
Progress In Electromagnetics Research B, Vol. 53, 355–371, 2013

MIMO RADAR TRANSMIT BEAMPATTERN SYNTHE-
SIS VIA MINIMIZING SIDELOBE LEVEL

Haisheng Xu*, Jian Wang, Jian Yuan, and Xiuming Shan

Department of Electronic Engineering, Tsinghua University, Bei-
jing 100084, P. R. China

Abstract—In multi-input multi-output (MIMO) radar transmit
beampattern synthesis, most current literature formulates the
problems in steradian space. However, since the beampattern and
its parameters are both measured and defined in radian space, from
the view point of physical meaning, it will be better to reformulate
the problems in radian space rather than in steradian space. In
this paper, we propose methods in the radian space to synthesize
beampatterns based on minimizing sidelobe level for the two main
designs in MIMO radar, i.e., minimum sidelobe beampattern design
(MSBD) and beampattern matching design (BMD). For MSBD, the
design criteria considering both peak sidelobe level and integrated
sidelobe level is proposed. By this we can have a good tradeoff between
the intensity and power distribution in beampattern synthesis. After
a two-step converting, the formulation of the criteria is transformed
into a convex programming, where a global optimal solution can be
obtained. For BMD, instead of minimizing mean square error directly
as in conventional methods, we propose a power-approximation-based
method by minimizing integrated sidelobe level. Finally, numerical
comparisons with classical methods demonstrate that the proposed
MSBD maintains for all range of main lobe width and the proposed
BMD has smoother main lobes with maximal power focused in.

1. INTRODUCTION

Transmit beampattern synthesis is one of the most important
tasks in radar system design [1–6]. In conventional phased-array
radars, directionality of the transmit beam is achieved by coherently
accumulating phase shifts of all the emitting elements that transmit
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the same waveform. And when the number of the array elements
is large, highly focused beampatterns can be obtained. In multi-
input multi-output (MIMO) radars, antennas transmit uncorrelated
waveforms, which results in wide or omnidirectional beampatterns [7–
11]. Sometimes it is necessary to have a trade-off between these two
extremes so that a wide range of area can be illuminated and no power
is wasted at the uninterested area [12]. To this end, there has been
extensive work on transmit beampattern synthesis. And the work is
mainly divided into two categories: one is to minimize the sidelobe level
as its main objective [13, 14], and the other is to match the beampattern
to a known shape [14–19]. For the former design case, [13, 14] proposed
a minimum-sidelobe-based method to design the transmit beampattern
in steradian space. However, since the beampattern and its parameters
are both measured and defined in radian space, we shall expect that
a better formulation of the beampattern synthesis is in radian space
instead of steradian space. Moreover, it is not enough to reduce the
sidelobe level just by maximizing the peak-intensity difference between
the main lobe and the side lobes. In addition, only maximizing the
intensity-difference may split the main lobe into small lobes, which
gets more obvious when the desired main lobe becomes wider. And
defining the sidelobe as the area outside twice the main lobe may
not fully capture the sidelobe region. Finally, the method does not
work when the width of the main lobe is greater than or equal to 90◦
because the sidelobe region cannot be defined any more. For the latter
design case, most of the literature is mainly to synthesize beampatterns
from the perspective of shape approximation. The existing work
either uses convex optimization [14] or uses iterative algorithms [15–19]
to do shape approximation by minimizing mean square error (MSE)
between the designed and desired beampatterns. The main defect of
these shape-approximation-based methods (SAMs) is using excessive
mathematical derivations and is not very efficient, especially when
using iterative algorithms. Additionally, pursuing minimum MSE by
the SAMs may result in rough main lobes.

In this paper, we take a new perspective to study transmit
beampattern design problems to address the above issues. In Section 2,
we revisit MIMO Radar transmit beampattern and reformulate it into
three spaces: spherical area-space, steradian-space and radian-space.
Then in Section 3, minimum sidelobe beampattern design (MSBD) and
beampattern matching design (BMD) in the radian-space are studied.
For MSBD, the design criteria and its corresponding optimal solution
are proposed. The method considers both peak sidelobe level and
integrated sidelobe level, which can offer a good trade-off between
the intensity and power distribution in beampattern synthesis. For
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BMD, different from minimizing mean square error directly as in
the conventional methods, we propose a power-approximation-based
method by minimizing integrated sidelobe level. To verify the proposed
design methods, we conduct simulations in Section 4 to show that our
method for MSBD maintains for all range of main lobe width and our
method for BMD can match well with the desired beampattern and
have smooth main lobes with maximal power concentrated in. Finally,
Section 5 concludes the paper.

Notation: we use lowercase italic letters to denote scalars,
lowercase and uppercase letters in bold denote the vectors and the
matrices, respectively. Superscripts T and H represent the transpose
and complex conjugate-transpose (or Hermitian) operators of a matrix,
respectively, while tr{·} represents the trace of a square matrix. We
use

∮
for a closed surface area integral and

∫
for a definite integral.

2. REFORMULATION ON MIMO RADAR TRANSMIT
BEAMPATTERN

Consider a MIMO radar system equipped with a uniform linear array
(ULA) of M antennas vertically arranged with half-wavelength inter-
sensor spacing (see Fig. 1), then the average radiation power at a
differential area element dA on a sphere S(r) is given by [7, 16]

P (r, φ, θ) =
1

4πr2
aH(θ)Ra(θ) (1)

φ
θ

r r r

r

Figure 1. Spherical coordinates for MIMO radar.
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where R is the covariance matrix of the transmitted signals, and
θ (θ ∈ [−π/2, π/2]) and φ (φ ∈ [−π, π]) can be viewed as latitude
and longitude of the spherical coordinates, respectively. a(θ) is the
steering vector of the antenna array

a(θ) =
[

1 ejπ sin(θ) · · · ejπ(M−1) sin(θ)
]T (2)

Integrating the spherical power density in (1) at sphere S(r), we
get the gain power PG after transmit beamforming:∮

S(r)
P (r, φ, θ) dA = PG (3)

Instead of normalizing the spherical power density P (r, φ, θ) as
in [7, 16], we reformulate the power density from the perspective of
integral space conversion. Thus we convert the differential area element
dA into steradian (Ω) space, i.e., let dΩ = dA/r2, then the power
density at steradian-space can be formulated as

P (φ, θ) =
1
4π

aH(θ)Ra(θ) (4)

where (4) is the so-called transmit beampattern.
On the other hand, based on Fig. 1 we can easily convert the

area element dA into a radian (or angular) differential, i.e., dA =
r2 cos(θ)dφdθ. Then the closed surface integral in (3) can be turned
into a double integral in spherical coordinates. Integrate the integrand
in (3) by φ, then the power density in the radian-space of θ is obtained
as

P (θ) =
1
2
aH(θ)Ra(θ) cos(θ) (5)

From the above analysis, we can make the following remarks.
• Actually, we can term all the expressions of (1), (4) and (5)

as transmit beampattern because they denote the transmit-
power density of ULA MIMO Radar from three different
spaces, i.e., spherical area-space, steradian-space and radian-
space, respectively. The conventional transmit beampattern
defined in (4) just denotes the power density at θ in steradian-
space, if want to accurately characterize the power density at
θ in radian-space, there should be a weighting function cos(θ)
introduced as in (5).

• In conventional MIMO transmit beampattern synthesis (beam-
pattern matching), the main objective is to design a beampattern
that approaches a desired shape. And there is no need to consider
in which space the expression of beampattern should be. However,
if we want to design the beampattern by minimum sidelobe level
in θ-space, it is more preferable to use (5) than (4).
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3. MINIMUM SIDELOBE ALGORITHM DESIGN

3.1. Minimum Sidelobe Beampattern Design

3.1.1. Design Criteria

In antenna patterns, the radiation is often characterized by three kinds
of lobes, i.e., main lobe, side lobe and back lobe. See Fig. 2(a), we
show a sketch map of a normalized antenna pattern. To evaluate an
antenna’s radiation performance, there are two important parameters,
the first one is the angular width of the main lobe, i.e., beamwidth,
the second one is the sidelobe level (since the designed pattern of this
paper is performed in θ-space (θ ∈ [−π/2, π/2]), the back lobes will
not be considered in this paper). Beamwidth is commonly denoted
by half power beamwidth (HPBW), which is the angular width of the
main lobe at half-power (or −3 dB (decibels) power) points, or the first
null beamwidth (FNBW), which is the angular width between the first
nulls on either side of the main lobe (see Fig. 2(a)). Sidelobe level
is generally denoted by the ratio (often measured in dB) of the peak
value of the prominent side lobes to the peak value of the main lobe.

In [13, 14], a minimum sidelobe beampattern design method based
on maximizing the peak-intensity difference between the main lobe and
the side lobes is proposed. However, the method that only maximizes
intensity-difference cannot sufficiently focus the power inside the

(a) (b)

Figure 2. (a) Antenna radiation pattern; (b) beampattern with
HPBW = 40◦ designed by the method of [13, 14].
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HPBW because the maximum difference may be obtained at the cost
of power loss in HPBW. Besides, the method cannot be used when
HPBW ≥ 90◦, and the definition of sidelobe area defined by the region
outside twice the HPBW is not always successful in identifying the
sidelobe area because sometimes the peak intensity of the prominent
side lobes may be inside the region of twice the HPBW. Fig. 2(b)
shows a simulation result of the method when HPBW is 40◦. From
the figure, it can be seen that the region of HPBW has been spitted
into three small lobes. And the positions of the peak values of the
prominent side lobes outside HPBW in the figure are ±39◦ which
are outside the defined sidelobe region [−90◦,−40◦] ∪ [40◦, 90◦]. In
addition, the method uses P (φ, θ) to design the beampattern, as a
result, the intensity at ±90◦ in the figure does not approach −∞ as
depicted in Fig. 2(a). Though the intensity at two sides approaching
−∞ cannot be regarded as a basis to judge the rationality of the
method, the method is not rigorous. This is because the beampattern
synthesis is performed in radian (θ)-space but the method based on
P (φ, θ) cannot reflect the power distribution in radian-space because
P (φ, θ) indeed characterizes the beampattern in steradian (Ω)-space.

To improve the design method, the design rule is reconsidered.
First, the formulation of the transmit beampattern P (θ) in θ-
space is used. Second, the range of the intensity in HPBW are
considered. Third, to minimize the sidelobe level, the intensity and
power (energy) of the side lobes should be considered. Therefore,
besides the peak sidelobe level (PSL), we also introduce the integrated
sidelobe level (ISL) as did in synthetic aperture radar (SAR) image
assessment [20, 21] where ISL is used to assess how much energy of
an imaged target leaks to the sidelobe region. Based on the above
description, the minimum sidelobe level design criteria in transmit
beampattern synthesis for MIMO radar can be stated as follows:

(a) Within HPBW, all of the radiation intensity should be higher than
the half power intensity.

(b) Minimizing the PSL by minimizing the ratio of sidelobe intensity
to mainlobe intensity instead of the difference.

(c) Minimizing the ISL to focus the power inside the HPBW as much
as possible.

(d) When the HPBW is fixed, to reduce the power leakage outside the
HPBW, narrow the FNBW as much as possible by defining the
region outside HPBW all as the sidelobe region.
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3.1.2. Implementation

Assume θ0 denotes the intended direction and let θ2 − θ1 determine
the HPBW, then based on the design criteria depicted in Section 3.1.1,
we seek to find a beampattern that solves the following optimization
problem:

min
R

max
t1,t2

(t1, t2) (6)

s.t. 0.5P (θ0) ≤ P (θ) ≤ P (θ0), ∀ θ ∈ Θm (7)

P (θ)/P (θ0) ≤ t1, ∀ θ ∈ Θ
′
s (8)∫

Θs
P (θ) dθ∫

Θm
P (θ) dθ

≤ t2 (9)

P (θ1) = 0.5P (θ0) (10)
P (θ2) = 0.5P (θ0) (11)
Rmm = PG/M, m = 1, 2, . . . , M (12)
R ≥ 0 (13)

where (7) is defined to assure the radiation intensity inside HPBW
higher than the half power intensity, (8) and (9) means minimizing
the PSL and ISL, Θm = [θ1, θ2] is the region of HPBW and Θs =
[−π/2, θ1)

⋃
(θ2, π/2] denotes the sidelobe region, Θ

′
s is just a proper

subset of Θs and represents the region outside FNBW. Minimizing the
ISL over the entire region outside the HPBW will reduce not only the
sidelobe power but also the FNBW. And the reason for defining the
sub-region of Θs as Θ

′
s is because the sidelobe region that needs to be

reduced when minimizing the PSL is always outside FNBW and there
is no need to extend Θ

′
s to Θs.

For the above optimization problem, it can be easily re-formulated
by

min
R,t

t (14)

s.t. 0.5P (θ0) ≤ P (θ) ≤ P (θ0), ∀ θ ∈ Θm (15)

P (θ)/P (θ0) ≤ t, ∀ θ ∈ Θ
′
s (16)∫

Θs
P (θ) dθ∫

Θm
P (θ) dθ

≤ t (17)

P (θ1) = 0.5P (θ0) (18)
P (θ2) = 0.5P (θ0) (19)
Rmm = PG/M, m = 1, 2, . . . ,M (20)
R ≥ 0 (21)
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The above optimization problem is nonconvex since the left sides
in (16) and (17) are not convex functions of R. However, notice that
if there is any R that can make t the least, then one of the two
constraints (16) and (17) will be active and the other inactive. And we
can get rid of the inactive constraint for the problem. Therefore one
of the remaining work for us is to examine which one is the inactive
constraint. Generally speaking, the ISL is greater than PSL in SAR
image assessment where the sidelobe region is often defined as the
region outside twice the HPBW. So we have reasons to suppose that
the ISL is greater than PSL in our problem since the sidelobe region
defined in this paper is increased and is the entire region just outside
HPBW. In addition, the region Θ′

s is unknown, which makes it difficult
to consider the PSL directly. Based on the aforementioned two points,
we choose (17) as the active one and ignore the constraint (16) at first.
Considering (17), it can be simplified and can be substituted by

∫

Θs

P (θ) dθ ≤ t

1 + t
PG (22)

For PG = tr{R} while R can be easily normalized, therefore let
PG = 1 without loss of generality. Then the minimum optimization
problem ((14)–(21)) can be reworked as

min
R,t

t (23)

s.t. 0.5P (θ0) ≤ P (θ) ≤ P (θ0), ∀ θ ∈ Θm (24)∫

Θs

P (θ) dθ ≤ t

1 + t
(25)

P (θ1) = 0.5P (θ0) (26)
P (θ2) = 0.5P (θ0) (27)
Rmm = 1/M, m = 1, 2, ..., M (28)
R ≥ 0 (29)

Now the problem of (23)–(29) becomes a convex optimization,
and the optimal solution R can be obtained [22]. If the solution R
also satisfies the constraint (16), then we can conclude the obtained R
is also the optimal solution of the original problem (6)–(13).

But then again, the solved R at some desired HPBWs may not
satisfy the constraint (16) because we obtain R just by (17). In this
case, it means that we can not assume (16) as the inactive constraint
any more, and instead, we should consider it as the active constraint.
Though (16) does not satisfy the condition of a convex optimization in
which the left side of a less inequality should be a convex function, it
can not prevent us from finding the minimum value of t (tmin) because
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tmin is surely achieved at the following condition: PSL = tmin for (16)
and ISL ≤ tmin for (17). To obtain the tmin, we can succeed by solving
a convex optimization problem: since PG has been equal to 1, it can
be proved that the peak intensity P (θ0) ≤ 2/|θ2 − θ1| (here θ1 and
θ2 are measured in radians), letting t ≤ kt where k is a constant and
k ≥ 1, then we replace (16) by a constraint containing a larger set of
(R, t(R)):

P (θ) ≤ 2kt

|θ2 − θ1| , θ ∈ Θ
′
s (30)

where k can be reckoned as a scaling factor to assure that the new
feasible set is enough to contain the original set.

Calculate the FNBW of the beampattern by solving the problem
of (23)–(29) to obtain Θ

′
s, then, we substitute (30) for (16) to re-

formulate the problem of (14)–(21) to form a convex optimization.
Setting a constant value of k then solving the optimization and
comparing the calculated values of PSL with the obtained tmin: if
PSL = tmin then the optimal solution is obtained, otherwise, resetting
k (if PSL > tmin then decreasing k else increasing k), then resolving
the convex optimization. Repeat these operations till the condition
PSL = tmin comes into existence.

3.2. Beampattern Matching Design

3.2.1. Main Idea

Beampattern matching is to maximize the transmitted power towards
a number of regions of interest and minimize it in all other regions.
See Fig. 3 for example, the interested regions are denoted by three
main lobes, then beampattern matching is to synthesize a beampattern
that well matches the desired shape (Generally speaking, the desired
(or ideal) beampatterns are often at rectangular shapes because we
always pursue that the interested area is illuminated uniformly by a
radar). At present, most of the literature for BMD [14–19] is mainly to
synthesize beampatterns from the perspective of shape approximation
by minimizing MSE directly. The main defect of these SAMs is using
excessive mathematical derivations and is not very efficient, especially
when using iterative algorithms. Additionally, keeping on minimizing
MSE for the SAMs may result in rough main lobes.

In the following, we will do the beampattern matching design
from a different perspective: since the desired beampatterns are
always to be in the hope of concentrating all power in main lobes,
we can consider synthesizing beampatterns from the perspective of
power approximation by minimizing the ISL, which can maximize the
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Figure 3. An idea beampattern with serval interested regions.

transmit power in main lobes (the interested area). In addition, we
will still synthesize beampatterns in radian-space by P (θ) instead of
in steradian-space by P (φ, θ) for the design error we measured is in
radian-space not in steradian-space. For our power-approximation-
based method (PAM), it can be stated by two steps:

(a) First, find the optimal R which can focus the power in mainlobe
region as much as possible. And we should assure that no matter
how much the transmit power is, the ISL is not changed. The
unchangeable ISL means that the shape of the beampattern based
on the R will be independent of the transmit power. Therefore,
this step is to complete basic shape design.

(b) Second, scaling the R to well match with the desired beampattern
at the sense of minimum MSE. And this step is to complete the
amplitude design.

3.2.2. Implementation

Based on the desired beampattern, we divide the whole radian-space
Θ (Θ = [−π/2, π/2]) into two parts: Θm and Θs, which are denoted
as the mainlobe region and sidelobe region, respectively. To find the
optimal R for the first step, we consider the following optimization:

min
R,t

t (31)

s.t. 0.5P0(θ0) ≤ P0(θ) ≤ P0(θ0), ∀ θ ∈ Θm (32)∫

Θs

P0(θ) dθ ≤ tPG/(1 + t) (33)

Rmm = PG/M, m = 1, 2, . . . , M (34)
R ≥ 0 (35)

where P0(θ) denotes the basis of the designed beampattern in which
the power in the destined mainlobe region is maximal.
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Solving the above convex optimization then the optimal basis
P0(θ) is obtained. It can be seen that the shape of P0(θ) is independent
of PG for which can be cancelled when normalizing R. After completing
the first step, introducing a scaling factor k and letting the wanted
beampattern P (θ) express as P (θ) = kP0(θ), then minimizing the
following cost function to perform the second step:

C(k) =
1
π

∫

Θ
(kP0(θ)− Pd(θ))2dθ (36)

Obviously, the minimum value of (36) is obtained at the stationary
point of ∂C(k)/∂k = 0, therefore the expression of the designed
beampattern is formulated by

P (θ) =

∫
Θ P0(θ)Pd(θ)dθ∫

Θ P 2
0 (θ)dθ

P0(θ) (37)

4. SIMULATION RESULTS

In this section, we present numerical simulations to demonstrate the
effectiveness of the proposed algorithms. For the MIMO radar scenario,
a ULA of M = 10 sensors is used for both of the minimum sidelobe
Beampattern Design and beampattern matching design.

4.1. Minimum Sidelobe Beampattern Design

In the simulation, four HPBWs (denoted by Bw) with the same
intended direction θ0 = 0◦ are considered: Bw1 = 30◦, Bw2 = 80◦,
Bw3 = 90◦ and Bw4 = 100◦. The area outside [θ1, θ2], where
θ1 = −Bw/2 and θ2 = Bw/2, is regarded as the sidelobe region Θs

in the whole simulation. And the measured values of HPBW, FNBW,
PSL and ISL are considered as the evaluation indices.

To perform a validation on our method (denoted as M2), we
implement the method proposed in [13, 14] (denoted as M1) to be
compared with our approach. In the comparison, the weighting factor
cos(θ), which does not affect the method itself, is also introduced in
M1 to increase the comparability. And since M1 is only valid when
Bw < 90◦, therefore we only compare M1 with M2 for the cases Bw1

and Bw2. Figs. 4(a) and 4(b) show the results of the two cases. From
the two subfigures, it can be seen that the desired HPBW regions have
been spitted into small lobes when using M1, and these small lobes
consist of a newly formed main lobe and serval symmetrical side lobes.
On the other hand, this phenomenon does not occur in M2 and a good
performance is achieved. The calculation results presented in Table 1
further support our conclusion.
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Figure 4. Minimum sidelobe beampattern design with (a) HPBW =
30◦; (b) HPBW = 80◦; (c) HPBW = 90◦; (d) HPBW = 100◦.

In addition, we also show that our method (M2) have a good
performance when Bw ≥ 90◦, as shown in Figs. 4(c) and 4(d) and
the corresponding entries in Table 1. It should be noted that the
graphs depicted by red lines in the four sub-figures ((a)–(d)) are the
final beampatterns obtained by M2. And the optimal beampatterns
for the cases Bw1, Bw2 and Bw4 is directly synthesized by solving the
convex optimization of (23)–(29) because the optimal solutions of the
three cases all satisfy the condition that the PSL should be lower than
the ISL. However, Bw3 is not the case. That is why there are two
patterns shown in Fig. 4(c): M21 denotes the pattern obtained by
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Table 1. Performance parameters of the design results.

Bw HPBW FNBW PSL ISL

Bw1 = 30◦
M1 10.08◦ 17.64◦ −2.98 dB −3.46 dB
M2 30◦ 45.36◦ −12.32 dB −7.96 dB

Bw2 = 80◦
M1 10.30◦ 23.4◦ −2.98 dB −3.91 dB
M2 80◦ 99.72◦ −13.18 dB −11.58 dB

Bw3 = 90◦
M21 90◦ 107.76◦ −11.51 dB −12.54 dB
M22 90◦ 109.32◦ −12.30 dB -12.30 dB

Bw4 = 100◦ M2 100◦ 126.12◦ −14.14 dB −12.47 dB

the formulation of (23)–(29), which is not the optimal solution of the
original problem because the PSL is higher than the ISL (see Table 1);
while M22 denotes the optimal solution and is obtained by using the
following steps: firstly, based on the calculated FNBW by (23)–(29),
we fix the specific region of Θ′

s, then reformulate the optimization
of (14)–(21) by substituting (30) for (16) to resolve the optimal solution
as having been mentioned in Section 3.1.2. In M22, we fix Θ

′
s =

[−90◦,−53.88◦]
⋃

[53.88◦, 90◦] by the calculated FNBW = 107.76◦.
And the optimal solution is obtained at tmin = PSL = ISL = −12.30 dB
when k = 1.1297.

4.2. Beampattern Matching Design

In this simulation, we consider four desired beampatterns: one
interested area with a beamwidth of 22◦ for case 1 and a wider
beamwidth of 60◦ for case 2, and two and three interested areas with
each beamwidth of 30◦ for case 3 and case 4, respectively. The dash
lines in Figs. 5(a)–5(d) have shown the four desired beampatterns,
respectively. To further validate our method, we compare it with the
SAM proposed in [14] for which can obtain the optimal beampattern
form the perspective of shape approximation by minimizing MSE.
In the comparison, besides comparing the beampatterns of the two
methods with the desired one in shape evaluation, MSE and ISL are
also calculated as numerical evaluations.

Observing the four subfigures (Figs. 5(a)–5(d)), it can be seen
that the beampatterns obtained by our method (denoted as PAM)
and the SAM both have good shapes to match with the desired ones.
And the differences between PAM and SAM are that the former (our
method) has lower sidelobe level and smoother main lobes. Calculating
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Figure 5. Beampattern matching design with four cases (a), (b), (c),
(d).

Table 2. Quality parameters of the design results.

Case 1 Case 2 Case 3 Case 4

MSE
SA 3.45 3.30 10.86 14.65
PA 3.71 3.41 11.17 15.05

ISL
SA −3.73 dB −10.72 dB −6.10 dB −7.41 dB
PA −6.79 dB −11.45 dB −6.63 dB −7.86 dB

the quality parameters of the designed beampatterns, see Table 2, it
can be found that PAM has a lower ISL but a litter higher MSE,
which is consistent with the theoretical expectation because the SAM
synthesizes the beampatterns by minimizing the MSE directly and has
the optimal minimum MSE. Therefore, we can conclude that though
our method can not achieve the minimum MSE, it can achieve the
minimum ISL and have smoother main lobes.
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5. CONCLUSION

In this paper, we have studied transmit beampattern synthesis
for MIMO radar with uniform elemental power. Based on the
reformulation of transmit beampattern in the radian-space, we propose
a MSBD method and a BMD method for beamparrern synthesis. The
MSBD method consider both PSL and ISL to synthesize beampatterns
and the BMD method matches beampatterns from the perspective of
power approximation by minimizing ISL. We formulate both of the two
design methods as convex optimization problems to obtain the optimal
solutions. Finally, numerical simulations are conducted to validate our
methods. It is noteworthy that our method for MSBD can be applied
to beampattern synthesis with arbitrary HPBW among 0◦–180◦ and
our method for BMD can match well with the desired beampattern
and have minimum ISL and smooth main lobes.
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