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Abstract—When performing electromagnetic material characteriza-
tion, an error analysis should be performed to determine the sensitivity
of the extracted permittivity and permeability. Traditional error anal-
ysis methods such as the error propagation method and Monte Carlo
simulations can pose difficulties when analyzing free space material
characterization methods. This paper thus shows how interval analy-
sis can be implemented to perform error analysis on free space material
characterization methods and provide an alternate means to perform
error analysis. Background is presented on interval representations
and interval functions, and a procedure for performing error analysis
with interval analysis is presented. An error analysis is performed on
the free space implementation of the layer-shift method with interval
analysis and the subsequent standard deviations computed with inter-
val analysis are compared to standard deviations computed through
Monte Carlo simulation.

1. INTRODUCTION

Initially introduced in the thesis of R. E. Moore in [1], interval analysis
is the mathematics of sets of numbers. One of the initial uses of
interval analysis was to reduce error in computer calculations by
bounding solutions. Today interval analysis is being used in a variety of

Received 28 June 2013, Accepted 22 August 2013, Scheduled 1 September 2013
* Corresponding author: Raenita A. Fenner (rafenner@loyola.edu).



232 Fenner, Rothwell, and Frasch

applications. Interval analysis has been used to solve various computer
graphic issues [2], design of analog integrated circuits [3], the study of
utility economic analysis [4], and the design of robots [5].

An increasing area of interest for interval analysis is use of it
for error analysis of measurement systems. Within electromagnetics,
accurate error analysis is needed for a variety of applications as
demonstrated in [6–8]. Traditional error analysis methods include,
but are not limited to, the error propagation method and Monte
Carlo simulations; both of these methods can suffer from several
computational issues. The error propagation method can suffer from
rapidly varying amplification factors which lead to an overestimation
of measurement error [9]. Also, Monte Carlo simulations predict
an overestimation of error when the extraction procedure is prone
to the production of a significant number of extrema; an example
of this occurrence is with the characterization of low-loss dielectrics
with the dual polarization method [10]. In the instances the error
propagation method and Monte Carlo simulations are not optimal,
interval analysis is a suitable error analysis tool because the error
analysis is performed through direct computation of the extraction
equations with interval arithmetic. In this manner, the computation of
the amplification factors for the error propagation method or the many
repetitive computations with Monte Carlo simulations are avoided.
Other advantages of interval analysis as an error analysis include: the
error analysis requires only the extraction equations and the tolerances
of the independent variables, time savings for computationally heavy
extraction schemes, and explicit knowledge of the worst case extraction
values.

The major contribution of the work is to demonstrate the
use of interval analysis as a tool for error analysis for material
characterization methods. When attempting to measure the
permittivity and permeability of a material in a laboratory, error
inserted into the extraction is unavoidable. Therefore, it is crucial to
know to what degree are the extracted permittivity and permeability
valid. With the use of interval analysis, the parameters used in
the measurement setup can be formed into intervals based on the
instrument tolerances and the extraction equations are adapted to
form interval extensions. Then the final solutions of the permittivity
and permeability will be intervals which give the exact bounds for
the extracted permittivity and permeability. As an example of the
use of interval analysis for error analysis of material characterization
methods, error analysis is performed on the free space implementation
of the layer-shift method. The resulting intervals are then compared to
the standard deviations computed through Monte Carlo simulations.
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2. BACKGROUND OF INTERVAL ANALYSIS

2.1. Interval Notation

A set or interval can be the set of all real numbers, a range of specified
integers, the empty set, etc.. With a defined interval, interval analysis
forms the rules of interval arithmetic and interval extensions. The basic
concept of interval analysis is to perform computations with intervals
on real numbers instead on real numbers themselves [11]. For example,
the interval X can be represented as

[x, x] = {x ∈ R: a ≤ x ≤ b}. (1)

Intervals are always closed sets with the endpoints included within the
interval. For more information on interval arithmetic, the reader is
encouraged to consult [12].

2.1.1. Real Intervals

A real interval is an interval whose members belong to the field of
all rational and irrational numbers. Real intervals are denoted with
capital letters. There are two ways to represent a real interval which
include infimum/supremum notation and midpoint/radius notation.
Equation (1) is an example of infimum/supremum notation. The
minimum bound is referred to as the infimum and the maximum bound
is referred to as the supremum. The infimum and supremum are
denoted with an underline and an overline respectively.

In addition to infimum/supremum notation, intervals can also
be represented with their midpoint and radius. The midpoint of an
interval is the point in the center of the interval or m(X) = (X+X)

2 . The

radius is simply half the width of the interval, which is r(X) = X−X
2 .

The midpoint-radius form is thus

X = 〈m, r〉, x ∈ R. (2)

2.1.2. Complex Intervals

Naturally, in the course of studying many engineering applications
complex numbers will be encountered. This section reviews the three
different ways to represent complex numbers in interval analysis which
include rectangular, circular, and sector representation.

A rectangular interval is represented with intervals for the real and
imaginary parts separately as in (3). With rectangular representation,
a rectangle is constructed in the complex plane.

Z = X + jY = {x + jy: x ∈ X, y ∈ Y } (3)
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The second way to represent complex intervals is with circular
representation [13]. In order to convert from a rectangular interval
to a circular interval, one must calculate the midpoint, a, and
radius, r, of the circle. This process is similar to converting from
infimum/supremum representation to midpoint/radius representation.
One then represents the complex interval as in Equation (4) which is
portrayed as a circle in the complex plane.

Z = 〈a, r〉 = {z ∈ C: |z − a| ≤ r} (4)

The last way to represent a complex interval is sector
representation. Sector representation is similar to polar or
magnitude/phase notation in conventional arithmetic. In complex
sector representation, the interval is represented with a radius, r, and
an angle, W [14]. Common notation for sectors is in Equation (5).
Sectors form arcs in the complex plane. Utilization of complex sector
intervals often involves converting to circular or rectangular complex
intervals to perform arithmetic operations and then conversion back to
sector intervals.

Z = R · ej·W =
{
r · ejw: r ∈ R,w ∈ W

}
(5)

2.2. Interval Functions

There are two main classifications of functions in interval analysis. The
first classification of interval functions are united extensions. United
extensions are functions that are created by taking a real-valued
function f and computing the range of values f(x) takes as x is varied
through an interval X [12]. United extensions are denoted as f̄(X).
United extensions result in the set image of f(X) which is defined by

f̄(X) = {f(x): x ∈ X} . (6)

The other type of interval functions are interval-valued extensions
or shortly termed interval extensions. Interval extensions are created
by directly extending an ordinary real-valued function to interval
arguments [12]. Common notation for an interval extension of a
function f is F . Although there is not a unique interval extension for
a specific real-valued function, any interval extension is valid as long
as that when a degenerate interval (an interval with the same infimum
and supremum) is plugged into the interval extension the correct value
for the real-valued function is retrieved, i.e.,

F ([x, x]) = f(x). (7)

Interval extensions will be exclusively used in this paper.
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3. ERROR ANALYSIS OF THE LAYER-SHIFT METHOD
USING INTERVAL ANALYSIS

3.1. The Layer-shift Method

The layer-shift method is a material characterization method which
was originally developed in [15]. The layer-shift method is performed
by measuring the reflection coefficient twice; once with the material
under test (MUT) backed directly by a perfect electric conductor
(PEC), and again with a space placed in between the MUT and the
PEC. The layer-shift method can be performed with free space methods
and with methods which use guided-wave applications, such as coaxial
methods. The free space implementation of the layer-shift method
is illustrated in Figure 1. In [16], the method is noted for being
particularly competent in characterizing dielectric media.
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Figure 1. Layer-shift diagrams.

To demonstrate interval analysis as a tool to perform error
analysis, the free space implementation of the layer-shift method is
considered. From [17], the extraction equations for εr and µr are
in (8) and (9) respectively. The free space version of the layer shift
method can be executed with either TM (transverse magnetic) or TE
(transverse electric) incidence; thus, (8) are the extraction equations
for TM plane wave incidence and (9) are the extraction equations for
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TE plane wave incidence.

εr =
kz2η0

k0Z2
, µr =

k2
z2 + k2

0 sin2 θ

k2
0εr

(8)

µr =
kz2Z2

k0η0
, εr =

k2
z2 + k2

0 sin2 θ

k2
0µr

(9)

In Equations (8)–(9), η0 is the intrinsic impedance of free space
and k0 is the free space wavenumber. Additionally, Z2 is the transverse
impedance of the MUT defined in (10) and kz2 is the z-component of
the wave vector defined in (11).

Z2 =
Zb

3Z
a
1 (z1)Zb

1(z1)
Zb

3 + Za
1 (z1)− Zb

1(z1)
(10)

kz2 = arctan
(
−j

Za
1 (z1)
Z2

)
/δ (11)

In (10) and (11), superscript a and b refer to measurements
conducted with the MUT flush against the metal plate and with the
spacer between the MUT and metal plate respectively. Furthermore,
Z1 and Z3 are the transverse impedances in regions 1 (the free space
region where the reflected field is measured) and region 2 (the spacer
region) in 12 and 13, R is the reflection coefficient measured as depicted
in Figure 1, δ is the thickness of the MUT and ∆ is the thickness of
the spacer. Note that Za

3 = 0 equals zero because there is no spacer
region and the MUT is flush against the PEC.

Za
1 = Z0

1 + Ra

1−Ra
, Zb

1 = Z0
1 + Rb

1−Rb
(12)

Za
3 = 0, Zb

3 = jZ3 tan(kz3∆). (13)

3.2. Error Analysis of the Layer-shift Method

The process of using interval analysis with material characterization
methods is a multi-step process which is described below. The process
is described within the context of the layer-shift method, but can be
extended for error analysis of other material characterization methods.
Step 1 The first step in employing interval analysis is to determine the

independent variables which propagate error into the extraction
equations and form intervals based upon these independent
variables. For the layer-shift method, these variables are the angle
of incidence of the incident wave, θ, the thickness of the MUT, δ,
the thickness of the spacer, ∆, and the magnitude and phase of the
reflection coefficient, R. Due to the tolerance of the instruments
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used to measure these parameters, there is an associated amount
of uncertainty for each variable. Using the tolerance of each
measurement instrument, each of the stated independent variables
can be transformed into an interval. For example, if θ = 45◦
and the instrument used to measure the angle has a tolerance of
±0.5◦, the interval for θ will be [44.5◦, 45.5◦]. This process will be
conducted for all of the independent variables.

Step 2 The second step is to form the interval extensions described
in Section 2.2 of the extraction equations in (8) and (9). The
interval extensions are created by taking Equations (8) and (9) and
replacing the independent variables with the intervals described
from step 1. In the case of the extraction equations from the
layer-shift method, this will also make (12), (13), and Z0 intervals.

Step 3 The last step of the error analysis is to evaluate the interval
extensions using interval arithmetic. There are several software
packages available that implement interval arithmetic. The
software package used for this work was Intlab which is a Matlab
extension [18]. Once the intervals are computed, the mid-point
of the intervals will correspond to the nominal εr and µr values
and the interval radii will correspond to the standard deviation
associated with the extracted εr and µr.

Step 4 After the initial computation of the intervals, one should
ensure that the intervals computed have the smallest radii
possible. Often in the course of interval arithmetic, operations
like multiplication and division produce infimum and supremum
which are overestimations of the actual bounds of the interval
extension. To ensure that the interval has the smallest radius
a process called refinement is used. For example, say there is
an interval extension F which is dependent on the interval X.
Refinement is the process of computing the union of the interval
values of F over the elements of a uniform subdivision of X into n
smaller intervals represented by X1, X2, . . . , Xn [12]. The number
of subdivision (i.e., the value of n) is determined by the user. Thus,
to ensure that the smallest interval radius has been obtained, the
value of n is increased until the infimum and supremum bounds
of F no longer changes.

4. RESULTS

To test the usefulness of interval analysis as a method for error analysis,
an error analysis was conducted with both interval analysis and Monte
Carlo simulations on the layer-shift method used to characterize a
commercial MagRAM (magnetic radar absorbing material) at 10 GHz
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with nominal εr = 10.65−j1.50 and µr = 1.65−j0.9. The values for the
independent variables θ, δ, and ∆, Ra, and Rb with the corresponding
instrument tolerances and related intervals are presented in Table 1.

Table 1. Independent variable values and independent variable
intervals determined from instrument tolerances.

Independent
Variable

Value
Instrument
Tolerance

Independent
Variable Interval

θ 40◦ ±.5◦ [39.5◦, 40.5◦]
δ 57.16mil ±1mil [56.16, 58.16]mil
∆ 230.74mil ±1mil [229.74, 231.74]mil
|Ra| 0.1461 ±0.004 [0.1421, 0.1501]
∠Ra 66.14◦ ±0.08◦ [66.08◦, 66.22◦]
|Rb| 0.6152 ±0.004 [0.6112, 0.6192]
∠Rb −171.44◦ ±0.08◦ [−171.52◦,−171.36◦]

Table 2 shows the mean εr and µr computed through 100,000
Monte Carlo simulations and the mid-points of the εr and µr intervals
computed through interval analysis. The mid-points of the εr and µr

intervals correspond closely to the nominal εr and µr values of the
MagRAM sample. Therefore, the radii of the εr and µr intervals will
be referenced from the nominal εr and µr values.

Table 2. Mean εr and µr predicted by Monte Carlo simulations and
εr and µr interval mid-points computed through interval analysis.

Method µ′r µ′′r ε′r ε′′r
Monte Carlo 1.7135 −0.9394 10.6874 −1.5008

Interval Analysis 1.7157 −0.9420 10.6944 −1.5105

Table 3 shows the standard deviations for the total error
propagated into the extracted µr and εr by running 100,000 Monte
Carlo simulations and radii of the µr and εr intervals computed via
interval analysis. Again, the interval radii are considered to be the
standard deviations for the extracted µr and εr. At first glance,
it appears that the interval analysis predictions are overestimated.
However, one must remember that one standard deviation, σ, predicted
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Table 3. Standard deviation of εr and µr predicted by Monte Carlo
simulations and interval analysis at 10GHz.

Method σε′r σε′′r σµ′r σµ′′r

Monte Carlo 0.2274 0.1091 0.0329 0.0226
Interval Analysis 2.6321 2.6321 1.0224 1.0224

Interval Analysis (Refined) 0.2194 0.0953 0.0333 0.0255

by Monte Carlo simulations is valid for only 34.1% of the extractions.
For the standard deviations predicted with Monte Carlo simulations,
a tolerance which represents 99.7% of possible extractions is 3σ wide;
this corresponds to σµ′r = 0.0987, σµ′′r = 0.0678, σε′r = 0.6822, and
σε′′r = 0.3273. Although the radii of the intervals are still larger
than the 3σ tolerances predicted by the Monte Carlo simulations, it is
emphasized that interval analysis gives absolute bounds for µr and εr.
From this perspective, the interval analysis solutions provide useful
information because the worst possible solution is explicitly stated.
Nevertheless, the worst possible solutions are not the most probable
bounds for µr and εr.

Using refinement as explained in Section 3.2, εr and µr intervals
with smaller radii can be computed. Refinement was conducted for
the εr and µr intervals for all five sources error (incidence angle, MUT
thickness, spacer thickness, and magnitude and phase of the measured
reflection coefficients) simultaneously. The intervals for ε′r, ε′′r , µ′r, and
µ′′r were refined until the radii of the ε′r, ε′′r , µ′r, and µ′′r intervals no
longer changed; for this refinement the smallest interval radii were
achieved when n = 30. Accordingly, Table 3 shows the refined standard
deviations (i.e., — interval radii) which show greater agreement to the
standard deviations computed with Monte Carlo simulations. These
results show how interval analysis can be implemented as a method for
error analysis for electromagnetic material characterization.

5. CONCLUSIONS

An error analysis is performed on the free space implementation
of the layer-shift method with both interval analysis and Monte
Carlo simulations for a commercial MagRAM sample. The error
analysis procedure using interval analysis includes forming interval
extensions from the layer-shift extraction equations and evaluating
the interval extensions in Intlab. The midpoint of the εr and
µr intervals correspond to the nominal εr and µr values and radii
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of the intervals correspond to the εr and µr standard deviations.
Initial standard deviations computed with interval analysis were larger
than standard deviations computed with Monte Carlo simulations.
However, use of refinement produced standard deviations which are
in close agreement to standard deviations computed with Monte Carlo
simulations. The results presented show that interval analysis can
be used as an acceptable tool to perform error analysis of free space
material characterization methods.
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