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Abstract—Primary User (PU) signal detection is critical for cognitive
radio networks as it allows a secondary user to find spectrum holes for
opportunistic reuse. Eigenvalue based detection has many advantages,
such as it does not require knowledge on primary user signal or noise
power level. However, most of the work on eigenvalue based detection
methods presented in the literature require multiple sensing nodes or
receiving antennas so that they cannot be directly applied to single
antenna systems. In this paper, an effective eigenvalue based PU signal
detection method is proposed for a cognitive user equipped with a
single receiving antenna. The proposed method utilizes the temporal
smoothing technique to form a virtual multi-antenna structure. The
maximum and minimum eigenvalues of the covariance matrix obtained
by the virtual multi-antenna structure are used to detect PU signal.
Compared with the previous work, the presented method offers a
number of advantages over other recently proposed algorithms. Firstly,
the presented approach makes use of power method to calculate
the maximum and minimum eigenvalues, it has lower computational
complexity since the eigenvalue decomposition processing is avoided.
Secondly, it can reduce system overhead since single antenna is used
instead of multiple antennas or sensing nodes. Finally, simulation
results show that performance of the proposed method is close to that
of maximum-minimum eigenvalue detection using multiple antennas.
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1. INTRODUCTION

The expansion of wireless applications and mobile devices during recent
years leads to a big radio spectrum shortage. The research studied
by the Federal Communications Commission (FCC) shows that some
licensed spectrum bands allocated through the current fixed spectrum
allocation policy experience low utilization [1]. To address the need for
intelligent spectrum allocation and improve the efficiency of spectrum
utilization, the notion of cognitive radio (CR) was proposed by Mitola
and Maguire in 1999 [2]. In CR networks, a secondary (unlicensed)
user is allowed to utilize the spectrum resources when it does not
cause intolerable interference to the primary (licensed) users. The
key point for opportunistic spectrum access is to find the presence
of primary signals in a given frequency band to avoid the collision.
Therefore, primary user signal detection (spectrum sensing) becomes
the most important component for the establishment of cognitive radio
networks.

A lot of work has been done on spectrum sensing recently.
In [3], a survey of spectrum sensing algorithms for cognitive radio
applications is given. Various aspects of spectrum sensing problem are
studied from a cognitive radio perspective and challenges associated
with spectrum sensing are given. The spectrum sensing functionality
can be implemented in either a non-cooperative or a cooperative
fashion. Matched filter detection, energy detection and cyclostationary
feature detection [4] are three classic non-cooperative spectrum sensing
methods. Pros and cons of these different detection methods are
discussed in [3]. Cooperative spectrum sensing can effectively improve
the sensing performance in fading environment. In cooperative
spectrum sensing, local sensors individually sense the channels and
then send information to the network center, and the network center
will make the final decision according to a certain fusion rule. OR rule,
AND rule and MAJORITY rule are three common fusion rules [5].
Taricco proposes a linear cooperative spectrum sensing algorithm
for cognitive radio networks in [6]. The optimal linear combining
vector is acquired by solving a nonconvex optimization problem. A
cooperative wideband spectrum sensing scheme based on compressed
sensing is presented in [7]. It can effectively detect the wideband
channel occupancy state by searching peaks in the reconstructed signal
amplitude vector.

Eigenvalue based spectrum sensing methods have been widely
studied recently. These methods use the eigenvalues of the sample
covariance matrix to detect the primary transmitter without requiring
information of primary user signals or noise power. Eigenvalue
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based detection techniques studied in the literature include maximum-
minimum eigenvalue (MME) detection [8], energy with minimum
eigenvalue (EME) detection [9], maximum eigenvalue detection
(MED) [10] and maximum eigenvalue to trace detection (MET) [11].
In [12], the simulation and performance results for MME detection
and EME detection are presented for the Nakagami-m fading channel.
In the eigenvalue based methods, the expression for the decision
threshold has been derived based on the asymptotic or limiting
distributions of extreme eigenvalues. The exact decision threshold is
calculated for MME detector in [13]. By using the exact decision
thresholds, the detection performance of MME detector achieves
significant performance gains. An eigenvalue based spectrum sensing
technique with finite number of samples and sensors is proposed in [14].
The authors express the distribution of the largest eigenvalue of finite
sample covariance matrix in the form of sum of two gamma random
variables.

However, all of above eigenvalue based spectrum sensing methods
require multiple sensing nodes or receiving antennas. In some networks
such as cognitive radio ad hoc networks [15] and cognitive radio cellular
networks [16], CR users are mobile and they communicate with each
other using small and flexible devices. It is impractical to equip a
small mobile device with multiple antennas due to the required size
of these antennas. More specifically, the space between two antennas
must be at least of the order of λ/2, λ being the wavelength used for
transmissions. For the commonly used 2.4GHz frequency band, the
required distance is 6.125 cm. Even four antennas can be too big to
be mounted on a laptop and the situation will get worse for a small
mobile device [15]. Therefore, this paper addresses the problem of
spectrum sensing in single receiver system. An effective maximum-
minimum eigenvalue detection method using a single antenna (referred
to as S-MME detection) is proposed for cognitive radio networks.
The temporal smoothing technique is utilized to form a virtual
multi-antenna structure for the implementation of proposed detection
method based on single antenna. The proposed approach makes use of
the power method to obtain the maximum and minimum eigenvalues to
avoid the eigenvalue decomposition processing. The decision threshold
is derived based on random matrix theory. The rest of the paper is
organized as follows. The data model is described in Section 2. In
Section 3, we introduce the framework of S-MME detection. Section 4
shows some simulation results. Finally, the conclusion is given in
Section 5.
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2. DATA MODEL

Assume that we are interested in the frequency band with central
frequency fc and bandwidth W . During a particular time interval,
the frequency band may be occupied by only one primary user.
Several secondary users are randomly distributed in the cognitive radio
network. Each secondary user is equipped with a single antenna. In
this paper, we consider the non-cooperative spectrum sensing scheme,
i.e., the sensing work is completed by one secondary user.

For signal detection, there are two hypotheses: (1) hypothesis H0:
there exists only noise (no signal); (2) hypothesis H1: there exist both
noise and signal. At hypothesis H0, the received signal of a secondary
user is

y(t) = w(t)

while at hypothesis H1, suppose that the primary signal has a carrier
frequency of fc + fs. After demodulation to IF, the received signal of
a secondary user is

y(t) = ej2πfstbs(t) + w(t)

where s(t) is the baseband representation and b ∈ R+ the amplitude
of the primary signal. The item w(t) is the complex additive white
Gaussian noise.

Assume P is the sampling rate, which is much higher than the
data rate of the primary signal. The data samples collected at the CR
receiver are

y
( n

P

)
= exp

(
j
2π

P
fsn

)
bs

( n

P

)
+ w

( n

P

)
, (n = 1, . . . , N) (1)

where N is the number of samples. In the remainder of the paper,
unless it is necessary to write it explicitly, the amplitude b in the data
model is absorbed by s(t), in which case, the amplitude of the primary
signal is equal to b instead of 1. Then we can express (1) into vector
form as

y =
[
Φs

(
1
P

)
Φ2s

(
2
P

)
. . . ΦNs

(
N

P

)]
+ w (2)

where Φ = ej(2π/P )fs , w ∈ CN,1 is the noise vector collecting the
samples of the noise term at the output of the receiving antenna.

Based on the received signal with little or no information on the
primary signal and noise power, a sensing algorithm should make
a decision on the existence of signal. Let Pd be the probability of
detection, that is, at hypothesis H1, the probability of the algorithm
having detected the signal. Let Pfa be the probability of false alarm,
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that is, at H0, the probability of the algorithm having detected the
signal. Obviously, for a good detection algorithm, Pd should be high
and Pfa should be low. The requirements of the Pd and Pfa depend
on the applications.

3. S-MME DETECTION METHOD

In this section, S-MME detection method is described in detail. The
data information of the primary signal is collected by a secondary user
equipped with a single antenna. The temporal smoothing technique
is implemented to form a virtual multi-antenna structure to get the
covariance matrix. The maximum and minimum eigenvalues are
obtained by exploiting the power method. The decision threshold is
derived based on random matrix theory.

3.1. Virtual Multiple Antennas

In the data model, N samples of the primary signal are collected by a
single-antenna receiver. In this subsection, we adopt a data stacking
technique named temporal smoothing to form a virtual multi-antenna
structure for the received data model. An M -factor temporal smoothed
data matrix Y is constructed by stacking M temporally shifted versions
of the original data samples. As a result, Y will has a virtual multi-
antenna structure. On the basis of (2), Y can be given as [17]

Y =
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 + W (3)

where W ∈ CM,N−M+1 represents the noise term constructed from w
in a similar way as Y is obtained from y. Assume that the primary
signal is narrow band, i.e.,

s(t) ≈ s

(
t +

1
P

)
≈ . . . ≈ s

(
t +

M

P

)
.

In this case, all the block rows in the right-hand term of (3)
are approximately equal, which means that Y has the following
factorization

Y≈
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+W,AFs+W ∈ CM,N−M+1 (4)
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where A, throughout the sequel, is given by

A =




Φ
Φ2

...
ΦM


 ∈ CM,1

and

Fs =
[
s

(
1
P

)
Φs

(
2
P

)
. . .ΦN−Ms

(
N −M + 1

P

)]
∈ C1,N−M+1

is a vector collecting N −M + 1 samples of the primary signal.
Let R be the covariance matrix of the received signal data model

which has a virtual multi-antenna structure, that is,

R =
1

N −M + 1
YYH

where (·)H denotes Hermitian transposition. Suppose the noise and
transmitted signal are uncorrelated. Substituting Y by (4), we can
verify that

R ≈ Aσ2
sA

H + σ2
nIM

where σ2
s = 1

N−M+1(FsFH
s ), σ2

n is the variance of the noise, and IM

denotes an M ×M identity matrix.
Let λ̂max and λ̂min be the estimated maximum and minimum

eigenvalue of R. It is easy to know that the only non-zero eigenvalue
of Aσ2

sA
H is Mσ2

s . Obviously, when the primary signal is present,
λ̂max = Mσ2

s + σ2
n, λ̂min = σ2

n. When the primary signal is absent,
λ̂max = λ̂min = σ2

n. Hence, if there is no signal, λ̂max/λ̂min = 1;
otherwise, λ̂max/λ̂min > 1. The ratio of λ̂max/λ̂min can be used to
detect the presence of the primary signal. However, λ̂max and λ̂min are
the estimated eigenvalues. In the next subsection, the real maximum
eigenvalue λmax and minimum eigenvalue λmin of R will be obtained.

3.2. Power Method

In this subsection, we exploit the power method to calculate λmax and
λmin for the detection of primary signal. In this way, the eigenvalues
can be obtained by simple algebraic operations. This method can
reduce computational complexity since the eigenvalue decomposition
processing is avoided.

It is well known that power method is an effective method to
compute the maximum eigenvalue and the corresponding eigenvector
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(named as the maximum eigenvector) for a real-valued matrix U. It is
easy to know that this method is still effective even if U is a complex-
valued matrix. For a complex-valued matrix, we have the following
Theorem.

Theorem 1: For a Hermitian matrix U ∈ Cn×n, if it has n linearly
independent eigenvectors u1, . . . , un (‖ui‖2 = 1, for ∀i ∈ [1, . . . , n])
and its eigenvalues satisfy the following relation |λ1| > |λ2| > . . . >
|λn|. Let v0 =

∑n
i=1 αiui(α1 6= 0). Take the vector v0 as the initial

vector, and form a vector sequence according to the power of matrix
U as follows:




vk = Uvk−1

mk = max(vk) = vki (|vki| = max1≤j≤n |vkj |)
vk = vk/mk (k = 1, 2, . . .)

(5)

where vk = [vk1, . . . , vkn]T . Then, any one of the following statements
is true:

(a) lim
k→∞

vk = u1
max(u1) , (b) lim

k→∞
max(vk)

max(vk−1) = λ1.

Proof : Under the above assumptions, the iteration vector vk can
be written as follows
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k
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)
.

Since U is a Hermitian matrix, it is easy to know that λi ≥ 0 ∀i ∈
[1, . . . , n], i.e., λ1 > λ2 > . . . > λn ≥ 0. Using the above analysis,
we have lim

k→∞
(

λi
λ1

)k = 0. Therefore, for all sufficiently large k, it is

clear that vk = Ukv0 ≈ α1λ
k
1u1. From (5), vk can be expressed as

vk = Ukv0

max(Ukv0)
. Notice that α1 6= 0 and vki = 1 (it is the maximal

component defined in (5) for the vector vk), it can be easily verified
that

vk → u1

max(u1)

max(vk)
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=
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) → λ1

This concludes the proof.
According to Theorem 1, the maximum eigenvalue λmax of the

covariance matrix R can be solved by the power method. Since only
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one primary signal is concerned, R has only one maximum eigenvalue,
the other M − 1 eigenvalues are all small eigenvalues. To get a more
precise result, we compute the minimum eigenvalue λmin of R as follows

λmin =
tr(R)− λmax

M − 1
where tr(R) represents the trace of R. Finally, we get test statistic of
S-MME detection: T = λmax/λmin.

We briefly investigate the computational complexity of the power
method and eigenvalue decomposition when computing eigenvalues.
We use O(n3) to represent the order of n3 multiplications. The
eigenvalue decomposition processing solves for the complete set of
eigenvalues and eigenvectors of the matrix even if the problem requires
only a small subset of them to be computed. For the n × n matrix
U, eigenvalue decomposition calls for 2n3(s + 1) real multiplications,
where s is the maximum number of iterations required to reduce a
superdiagonal element as to be considered zero by the convergence
criterion [18]. Thus the computational complexity of eigenvalue
decomposition is O(n3). The idea of the power method is only to
compute the principal eigenvalues and eigenvectors. The power method
mainly consists of two computational steps: obtaining the iteration
vector vk by computing vk = Uvk−1 and vk = vk/mk in (5). Since vk

is an n×1 vector, the computation of these two steps calls for 4n2 and
4n real multiplications, respectively. Suppose the number of iterations
is L, then the total number of real multiplications is 4L(n2+n), i.e., the
computational complexity of the power method is O(n2). Therefore,
the power method has lower computational complexity than eigenvalue
decomposition processing when computing eigenvalues.

3.3. Threshold Determination

In the general model of the spectrum sensing, a threshold must be
determined to compare with a test statistic of the sensing metric in
order to determine the presence of a primary user. Since the eigenvalue
distribution of R is very complicated [19], the choice of the thresholds
are difficult. In this subsection, using random matrix theory, we will
find an approximation for the distribution of this random variable and
derive the decision threshold based on the pre-defined Pfa.

When the primary signal is absent, R turns to Rn, the covariance
matrix of the noise defined as,

Rn =
1

N −M + 1
(
WWH

)

Rn is nearly a Wishart random matrix [19]. The study of the eigenvalue
distributions of a random matrix is a very hot topic in recent years
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in mathematics as well as communication and physics. The joint
probability density function (PDF) of ordered eigenvalues of a Wishart
random matrix has been known for many years [19]. However, since the
expression of the PDF is very complicated, no closed form expression
has been found for the marginal PDF of ordered eigenvalues. Recently,
researchers have found the distribution of the largest eigenvalue [20]
and smallest eigenvalue [21] as described in the following theorems.
For convenience, we let K = N −M + 1.

Theorem 2 [20]: Assume that the noise is complex. Let V =
K
σ2

n
Rn, µ = (

√
K+

√
M)2 and ν = (

√
K+

√
M)( 1√

K
+ 1√

M
)1/3. Assume

that lim
K→∞

M
K = a (0 < a < 1). Then λmax(V)−µ

ν converges (with

probability one) to the Tracy-Widom distribution of order 2 [22].
Theorem 3 [21]: Assume that lim

K→∞
M
K = a (0 < a < 1). Then

lim
K→∞

λmin = σ2
n(1−√a)2.

Based on the theorems, we have the following results:

λmax ≈ σ2
n

K

(√
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√
M

)2
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n

K

(√
K −

√
M

)2
.

The Tracy-Widom distributions were found by Tracy and Widom
as the limiting law of the largest eigenvalue of certain random
matrices [22]. Let F2 be the cumulative distribution function (CDF)
of the Tracy-Widom distribution of order 2. There is no closed form
expression for the distribution functions. It is generally difficult to
evaluate them. Fortunately, based on numerical computation, there
have been tables for the functions [20].

Using the theories, we are ready to derive the decision threshold
for S-MME detection method. Let γ represent the decision threshold,
then the probability of false alarm of the S-MME detection is

Pfa = P (λmax > γλmin) = P

(
σ2

n

K
λmax(V) > γλmin

)

≈ P
(
λmax(V) > γ(
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)
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(
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>

γ(
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K −√M)2 − µ

ν

)

= 1− F2

(
γ(
√
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)
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Hence, we should choose the threshold such that

1− F2

(
γ(
√

K −√M)2 − µ

ν

)
= Pfa.

This leads to

F2

(
γ(
√

K −√M)2 − µ

ν

)
= 1− Pfa,

or, equivalently,

γ(
√

K −√M)2 − µ

ν
= F−1

2 (1− Pfa).

From the definitions of µ and ν, we finally obtain the threshold

γ =
(
√

K +
√

M)2

(
√

K −√M)2

(
1 +

(
√

K +
√

M)−2/3

(KM)1/6
F−1

2 (1− Pfa)

)
.

4. SIMULATION RESULTS

In this section, simulation results are provided to illustrate the
performance of the proposed S-MME detection method. Consider a
licensed frequency band in the cognitive radio network with only one
active primary user. The primary signal employs Binary Phase Shift
Keying (BPSK) modulation and the center frequency is 8MHz. The
sampling rate is set to 32MHz. N is the number of samples and M is
temporal smoothing factor. The results are averaged over 1000 tests
using Monte-Carlo simulations written in Matlab. The SNR of a CR
receiver is defined as the ratio of the average received signal power to
noise power over the licensed frequency band.

Figure 1 shows the probability of detection curves for S-MME
detection, energy detection (ED) and cooperative energy detection
based on OR rule. The results are taken for N = 256 and SNRs varying
from −10 dB to 6 dB. In S-MME detection, the temporal smoothing
factor is 8. In cooperative energy detection, the decision is made by
fusing the sensing information of 4 secondary users. As shown in the
figure, the proposed S-MME sensing method can achieve satisfactory
detection performance even in low SNR conditions. For example, S-
MME detection can detect PU signal with 100% probability at SNR of
−6 dB. However, the detection probabilities of ED and cooperative ED
are less than 50%. From the figure, we can also see that for the same
SNR, probability of detection improves as probability of false alarm
increases. This reflects the tradeoff between false alarm and detection
probability.
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Figure 1. Probability of de-
tection versus SNR for different
probability of false alarm with
N = 256 and M = 8.
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Figure 2. Probability of detec-
tion versus SNR for different tem-
poral smoothing factor with N =
256 and Pfa = 0.1.

Figure 2 shows the probability of detection versus SNR for
different temporal smoothing factors. The results are taken for N =
256, Pfa = 0.1, and SNRs varying from −14 dB to 2 dB. It is shown
that the detection performance becomes better when M increases
from 12 to 24. But when M turns to 48, the detection performance
declines. This is because M should be relatively small to N when
the temporal smoothing technique is utilized. So choosing a proper
temporal smoothing factor for a given number of samples is important.

Figure 3 shows the performance comparison of MME detection, S-
MME detection and energy detection. In MME detection, 4 receiving
antennas are used to sensing the radio environment. In S-MME
detection, the temporal smoothing factor is 16. For all three methods,
512 samples are collected, Pfa = 0.05, and SNRs varying from −18 dB
to 8 dB. As shown in the figure, the propose S-MME detection method
performs better than energy detection method. Meanwhile, we can
see that both S-MME detection and MME detection can detect the
PU signal with 100% probability when the SNR is more than −9 dB.
The performance of S-MME detection is very close to that of MME
detection when the SNR is less than −9 dB. For example, the detection
probabilities of MME detection and S-MME detection are 0.954 and
0.933 at SNR of −10 dB, respectively. The biggest performance gap
between these two methods is only 0.072 with change in SNR. In
others words, the proposed S-MME detection method can achieve
roughly the same performance as MME detection by using a single
antenna. The main reason for this result is that the processed data of
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Figure 3. Performance comparison of different sensing methods with
N = 512 and Pfa = 0.05.

these two methods have similar structures. We exploit the temporal
smoothing technique that adds structure to the data model for the
implementation of S-MME detection method. The information of PU
signal are perfectly contained in the data model of both methods, thus
they can achieve roughly the same performance.

5. CONCLUSIONS

In this paper, we present a maximum-minimum eigenvalue based
spectrum sensing method using a single antenna for cognitive radio
networks. The temporal smoothing technique is utilized to form a
virtual multi-antenna structure. The proposed approach makes use of
the power method to calculate the maximum and minimum eigenvalues
of the covariance matrix obtained by the virtual multi-antenna
structure. To ensure a good detection performance, the decision
threshold is derived based on random matrix theory. Simulations using
BPSK signals are presented in order to illustrate the performance of
S-MME detection method. It has been shown that, performance of S-
MME detection is very close to that of MME detection with multiple
antennas. Besides, S-MME detection can reduce system overhead
and avoid the eigenvalue decomposition processing by utilizing power
method. These advantages make S-MME detection an attractive
spectrum sensing technique.
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