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Abstract—Constrained Least Mean Square (CLMS) algorithm is used
to adapt the antenna array weights. CLMS in its simple form fails to
capture the Signal of Interest (SOI) if there is an error in the Direction
of Arrival (DOA) estimation. Moreover, it will consider the SOI as
an interferer and create null in the desired DOA. The large gain will
be towards the detected wrong direction. Derivative constraints and
Bayesian beamformer are two techniques used to overcome such a
problem. Derivative constraints destroy a lot of Degrees of Freedom
(DOF). Bayesian beamformer destroys only one DOF but vulnerable
to binning error. The proposed algorithm overcomes the problem of
binning error in the Bayesian beamformer with only one extra DOF.

1. INTRODUCTION

Adaptive Antenna (Smart Antenna) is one of the challenging
techniques used to improve the antenna performance. It depends on
sorting multiple antenna elements into an array to receive multiple
delayed copies of the signal [1]. For a given array geometry, we can
control what is received, amplified or discarded by adapting weights
after the antenna elements. The main problem of the adaptive antenna
is the weight system adaptive algorithm and its performance.

The Constrained LMS (CLMS) is one of the most popular
techniques used in the array weight adaptation [2]. It depends on
minimizing the output power while satisfying some constraints (e.g.,
directional constraints). The CLMS adaptation algorithm is mainly
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designed for given constraints. When these constraints are directional
constraints (the common case), the error in Direction of Arrival (DOA)
detection reduces the algorithm performance. This leads to the need
to some modifications to get robustness in the beamformer towards
directional errors.

One of the oldest techniques to create robust beamformer with
respect to direction errors is adding derivative constraints to the CLMS
beamformer. Derivative constraints force the beam pattern derivatives
to be equal zero in the direction of the SOI adding robustness to
the beamformer [3]. The derivative constraints continuously cover the
desired interval of uncertainty but destroy a lot of Degrees of Freedom
(DOF) to cover a large interval.

Direct mathematical modeling is used in [4–7] to keep acceptable
gain in the worst point in the interval of uncertainty, this leads to too
complex mathematical problem, numerical solutions are involved.

Another technique of the efficient robust beamformers is in [8, 9],
it depends on dividing the interval of uncertainty into small bins.
The Robust beamformer is the sum of the beamformers of the mid-
points of the bins weighted by some weights. In [8] fuzzy logic based
weights are used, in [9] the Angle of Arrival (AOA)’s probability density
function (pdf) based weights are used to form Bayesian beamformer.
Bayesian beamformer can efficiently track the SOI with high directivity
regardless of the error. Although Bayesian beamformer is an efficient
robust beamformer, it suffers from the problem of binning errors due
to its discrete nature.

In this letter we use only first order derivative constraint with
the Bayesian beamformer to fix the binning error. The new technique
solves the problem of the binning error by using first order derivative
constraint. At the same time it solves the problem of destroying a lot of
DOF because it uses the Bayesian beamformer in its main structure.
This letter is organized as follows, in Section 2 the system model is
described, and in Section 3 Constrained Least Mean Square is reviewed.
Two types of constraints, directional and derivative constraints are
also reviewed. Section 4 reviews the Bayesian beamformer, Section 5
introduces the proposed algorithm. Section 6 shows the simulation
results and Section 7 concludes the letter.

2. SYSTEM MODEL

Consider a linear uniform adaptive array with M isotropic
antennas separated by a distance d between neighbors, k + 1
independent transmitted signals impinge the array from directions
θ0, θ1, θ2, . . . , θk, with the broadside direction. θ0 is the direction
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of the SOI. θ1, θ2, . . . , θk are the directions of the interferers. Each
direction θi, is associated with a vector ai namely the steering vector
of this direction, i = 0, 1, 2, . . . , k. In the matrix form the following
equations describe the system:

x̄ = As̄ + n̄

s̄ = [s0 s1 . . . sK ]T

A = [ā0 ā1 . . . āK ]

āk =




1
ejϕk

...
ejmϕk

...
ej(M−1)ϕk




,

ϕk = 2π
d

λ
sin(θk), y = w̄H x̄, Rxx = E

(
x̄x̄H

)

(1)

x is the received signal at the array input, A an M×(k+1) matrix
that contains the steering vectors as its columns, n the thermal noise
vector, w the array weight vector, and y the array output. One of the
signals si impinges the array from the direction θi, which is the Signal
of Interest (SOI). The vector āi is the associated steering vector. The
other signals are interferers. Rxx is the covariance matrix of the input
calculated by the input samples.

To measure the antenna array performance for a given weight we
use two parameters, the antenna pattern and the Signal to Interferers
and Noise Ratio (SINR). The antenna pattern (beampattern) is an
indicator to the response of the antenna to a given direction. For a
given direction, the antenna response is |wHa|, a is the steering vector
of the angle of concern. The Signal to Interferers and Noise Ratio
(SINR) is the ratio between the signal power to the interferers and the
noise power passed to the output through the weight of interest. It is
calculated using the following relation;

SINR =
w̄HRssw̄

w̄HRni w̄
(2)

Rss : The covariance matrix of the input signal assuming no noise
and interferers.
Rni : The covariance matrix of the input signal withthe SOI
removed.
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3. CONSTRAINED LEAST MEAN SQUARE

In general, the main goal of the communication system is keeping
the receiver output always equal to the transmitted signal from the
transmitter of interest. In the adaptive antenna mathematical model
the number of the constraints, which keeps this state up depends on
the available knowledge about the SOI and the transmission medium.
More information usually means fewer DOF destroyed for a given
performance level.

CLMS efficiently manages the available DOF (the number of
antennas in the array) in the system, it can assign a given number
of the DOF to given constraints and use the remaining DOF to satisfy
the unknown mandatory constraints. CLMS minimizes the output
power (satisfying the unknown constraints during this process) and at
the same time keeps some known constraints up. Mathematically, it
can be modeled as

Minimize w̄HRni w̄ s.t. CHw̄ = f̄ (3)

C and f are respectively the constraint matrix and the response
vector, which specify the known constraints and the required responses
that must be satisfied by the solution. To solve this problem using
Lagrange multiplier the following cost function has to be minimized
with respect to w with the constraints satisfied [2]

J =
(
w̄HRni w̄

)
+

(
CHw̄ − f̄

)
(4)

It has been solved in [2], approximating Rni to Rxx for practical
considerations

w̄CLMS = R−1
xx C

(
CHR−1

xx C
)−1

f̄ (5)

Based on Equation (4), the cost function can be divided into two
parts (demonstrated in parentheses). The first part is quadratic and is
required to be minimized, closed to zero as possible as it can be. The
second part is also required to be zero. Given that the known required
constraints are usually less than the available DOF then the second
part is a simple underdetermined linear system. To solve this linear
system, DOF equal to the number of constraints are destroyed. The
DOF destroyed by this part can be called ‘pre-set’ constraints. The
remaining DOF can be used to minimize the first part and can be called
“float” constraints. More available DOF tends to better minimization
(closer to zero), in antenna language, deeper nulls. Modeling a physical
task in fewer DOF leads to more DOF for the minimization process.
In the following, we will show two types of the linear constraints can
be satisfied by CLMS.
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3.1. Directional Constraints

Directional constraints mean constraining the gain in a given direction
to be a given value, e.g., unity gain in the direction of the SOI or zero
gain in the directions of the known interferers. Directional constraints
are represented in the constraint matrix columns by the steering vectors
of the directions, the equivalent locations in the response vector are
filled by the desired gains. In the simple case, only the direction of the
SOI (θ0) is known. In this case let C = ā0, ā0 is defined in Equation (1)
and f̄ = 1. Equation (5) is simplified to Minimum Variance Distortion
less (MVDR) beamformer

w̄MVDR =
R−1

xx ā0

āH
0 R−1

xx ā0

(6)

3.2. Derivative Constraints

Derivative constraint(s), introduced in [3], is a type of linear constraints
used in the adaptive array. It means constraining the derivative(s)
of the beam-pattern to be equal to zero at a given direction, the
detected DOA. The DOA of arrival may be vulnerable to errors due
to several practical considerations. Using the derivative constraints in
conjunction with the directional constraints keeps the high gain for an
interval around the detected angle not for a point giving robustness to
the beamformer with respect to the direction estimation errors. Higher
order zero derivatives lead to wider band of high gain which means
more robustness. The derivative constraint(s) is represented in the
constraint matrix C and the response vector f by adding the following
column to the constraint matrix, steered to the looking direction, with
zero in the corresponding element in the response vector




1n

2n

...
Mn


 , n is the derivative order (7)

The above explanation can be shown in Figure 1–Figure 3. They
are plotted for 7 elements array (7 DOF) with four signals impinge the
array. The signal from 10 degrees is the SOI. Interferers are coming
from −40, −10 and 50 degrees. Figure 1(a) shows the beampattern
of the conventional case (unity gain directional constraint towards the
SOI with no detection error). The SOI is successfully captured. The
interferers are discarded by the nulls in their directions. Figure 1(b)
shows the same case with 3 degrees detection error. In the case of
detection error CLMS assumes the true direction as an interferer and
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creates null in its direction. It is clear in Figure 1(b) that null has
been created at 10 degrees (the SOI). Derivative constraints are used
to overcome the problem of detection error. Figure 2 and Figure 3 show
the third and the fourth derivative constraints respectively. In Figure 2
the beam is forced due to the derivative constraints to keep high gain
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Figure 1. CLMS with 7 elements, one directional constraints
(MVDR), SOI: 10 deg, interferers: −40, −10, 50. (a) One directional
constraint. No detection error. (b) One directional constraint.
3 degrees detection error.
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Figure 2. CLMS with 7 elements, 1 directional constraints and 3rd
order derivative constraints, SOI: 10 deg, interferers: −40, −10, 50.
(a) 3rd order derivative constraints. No detection error. (b) 3rd order
derivative constraints. 3 degrees detection error.
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around the detected DOA, thus the SOI is correctly captured regardless
of any error. Also the nulls have been created in the corrected locations.
In Figure 3 the fourth order derivative constraints work well around the
DOA of the SOI regardless there is an error or not. Although fourth
order derivative constraints succeed to keep the robustness around the
SOI, it fails to create nulls in the direction of the interferers. This
can be considered due to consuming (5 of 7) DOF (one directional
constraints and four derivatives) in the pre-set constraints. There are
only two remaining while we have three interferers (need at least one
DOF for each interferer). Also we can see the effect of the number
of the DOF comparing the nulls in Figure 1 and Figure 2. The
nulls are deeper in Figure 1. This can be considered due to the fact
that more DOF were destroyed in the derivative constraints, thus the
minimization process works using fewer DOF.
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Figure 3. CLMS with 7 elements, 1 directional constraints and 4th
order derivative constraints, SOI: 10 deg, interferers: −40, −10, 50.
(a) 4th order derivative constraints. No detection error. (b) 4th order
derivative constraints. 3 degrees detection error.

4. BAYESIAN BEAMFORMER

Bayesian beamformer [9] is one of the efficient robust beamformers.
It assumes the DOA as a random variable. The priori probability
density function of the DOA is assumed known, usually constant. The
a posteriori pdf of the true DOA given the array input p(θ/x) is

p (θ|x̄) =
p (θ) p (x̄|θ)∑L

j=1 p (θ) p (x̄|θ) (8)
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It has been approximated in [9] to

p (θ|x̄) = cpe
Kγ 1

āH
i

R−1
K

āi (9)

K is the number of samples, p the a priori probability, c a constant
to hold the sum of the probabilities to 1, γ: a constant controls the
behavior of the algorithm, and RK the sample covariance matrix equal
1
K

∑K
i=1 x̄ix̄

H
i .

Bayesian beamformer [9] is the sum of the MVDR beamformers
(Equation (6)) along the interval of uncertainty weighted by the a
posteriori pdf. Practically, to be able to calculate the Bayesian
beamformer the interval of uncertainty is divided into L bins. The
Bayesian beamformer is the sum of the MVDR beamformers of the
mid-points of the small L bins weighted by their a posteriori pdf.

w̄Bay =
L∑

i=1

w̄ip (θi|x̄) (10)

w̄i is the MVDR weight at angle θi, θi is the mid-point of the ith
bin, then

w̄Bay =
∑L

i=1

R−1
k āi

āH
i R−1

K āi

cpe
Kγ 1

āH
i

R−1
K

āi (11)

Giving a closer look to Equations (5), (7) and (10) one can show
that the derivative constraints destroy DOF equals to the derivative
order while the Bayesian beamformer uses only one degree of freedom
in each calculated beamformer. This reduction in the number of
destroyed DOF is in the expense of higher computational complexity
(calculating L beamformers) and binning error (The desired DOA
doesn’t match exactly one of the calculated beamformers). Binning
error is recovered in the proposed algorithm using first order derivative
constraint.

5. FIRST DERIVATIVE CONSTRAINT BASED
BAYESIAN BEAMFORMER

It has been shown in the previous section that Bayesian beamformer is
vulnerable to binning error. This means that the Bayesian beamformer
does not cover the whole interval of uncertainty. It only covers given
points along the interval and suffers from performance degrading if
the desired DOA falls between the mentioned points. In opposition
to Bayesian beamformer, the derivative constraints continuously cover
the interval of uncertainty in the expense of destroying more DOF.
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In our proposed technique we only used the first order derivative
constraint (destroying only one more degree of freedom) to maintain
the discontinuity coverage in the interval of uncertainty.

As shown above, to construct a beamformer with unity gain and
first order derivative constraint at θ = 0, C&f are of the form

C =




1 1n

1 2n

...
...

1 Mn


 , f =

[
1
0

]
(12)

To add the first order derivative constraint to each beamformer
the constraint matrix Ci is the steered version of the constraint matrix
of (12) and f is constant for all beamformers. Consequently, the
constraint matrix Ci and the response vector f are

Ci=




1 0
ejϕi

. . .
ejmϕi

. . .
0 ej(M−1)ϕi







1 1n

1 2n

...
...

1 Mn


 , f̄=

[
1
0

]
(13)

In this case

w̄i = R−1
k Ci

(
CH

i R−1
k Ci

)−1
f̄ (14)

w̄Bay =
L∑

i=1

w̄ip (θi|x̄) (15)

w̄i is the ith weight calculated from (14), p(θi|x̄) is the a posteriori
pdf calculated from (9), substituting (9) and (14) in (15) we get

w̄Bay =
L∑

i=1

R−1
k Ci(CH

i R−1
k Ci)

−1
f̄ cpe

Kγ 1

āH
i

R−1
K

āi (16)

then

w̄Bay =
L∑

i=1

R−1
k Ci

(
CH

i R−1
k Ci

)−1


 cpe

Kγ 1

āH
i

R−1
K

āi

0


 (17)

This beam covers each bin separately by the first order derivative
constraint. Given that it covers each bin separately using different
beamformers, it destroys only two DOF in each one. It can cover the
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whole interval of the Bayesian beamformer and at the same time can
take the advantage of the derivative constraints, no binning error, in
the expense of only one extra degree of freedom. It is shown in the
simulation section the differences between the algorithms in the ability
of interferers’ cancellation due to the available DOF.

6. SIMULATION RESULTS

Assume a uniform linear 12 elements sensor array spaced by d,
d/λ = 0.5. Four signals impinge the array from angles −75, −55,
0, 45 degrees with the broadside. The signal coming from 0 degree
is the SOI. The first, third order derivative constraints, conventional
Bayesian and the proposed algorithm have been simulated. For all
cases the uncertainty range is assumed [−6 : +6] degrees. Two
division scenarios have been studied in each case. The first scenario
has three bins with centers [−6, 0, 6], the second has five bins with
centers [−6, − 3, 0, 3, 6]. The results were averaged over 10 trails.

Figure 4 shows the beampattern of the conventional Bayesian and
the proposed algorithm at 3 degrees error. We can notice that both
algorithms work properly because 3 degrees error exactly matches
one of the bins centers. Figure 5 shows the beampattern of both
algorithms at 2 degrees error which does not match any bin center.
The conventional Bayesian beamformer created null towards the DOA
of the SOI while the proposed algorithm succeeds to maintain high
gain in the desired direction.
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Figure 4. The case of 3 degree error, matches one of the bins. SOI:
0 deg. Interferers: −75, −55, 45 degrees. (a) Conventional Bayesian
beamformer. No detection error. (b) Bayesian with first derivative.
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Figure 5. The case of 2 degree error, DOES NOT match one of the
bins. SOI: 0 deg. Interferers: −75, −55, 45 degrees. (a) Conventional
Bayesian Beamformer. (b) Bayesian with first derivative.
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Figure 6. SINR of the first and third order derivative constraints.

Figure 6 shows the Signal to Interferers and Noise Ratio (SINR)
along the interval of uncertainty for the first and third order derivative
constraints, the graph is same for both cases of bins scenarios because
the derivative constraints behavior is independent of the number of
bins. It is clear that the third order derivative can continuously cover
larger interval with SINR less than the peak of the first order. This is
because the first order has more DOF for minimization. Figure 7 shows
the SINR along the interval of uncertainty to the cases of three and
five bins. From Figure 7 we can see that the conventional Bayesian
beamformer responds with low SINR if the desired DOA does not
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Figure 7. SINR of the conventional Bayesian beamformer and the
proposed beamformer. (a) The case of 3 bins with centers [−6, 0, 6].
(b) The case of 5 bins with centers [−6, −3, 0, 3, 6].

exactly match one of the bins. The proposed algorithm maintains high
SINR around the bins centers. If the number of bins is large enough
the interval of uncertainty will be covered continuously. Comparing
Figures 7(a) and (b) we can see the effect of the number of bins. In
the case of three bins, Figure 7(a), the first order derivative could not
cover the whole bin around the center, thus more bins are required.
In Figure 7(b), five bins with first order derivative constraint can
continuously cover the interval of uncertainty even if it matches one of
the bins centers or not. Now we have two algorithms which can cover
the interval of uncertainty with accepted SINR, third order derivative
constraints and the proposed algorithm,comparing them in Figure 6
and Figure 7(b) we can see that the proposed algorithm responds
with higher SINR, this is because the third order derivative constraints
destroys more DOF while the proposed algorithm uses more DOF for
the minimization process.

7. CONCLUSIONS

In this letter, after reviewing the needed tasks we proposed a new
beamformer algorithm for robustness beamforming. Our proposed
algorithm succeeds to overcome the problem of binning error in
the Bayesian beamformer using only one additional degree of
freedom. With only one additional degree of freedom destroyed,
the minimization process has no notable effect. In the conventional
Bayesian beamformer the binning error degrades the performance in
several small intervals inside the interval of uncertainty. Overcoming
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the binning error in the proposed algorithm developed the performance
in the previously degraded intervals. The simulation verified the
expected results.
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