= Z(m)(n)i(n)(z) (26)

dv[m](z)
dz

= Z[m][n]i[n](z) (27)

di(m)(z)
dz

= Y(m)(n)i(n)(z) + Y[m](n)i[n](z) (28)

di[m](z)
dz

= Y[m](n)i(n)(z) + Y[m][n]i[n](z) (29)
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where, impedance and admittance coefficient matrices are described as
follows.

Z(m)(n) = −jωµ0

∫∫

S

∇T(n)∇T(m)dS + αmvz,(m) (30)

Z[m][n] = −jωµ0

∫∫

S

∇T[n]∇T[m]dS + αmvz,(m) (31)

Y(m)(n) = −jωε0 (ε1 − 1)

2π∫

ϕ=0

b∫

r=0

∇T(n)∇T(m)dS

+ωε0ε2

2π∫

ϕ=0

b∫

r=0

∇T(n) × ~ez∇T(m)dS

−jωε0

∫∫

S

∇T(n)∇T(m)dS (32)

Y(m)[n] = −jωε0 (ε1 − 1)

2π∫

ϕ=0

b∫

r=0

∇T[n] × ~ez∇T(m)dS

−ωε0ε2

2π∫

ϕ=0

b∫

r=0

∇T[n]∇T(m)dS (33)

Y[m](n) = jωε0 (ε1 − 1)

2π∫

ϕ=0

b∫

r=0

∇T(n) × ~ez∇T[m]dS

+ωε0ε2

2π∫

ϕ=0

b∫

r=0

∇T(n)∇T[m]dS (34)

Y[m][n] = −jωε0 (ε1 − 1)

2π∫

ϕ=0

b∫

r=0

∇T[n]∇T[m]dS

+ωε0ε2

2π∫

ϕ=0

b∫

r=0

∇T[n] × ~ez∇T[m]dS
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−jωε0

∫∫

S

∇T[n]∇T[m]dS + βmiz,[m] (35)

The expressions αmvz,[m] in Equation (30) and βmiz,[m] in
Equation (35) are obtained from the equations below.

jω
∞∑

n=1

vz,(n)

∫∫

S

εzz(r)αnT(n)T(m)dS = −i(m) (36)

jωµ0

∞∑

n=1

iz,[n]

∫∫

S

βnT[n]T[m]dS = −v(m) (37)

When the double decked integrals in the expressions are solved, the
ordinary differential equations system of the telegraphist’s equations
for plasma column loaded cylindrical waveguides are obtained in the
form of (38).

d

dz




v( )

v[ ]

i( )

i[ ]


=




0 0 Z( )( ) 0
0 0 0 Z[ ][ ]

Y( )( ) Y( )[ ] 0 0
Y[ ]( ) Y[ ][ ] 0 0







v( )

v[ ]

i( )

i[ ]


 (38)

The method transforms the Maxwell’s equations, containing the
partial differential equations, into an ordinary differential equations
system containing derivation with respect to propagation direction
(z) as in Equation (38). The obtained system is also called the
transmission line model of the structure. If Equation (1) is considered,
the derivation with respect to propagation direction is equal to the
product with γ. Thus, the ordinary differential equations system is
transformed into linear algebraic equations system. In general the
form of the linear algebraic equations system for fully/partially gyro-
electric or gyro-magnetic medium loaded waveguides is in the form of
Equation (39).

γ(p)
[

v(p)
i(p)

]
=

[
0 Z(p)

Y (p) 0

] [
v(p)
i(p)

]
(39)

In this way, the problem of electromagnetic propagation in
the gyro-electric medium, a plasma loaded cylindrical waveguide is
converted into an eigenvalue problem. In expression (39), p is the
complex frequency, γ (p) the complex propagation constant, and
v(p) and i(p) are the unknown voltage and the current vectors,
respectively. Additionally, Z(p) and Y (p) are the complex impedance
and admittance coefficient matrices per unit length, respectively.
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The eigenvalues of the impedance-admittance coefficient matrix
gives the propagation constants of the problem. This method directly
gives the relation between the propagation constant and the frequency.
The dimension of the system is determined from the number of
known solutions of the empty waveguide as the Fourier-Bessel series
expansion. The method is called a semi-analytical method because of
the necessity of truncating the infinite summation of the series at a
point, while it uses known analytic solutions of the empty waveguide.
This method is also called the Galerkin version of the MoM [22, 31, 55]
because the expansion eigenfunctions (basis functions) and the test
functions are equal to each other.

In this study, the complex propagation constant obtained from
the MoM is very important to decrease the computation load for
the process of computing the exact propagation constant because the
numerical computations have been performed around this approximate
complex point on a two-dimensional plane whose axes are the
phase constant and the attenuation constant. The accuracy of
the approximate solution enables computation of a narrower plane.
In previous studies, the authors have shown the validation of the
method in the gyro-resonance region for partially or fully plasma filled
structures [56, 57] and at plasma resonance region for fully [58] or
partially [59] plasma filled structures. Additionally, they compared
the method with two semi analytical methods, the quasi-static
approximation and the asymptotic approximation, and they showed
that the MoM is a better method than the other two methods for all
frequencies of the gyro-resonance region [60].

3. NUMERICAL COMPUTATIONS

3.1. A Numerical Technique to Obtain the Complex Roots
of the Exact Dispersion Equation

In order to obtain the dispersion curves of the surface wave modes
for the plasma column loaded cylindrical wave guide, two different
techniques have been used. The bisection method has been used to
obtain purely real or purely imaginary propagation constants which
satisfy the exact dispersion equation. The complex propagation
constants have been obtained by utilizing the results acquired from the
MoM. For a certain frequency, a complex numbers set which consists of
complex values in the neighborhood of complex propagation constant
point obtained from the MoM generates a surface. If the exact solution
is computed for each of these complex propagation values, the absolute
values of the exact solution gives a three dimensional shape with a clear
minimum as seen in Figure 2.
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Figure 2. Absolute values of the exact dispersion equation for the
complex values of the normalized propagation constant.

The point where the local minimum occurs on the surface is the
exact complex propagation constant. In the figure, the vertical axis
shows absolute values of the exact dispersion equation for the complex
values of the normalized propagation constant which are stored in a
300× 300 dimension matrix.

For R = 0.5, s0 = 0.1 and Ω = 0.996, the normalized propagation
constant obtained from the MoM is γ = 0.68156895+ i1.44396519 and
the normalized propagation constant obtained from the exact solution
is γ = 0.67954885 + i1.44598539. Here s0 is the plasma ratio in the
guide and equals b/a.

3.2. Numerical Results

The numerical computations have been performed for two groups
of the normalized cyclotron frequency. The first is for a relatively
weak magnetic field (R = 0.5) and the second is for the relatively
strong magnetic field (R = 1.5) as described in [15]. The investigated
structures have four different ratios of radii (s0 = 0.1, 0.5, 0.9) and s0 =
1, which is fully plasma filled waveguide. The numerical computations
have been performed using MATLAB R2009b on a computer which
has an Intel R©CoreTM i7 CPU 960 @ 3.20 GHz 3.19GHz, 12GB RAM
and 64 bit operating system.

It is reported in [15] that the surface wave modes for the azimuthal
variation n = 1 and a partially plasma column filled cylindrical
waveguide except the structure R < 1.0 and small plasma ratio are
first forward waves and then change to backward waves approaching
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resonance at Ωu/
√

2 for R < 1.0 and the cyclotron resonance Ω∞ = R

for R > 1.0 where, Ωu is described as Ωu =
√

1 + R2. The surface wave
modes for n = 1 and R < 1.0 are backward waves when s0 is small,
e.g., s0 = 0.1. The numerical results obtained from the MoM and the
exact solution corroborates the reported dispersion characteristic for
purely imaginary values of γ. As a contribution of the study, it has been
shown that the surface wave modes for a partially plasma column filled
cylindrical waveguide except the structure R < 1.0 and small plasma
ratio, e.g., s0 = 0.1 appear as evanescent waves from zero frequency and
transform to forward modes at a certain frequency. The surface wave
mode for the structure s0 = 0.1 and R = 0.5 appear as evanescent
waves, too, but the group velocity and the phase velocity change in
direction from the opposite to the same in the evanescent wave region
where γ is purely real (α). For partially plasma filled guides except
the structure R < 1.0 and small plasma ratio, the dispersion curves of
the surface wave modes bifurcate and the complex wave modes exist
at the frequency point where the forward waves change to backward
waves. This characteristic is seen in Figures 3, 5, and 6. For the
structure which is R < 1.0 and a small plasma ratio, e.g., s0 = 0.1, the
bifurcation of the dispersion curve and appearance of the complex wave
modes occurs in the evanescent wave region where the group velocity
and the phase velocity change in direction from the opposite to the
same as seen in Figure 4. For fully filled structures, the surface wave
modes are forward waves and do not change to backwards wave and
so, the complex wave modes do not exist. This has been shown in
Figure 7.

In the study, the surface wave modes for azimuthal variation
n = −1 have not been investigated, because it is known that the
surface wave modes for n = −1 are always forward waves [15] and
do not change to backward waves. So, the complex wave modes do
not exist. In any case, the transverse field components (Ez and Hz)
in plasma are coupled. This means that the transverse electric (TE)
modes and transverse magnetic (TM) modes in which the azimuthal
variation is equal to zero (n = 0) cannot exist singly except at the
cutoff frequency points (γ = 0). Therefore the surface wave modes for
n = 0 have not been investigated in the study.

In Figure 3, the complex dispersion curve of the surface wave
mode obtained from the exact solution, the MoM and the quasistatic
dispersion equation for R = 0.5 and s0 = 0.5 has been given on a large
normalized frequency interval from zero to Ωu. In the figures, the
vertical axis below the origin shows the attenuation constant (α) and
the vertical axis above the origin shows the phase constant (β) of the
normalized propagation constant. The evanescent wave characteristic
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is the same for all partially or fully plasma column filled cylindrical
waveguides and they exist for a large frequency interval which starts
from zero. Therefore, instead of a large frequency interval, important
frequency regions of dispersion curves of the other structures which
include forward, backward and complex wave modes have been given
in the other figures.
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Figure 3. Complex dispersion curve of the surface wave mode for
R = 0.5 and s0 = 0.5.

The dispersion characteristics of the surface wave modes of
partially plasma column filled guides except those with a small plasma
ratio and R < 1.0 are the same. The surface wave modes start as
evanescent waves from zero frequency and change to forward waves at a
certain frequency, Ω = 0.823 for R = 0.5 and s0 = 0.5, and then change
from forward to backward waves at a larger frequency, Ω = 0.851 for
R = 0.5 and s0 = 0.5. The dispersion curves bifurcate at frequency
points in which the dispersion curves change from forward to backward
waves and the complex waves appear. At the frequency points in which
the complex waves disappear, the dispersion curves bifurcate in the
attenuation constant region of the propagation constant at a certain
frequency, Ω = 1.066, and the complex wave changes to two evanescent
modes. The dispersion curves of the surface wave modes obtained from
the quasistatic approximation are backward waves except for those
with a large plasma ratio and R < 1.0, e.g., s0 = 0.9 and R = 0.5.
They change into evanescent waves at a certain frequency Ω = 0.911
for R = 0.5 and s0 = 0.5. These evanescent waves approach the higher
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order evanescent wave of the exact solution or the MoM in the larger
frequency region. For a large plasma radius ratio and R < 1.0, the
dispersion curves of the surface wave modes are the forward waves
as seen in the left part of Figure 6. They appear at the evanescent
wave region and change to forward waves. The dispersion curve of
the surface wave modes obtained from the quasistatic approximation
consist of only pure imaginary or pure real values of the normalized
propagation constant because there are no complex roots supplied by
the quasistatic dispersion equation in/around the complex wave regions
as seen in the figures. Moreover, the dispersion curve obtained from
the quasistatic approximation is not compatible with the exact solution
and the MoM for small pure imaginary values or pure real values of
γ. It is only compatible for large values of γ. This result corroborates
the situation reported in [15] that “the electrostatic and exact analysis
have the same asymptotic dispersion equation”.

The dispersion curves of the surface wave mode for R < 1.0 and
small plasma ratios have different characteristics, in that they do not
have forward waves in the phase constant region. The dispersion curves
bifurcate and the complex waves appear in the attenuation constant
region. This characteristic is seen in Figure 4. This is a different case
from classical closed waveguide structures in which the complex wave
modes appear in an adjacent frequency region of backward wave modes
in the phase constant region as given in [21–31].

For s0 = 0.1 and R = 0.5, the dispersion curve changes direction
and bifurcates at Ω = 0.9887 and the complex wave appears in the
frequency interval between Ω = 0.9887 and Ω = 1.0159 as seen in
Figure 4. The attenuation constant part of the complex dispersion
curve bifurcates at the frequency point where the complex wave
disappears and the two evanescent waves appear. The quasistatic
dispersion curve is not compatible with the exact solution and the
MoM for small pure imaginary values of the normalized propagation
constant.

The dispersion curves of surface wave modes for R = 1.5 and
s0 = 0.1 and for R = 1.5 and s0 = 0.5 are given in Figure 5 on the
left and right sides, respectively. They have similar characteristics to
the exact solution and the MoM and the quasistatic approximation.
The dispersion curve for R = 1.5 and s0 = 0.1 bifurcates at Ω = 1.757
and the complex waves exist through the frequency point Ω = 1.792.
For R = 1.5 and s0 = 0.5, the complex waves exist in the frequency
interval between Ω = 1.592 and Ω = 1.934.

The dispersion curves of surface wave modes for large plasma
ratios, s0 = 0.9, are given on the left side for R = 0.5 and the right
side for R = 1.5 in Figure 6. The dispersion curves obtained from
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Figure 4. Complex dispersion curve of the surface wave mode for
R = 0.5 and s0 = 0.1.

1.7 1.75 1.8

2

0

2

4

6

8

10

12

14

Ω

N
o

rm
a

liz
e

d
 P

ro
p

a
g

a
ti
o

n
 C

o
n

s
ta

n
t 

(Γ
) 

α
β

R = 1.5 and s   = 0.10

 

 

1.2 1.4 1.6 1.8

2

0

2

4

6

8

10

12

14

16

18

20

Ω

α
β

R = 1.5 and s   = 0.50

 

 

MoM

Exact

Quasistatic

Figure 5. Complex dispersion curve of the surface wave mode for
R = 1.5 and s0 = 0.1 and for R = 1.5 and s0 = 0.5.

the exact solution and the MoM are similar. They exist as evanescent
waves from zero frequency to Ω = 0.536 for R = 0.5 and Ω = 1.136 for
R = 1.5 and change to forward waves. The complex waves exist from
the bifurcation point Ω = 0.792 for R = 0.5 and Ω = 1.51 for R = 1.5
to Ω = 0.966 for R = 0.5 and Ω = 1.649 for R = 1.5. The dispersion



376 Kelebekler

0.5 0.6 0.7 0.8 0.9

20

10

0

10

20

30

40

50

60

Ω

α
β

R = 0.5 and s   = 0.90

 

 

1 1.2 1.4 1.6

10

5

0

5

10

15

20

25

Ω

α
β

R = 1.5 and s   = 0.90

MoM

Exact

Quasistatic

N
o

rm
a

liz
e

d
 P

ro
p

a
g

a
ti
o

n
 C

o
n

s
ta

n
t 

(Γ
) 

Figure 6. Complex dispersion curve of the surface wave mode for
R = 0.5 and s0 = 0.9 and for R = 1.5 and s0 = 0.9.

characteristic obtained from the quasistatic dispersion equation for
R = 0.5 and s0 = 0.9 is different form the other partially plasma
loaded structures. It appears as evanescent modes in the attenuation
constant region and changes to forward waves at the frequency point,
Ω = 0.646. For the structure, it is compatible with the exact solution
and the MoM for large values of the propagation constant. The surface
wave mode obtained from the quasistatic dispersion equation is the
backward wave. It turns into the evanescent wave at the frequency
point, Ω =1.561 for R = 1.5.

In Figure 7, the dispersion curves of the surface wave modes for
fully plasma filled cylindrical wave guides have been given for R = 0.5
and R = 1.5.

In order to remove the unidentified in the solutions, the plasma
ratio has been taken as s0 = 0.9999999 for numerical computations.
While the plasma ratio approaches s0 = 1.0, the backward waves,
which exist for partially plasma filled guides, disappear. The dispersion
curves of the surface wave modes obtained from the exact solution
and the MoM start from zero frequency as evanescent waves and
change to forward waves at a certain frequency, Ω = 0.398 for
R = 0.5 and Ω = 1.084 for R = 1.5. The dispersion curves for
large values of the normalized propagation constant go to infinity
while the normalized frequency approaches the normalized cyclotron
frequency, R. The quasistatic dispersion equation for fully plasma filled
cylindrical waveguides supplies only for Ω = R and so it is compatible
with the exact solution and the MoM only for large values of γ.
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The surface wave modes for partially plasma column loaded
cylindrical waveguides are backward waves while approaching the
resonance at Ω∞ = Ωu/

√
2 for R < 1.0 and the cyclotron resonance

Ω∞ = R for R > 1.0. The frequency values of bifurcation points,
where the slope of the dispersion curves is infinite and the complex
waves appear, are getting smaller and approach the resonance points
Ω∞ = 0.792 for R = 0.5 and Ω∞ = 1.5 for R = 1.5 while the
plasma-waveguide ratio is getting bigger. Nevertheless values of the
propagation constant at the bifurcation point are getting bigger while
s0 is getting bigger as seen in Figure 3 to Figure 6. For fully plasma
structures, the surface wave modes are forward waves and approach
infinity at the same resonance frequency as partially plasma loaded
structures.

While the plasma ratio is getting bigger for R < 1.0, the frequency
point where the dispersion curves change direction and the complex
waves appear moves from the attenuation constant region as seen in
Figure 4 into the phase constant region as seen in Figure 3. The
changing direction and the bifurcation of the dispersion curve occurs
with bigger values of the propagation constant in the phase constant
region, while the plasma ratio is bigger as seen in Figures 3, 5, and
6 respectively. When the plasma ratio arrives s0 = 1.0, fully plasma
filled guide, the dispersion curves of the surface wave modes do not
turn from forward wave to backward wave and, so, the complex waves
do not exist as seen Figure 7.

0 0.125 0.25 0.375 0.5

2

0

2

4

6

8

10

12

Ω

α
β

R = 0.5 and s   = 1.00

 

 

MoM

Exact

Quasistatic

0 0.5 1 1.5

2

0

2

4

6

8

10

12

14

16

18

20

Ω

α
β

R = 1.5 and s   = 1.00 

N
o
rm

a
liz

e
d
 P

ro
p
a

g
a

ti
o
n
 C

o
n
s
ta

n
t 
(Γ

) 

Figure 7. Complex dispersion curve of the surface wave mode for
R = 0.5 and s0 = 1.0 and for R = 1.5 and s0 = 1.0.
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4. CONCLUSION

The complex dispersion characteristics of the surface wave modes of
plasma column filled cylindrical waveguides have been investigated
in this study. The surface waves of partially or fully plasma filled
guides have been obtained from the exact solution, the MoM and the
quasistatic approximation. The complex propagation constants which
appear at the frequency point where the backward waves disappear or
change to forward waves, which means that the slope of the dispersion
curve is infinite have been obtained from the exact solution with the aid
of near approximate value of the point obtained from the MoM. The
dispersion characteristics of the surface wave modes of the partially
plasma filled cylindrical waveguides, excluding those with a small
plasma ratio and R < 1.0 are the same. They start as evanescent
waves from Ω = 0 and change to the forward waves at a certain
frequency. They change from forward waves to backward waves at
higher frequencies than the frequency points at which they change to
forward waves. The dispersion curves bifurcate and the complex waves
appear at the frequency points where the dispersion curves change from
forward waves to backward waves. In the higher frequency regions,
the complex waves disappear and the dispersion curves bifurcate from
the attenuation constant branch and two evanescent waves appear.
For dispersion curves of the surface wave modes of the fully plasma
filled cylindrical waveguides, the backward waves and, therefore also
the complex waves do not exist. They appear as evanescent waves
and change to forward waves. The dispersion curves of the surface
wave modes for large values of the normalized propagation constant
approach infinity at the resonance of Ωu/

√
2 for R < 1.0 and the

resonance of R for R > 1.0. The dispersion curves obtained from the
quasistatic dispersion equation are compatible with the exact solution
and the MoM only for large pure imaginary and pure real values of
the normalized propagation constant. Moreover, the complex values
of the propagation constant do not supply the quasistatic dispersion
equation. Therefore, the complex dispersion curves of the surface wave
modes are not obtained from the quasistatic approximation. When
the MoM and the quasistatic approximation are compared, it is seen
that validation of the MoM is higher than validation of the quasistatic
approximation.
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Biyomedikal Mühendisliǧi 13. Ulusal Kongresi, 217–220, Turkey,
2009.

58. Kelebekler, E. and N. Yener, “Obtaining the backwards waves of
fully plasma filled cylindrical waveguide by using the MoM,” 17th
Telecommunications Forum (TELFOR 2009), 895–898, Serbia,
2009.

59. Kelebekler, E. and N. Yener, “Backward wave modes of partially
plasma column loaded cylindrical waveguide,” PIERS Proceedings,
1084–1088, Marrakesh, Morocco, March 20–23, 2011.

60. Kelebekler, E., “Comparison of some semi analytic methods
for plasma column loaded cylindrical waveguide,” IEEE Applied
Electromagnetics Conference, 1–4, India, 2009.


