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Abstract—In this paper, we propose a multi-beam model for antenna
array pattern synthesis (AAPS) problem. The model uses a conic
trust region algorithm (CTRA) similarly proposed in this paper to
optimize its cost function. Undoubtedly, whole algorithm efficiency
ultimately lies on the CTRA, thereof, we propose a method to
improve the iterative algorithm’s efficiency. Unlike traditional trust
region methods that resolve sub-problems, the CTRA efficiently
searches a region via solving a inequation, by which it identifies new
iteration points when a trial step is rejected. Thus, the proposed
algorithm improves computational efficiency. Moreover, the CTRA has
strong convergence properties with the local superlinear and quadratic
convergence rate under mild conditions, and exhibits high efficiency
and robustness. Finally, we apply the combinative algorithm to AAPS.
Numerical results show that the method is highly robust, and computer
simulations indicate that the algorithm excellently performs AAPS
problem.

1. INTRODUCTION

Although array pattern synthesis problems have been extensively
investigated over the last several decades [1–9], most of them are
single-beam methods, and very few focus on multi-beam case [10, 11].
A multi-beam antenna is an antenna which is able to create
multibeams simultaneously. Since the size of antennas is fixed by
physical considerations, the difficulty of accommodating them on
satellites and other facilities with multiple antenna-based functions
grows with the number of such functions if a separate antenna

Received 15 June 2013, Accepted 31 July 2013, Scheduled 2 August 2013
* Corresponding author: Quan-Yuan Feng (fengquanyuan@163.com).



268 Zeng and Feng

is used for each. In this context, it is desirable for a single
antenna to be able to generate multiple radiation patterns, with the
excitation corresponding to each being selectable by suitable switching
devices [12]. Multibeam antennas can be considered as effective
approach to perform independent data streams between a transmitter
and a receiver.

In this paper, we propose a model to multi-beam AAPS, and this
model is the extension of our previous work [7]. Under this model, the
AAPS problem can be transformed into an unconstrained optimization
problem. In recent years, the global optimization techniques, such
as particle swarm optimization and differential evolution, have been
used for AAPS problem [6, 13]. However, these algorithms are too
time-consuming and limited in their application. Therefore, it is
necessary to design a time-saving algorithms. Trust-region method
of quadratic model for unconstrained optimization has been studied
by many researchers [14–17]. Trust-region methods are robust, can be
applied to ill-conditioned problems and have strong global convergence
properties.

Instead of quadratic approximation to objective function,
Davidon [18] proposed conic model to approximate the objective
function. Di and Sun [19] first presented a trust region method based
on conic model for unconstrained optimization. The conic model has
several advantages. First, if the objective function has strong non-
quadratic behavior or its curvature changes severely, the quadratic
model methods often produce a poor prediction of the minimizer of
the function. In this case, conic model approximates the objective
function better than a quadratic approximation, because it has more
freedom in the model. Second, the quadratic model does not take
into account the information concerning the function value in the
previous iteration which is useful for algorithms. However, the conic
model possesses richer interpolation information and satisfies four
interpolation conditions of the function values and the gradient values
at the current and the previous points. Using these rich interpolation
information may improve the performance of the algorithms. Third,
the initial and limited numerical results provided in [19] etc. show that
the conic model methods give improvement over the quadratic model
ones. Finally, the conic model methods have the similar global and
local convergence properties as the quadratic model ones [20].

Recently, Many researchers have recently studied nonmonotone
adaptive conic trust region methods (NACTRM) for unconstrained
optimization problems [16, 19, 20]. NACTRM can automatically
produce an adaptive trust region radius whenever a trial step is
rejected, and decreases functional values after finite iterations. The
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main disadvantage of NACTRM lies in identifying new trial iterations;
it requires considerable computational time to repeatedly solve sub-
problems. Motivated by rectifying this shortcoming, we propose a
solving-inequality conic trust region method (SICTRM) that adopts
a different search approach at each iteration. The search direction
dk = xk+1 − xk is generated by solving the sub-problem of the cost
function. If dk is rejected, the sub-problem does not need to be
resolved. The search direction is generated by solving an inequality
(details in Section 3).

The rest of the paper is organized as follows. Section 2 presents
the Multi-beam model. In Section 3, SICTRM is introduced and then
proven as a well-defined algorithm with its convergence properties.
Section 4 shows the experimental results and related discussions.
Discussion and Conclusions are drawn in Sections 5 and 6, respectively.
Notation: (·)T is the transpose, (·)∗ is the complex conjugate, and ‖ · ‖
represents the Frobenius norm.

2. MULTI-BEAM MODEL

The array factor for a linear array with N isotropic elements can be
expressed as:

p(W, θ) =
N∑

i=1

wie
jφi(θ) = W T S(θ), θ ∈ [−90◦, 90◦] (1)

where θ is the direction of arrival of signal, j =
√−1, S(θ) =[

1, ejϕ2(θ), . . . , ejϕ2(θ)
]T the steering vector, φi(θ) = 2πdi sin θ/λ

the phase delay due to propagation, λ the wavelength of the
transmitted signal, di the position of the ith element of the antenna
array (d1 = 0), and W = [ w1, w2, . . . , wN ]T the complex-
weight vector. Since the optimization approach is only applicable
to real variable problems, a complex-to-real transform of the p(W, θ)
is necessary. Firstly, introducing a power function (P (W, θ)) of
the AF, i.e., P (W, θ) = |p(W, θ)|2 = p(W, θ)p∗(W, θ), then denote
W1 = [w1

1 w1
2 . . . w1

N ]T , W2 = [w2
1 w2

2 . . . w2
N ]T , S(θ) =

S1(θ) + jS2(θ), S1(θ) = [1 cos(φ2(θ)) . . . cos(φN (θ)) ]T , S2(θ) =
[0 sin(φ2(θ)) . . . sin(φN (θ))]T , W1, W2, S1(θ) and S2(θ) ∈ RN. Thus,
we obtain [7]

P (W, θ) =
[
(W T

1 S1)2 + 2(W T
1 S1)(W T

2 S2) + (W T
2 S2)2 + (W T

1 S2)2

−2(W T
1 S2)(W T

2 S1) + (W T
2 S1)2

] ∈ R (2)
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Figure 1. Definition of multi-beam synthesis.

In the case where phase constraint is not considered, an optimal
weight vector, Wopt, is determined so that the pown (or amplitude)
response P (W, θ) (or |p(W, θ)| ) best approximates the desired pattern.
The definition of multi-beam synthesis is illustrated in Figure 1, we
propose a method for synthesizing multi-beam pattern of antenna
array, it is formulated by a discreted angle penalty function based
on pown response of antenna array as following:

F (W,A) = F1(W,A) + F2(W,A) (3)

F1(W,A) =
d1−∆θ∑

−90

[
(α1−P )2 +

(
P

α1

)m]
+

θ1−∆θ∑

d1

[
(α2−P )2+

(
P

α2

)m]

+
θ2−∆θ∑

θ1

[
(f1 − P )2 +

(
P

f1

)m]
+

θ3∑

θ2

(β − P )2

+
θ4−∆θ∑

θ3−∆θ

[
(f2−P )2+

(
P

f2

)m]
+

d2−∆θ∑

θ4

[
(α3−P )2+

(
P

α3

)m]
(4)

F2(W,A) =
θ5−∆θ∑

d2

[
(α4−P )2+

(
P

α4

)m]
+

θ6−∆θ∑

θ5

[
(f3−P )2+

(
P

f3

)m]

+
θ7∑

θ6

(β−P )2+
θ8−∆θ∑

θ7−∆θ

[
(f4−P )2+

(
P

f4

)m]
+

d3−∆θ∑

θ8

[
(α5−P )2
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+
(

P

α5

)m]
+

90∑

d3

[
(α6 − P )2 +

(
P

α6

)m]
− λ

6∑

i=1

lg αi (5)

where ∆θ is the angle resolution, P = P (W, θ) defined by Eq. (2),
constant m > 0, β = r

∑
αi (r is a given value, in general, and r > 20

will satisfy the condition: β > 100αi), f1 = (β−α2)
(θ2−θ1)(θ − θ1) + α2, f2 =

(β−α3)
(θ3−θ4)(θ−θ4)+α3, f3 = (β−α4)

(θ6−θ5)(θ−θ4)+α4, f4 = (β−α5)
(θ7−θ8)(θ−θ8)+α5.

Similar roles of penalty terms fi, P
αj

and lg αj are mentioned in
reference [7]. When F (W, θ) → ε (ε is a very small constant), it obtain

∀θ∈ [−90, θ1)+(θ4, θ5)+(θ8, 90],
[
(αi−P (W, θ))2+

(
P (W, θ)

αi

)m]
→ε

∀ω ∈ [θ2, θ3] + [θ6, θ7] , (β−P (W,ω))2 → ε

i.e., P (W, θ) < αi and P (W,ω) = β, thereof, |PSLL| =
|10 ∗ log(P (W,ω)

P (W,θ) )| > |10 ∗ log( β
αi

)| > 20 dB (∵ β > 100αi).
Above analysis indicates that F → ε is the sufficient condition

of weight vector W converging to a optimal solution. In practice, the
converging condition is too hard to achieve, because F is a bundle
of many sub functions, every sub function has convergence errors
generally. Thereof, it is necessary to introduce a more practical
function, here, average cost function (ACF, i.e., F

(180/∆θ)) to index
algorithm convergency. The optimal value of the cost function, which
is finally obtained by the optimizing method. In this paper, an
algorithm based on hybrid trust region method is propped in next
section, however, for applying the approach, we must first compute its
gradient and Hessian matrices (see the details in Appendix A).

3. ALGORITHM BASED ON THE CONIC TRUST
REGION ALGORITHM

We consider the following unconstrained optimization problem:

min f(x), x ∈ Rn (6)

where f : Rn → R is a continuously differentiable function. The
optimization problem has become an important research focus given
its wide range of potential applications. Throughout the paper, {xk}
is a sequence of points generated by our algorithm. CTRA iteratively
solves optimization problems. At each iteration, a trial step dk is
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generated by solving the sub-problem



minϕk(d) = f(xk) +
gT
k d

1− αT
k d

+
1
2

dT Bkd(
1− αT

k d
)2 , αk, d ∈ Rn

s.t. ‖d‖ 6 ∆k, 1− αT
k d > 0

(7)

where gk = ∇f(xk) ∈ Rn, Bk ∈ Rn×n is an approximate Hessian
matrix of f(xk), and ∆k > 0 is a trust region radius. Some criteria
are used to decide on accepting a trial step and the manner by which
the trust region radius is adjusted. After obtaining a trial step dk, the
trust region algorithms compute the ratio ρk = f(xk)−f(xk+dk)

f(xk)−ϕk(dk) . Where
ρk indicates the approximate degree of f(xk + dk) and ϕk(dk), and
ρk → 1 while ∆k → 0. In iterative computations, ρk > c0 (a positive
constant) means that ϕk(dk) is approximate to f(xk+dk), and trial step
dk is accepted, so that ∆k is enlarged to speed up the computations.
On the other hand, if dk is not accepted (ρk < c0), some methods
resolve subproblem (Eq. (7)) by reducing the trust region radius until
an acceptable step is found. Therefore, the subproblem may be solved
several times during each iteration before an acceptable step is found,
and these repetitious processes increase the total computational cost
for large-scale problems. In the current paper, we propose a new
algorithm to improve the computational efficiency of trust region
methods.

In the computation, Bk is generated using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) formula and is therefore is positive; dk =
−βkgk (βk > 0) is a descent direction of f(xk). Meanwhile, f(xk+dk) ≈
ϕk(dk) when dk ∈ {‖x− xk‖ 6 ∆k}, indicating that dk = −βkgk is also
the descent direction of ϕk(d) under this condition. Thus, we obtain
an approximate solution of the subproblem by solving the following
inequality:

− gT
k (−βkgk)

1−αT
k (−βkgk)

− 1
2

(−βkgk)T Bk(−βkgk)(
1−αT

k (−βkgk)
)2 6f(xk)−f(xk+(−βkgk))

c0
(8)

Let β∗ = max{βk |(8) holds}, then dk = −β∗gk is an approximate
solution of the subproblem and ∆k = ‖β∗gk‖ is the trust region radius
of the kth iteration.
Algorithm 3.1 (conic trust region algorithm for unconstrained
optimization)
Step 0. Given 0.75 < c0 < 1, c1 > 1 and an initial symmetric positive
definite matrix B0, choose x0 and set k = 0.
Step 1. Compute gk; if ‖gk‖ < ε (ε is a small positive real number),
then stop.
Step 2. calculating solution dk of sub-problem (Eq. (7)).



Progress In Electromagnetics Research B, Vol. 53, 2013 273

Step 3. We compute ρk. If ρk > µ, then we proceed to step 4.
Otherwise, Solving inequality (8), we obtain dk = −β∗gk and xk+1 =
xk + dk. Let

∆k+1 = ρk∆k

We then proceed to step 5.
Step 4. We set

xk+1 = xk + dk

and

∆k+1 = ∆k, if ‖dk‖ < ∆k

∆k+1 ∈ [∆k, c1∆k], if ‖dk‖ = ∆k

Step 5. Generate αk+1, modify Bk into Bk+1 using the BFGS formula
as an approximation to ∇2f(xk+1), then return to step 1.
Remarks. The method for generating αk+1 and Bk+1 was as
previously reported [16–18]. We assume that the matrices Bk+1 are
uniformly bounded to prove the convergence, and ∀k, ∃σ ∈ (0, 1) :
‖αk‖∆k 6 σ which ensures that the conic model function ϕk(d) is
bounded over the trust-region (‖d‖ 6 ∆k). We reiterate that our
algorithm is reduced to a quadratic model-based algorithm if αk = 0 for
all k. Under the smoothness assumptions made in this paper, note that
the objective function is convex quadratic around a local minimizer.
Therefore, choosing αk ' 0 asymptotically is suitable when xk is near
the minimizer.

The mild following assumptions, commonly used in the
convergence analysis of most optimization algorithms [16–18], are
proposed to analyze the convergence properties of Algorithm 3.1.

Assumption 1. f is twice continuously differentiable and
bounded below.

Assumption 2. A strong local minimizer point x∗ exists, such
that ∇2f(x∗) is positive definite.
Set s = d

1−αT
k d

, ∴ d = s
1+αT

k s
. From ‖d‖ 6 ∆k, we obtain

‖ s
1+αT

k s
‖ 6 ∆k, ‖s‖ 6 ∆k|1 + αT

k s| 6 ∆k + ∆k‖αk‖‖s‖ 6 ∆k + σ‖s‖,
and ‖s‖ 6 ∆k

1−σ . We consider a sequence {sk = −τk
∆k
1−σ

gk
‖gk‖}, where

τk =

{
1, if gT

k Bgk 6 0
min

{
∆k
1−σ

‖gk‖3
gT

k Bgk
, 1

}
, otherwise . Clearly, ‖sk‖ 6 ∆k

1−σ ,

sk ∈ B(xk,
∆k
1−σ ).

Lemma 1. In equation f(xk) − ϕk(d) = − gT
k d

1−αT
k d
− 1

2
dT Bkd

(1−αT
k d)2

=

−gT
k s− 1

2sT Bs > 1
2‖gk‖min{ ∆k

1−σ , ‖gk‖
‖B‖ } holds.
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Proof:
Case 1: gT

k Bgk 6 0 means that τk = 1.

∴ −gT
k sk − 1

2sT
k Bsk = ‖gT

k ‖2
‖gk‖

∆k
1−σ − 1

2( ∆k
1−σ )2 1

‖gT
k ‖2

gT
k Bgk > ∆k

1−σ‖gk‖ >
1
2‖gk‖min{ ∆k

1−σ , ‖gk‖
‖B‖ }.

Case 2: gT
k Bgk > 0.

If min{ ∆k
1−σ

‖gk‖3
gT

k Bgk
, 1} = ∆k

1−σ
‖gk‖3
gT

k Bgk
, then sk = − ‖gT

k ‖2
gT

k Bgk
gk.

∴ −gT
k sk− 1

2sT
k Bsk = ‖gk‖4

gT
k Bgk

− 1
2

‖gk‖4
(gT

k Bgk)2
(gT

k Bgk) = 1
2
‖gk‖4
gT

k Bgk
> 1

2
‖gk‖2
‖B‖ >

1
2‖gk‖min{ ∆k

1−σ , ‖gk‖
‖B‖ }.

If min{ ∆k
1−σ

‖gk‖3
gT

k Bgk
, 1} = 1, then ∆k

1−σ
‖gk‖3
gT

k Bgk
> 1, gT

k Bgk 6 1−σ
∆k
‖gk‖3

and sk = − ‖gT
k ‖2

gT
k Bgk

gk.
Thereof,
−gT

k sk − 1
2sT

k Bsk = ∆k
1−σ

‖gk‖2
‖gk‖ − 1

2( ∆k
1−σ )2 gT

k Bgk

‖gk‖2 > ∆k
1−σ‖gk‖ −

1
2( ∆k

1−σ )2 1
‖gk‖2

1−σ
∆k
‖gk‖3 > 1

2( ∆k
1−σ )‖gk‖ > 1

2‖gk‖min{ ∆k
1−σ , ‖gk‖

‖B‖ }.
Lemma 2. Suppose d∗ is a solution of Sub-problem (7); then the

following inequality holds:

f(xk)− ϕk(d∗) > 1
2
‖gk‖min

{
∆k

1− σ
,
‖gk‖
‖B‖

}

Proof. ∵ ϕk(d) > ϕk(d∗) and Lemma 1, thus, the above
inequality holds.

Lemma 3. Suppose that Assumption 2 holds, then M exists as a
positive constant, such that

|f(xk)− f(xk + dk)− (f(xk)− ϕk(dk))| 6 M‖dk‖2, ∀k
Proof. This proof is similar to that of Lemma 3.2 [17].
Lemma 4. Suppose that Assumption 1 holds, then Algorithm 3.1

is well defined.
Proof. Assuming that the algorithm does not terminate at

xk(gk 6= 0), then from Lemma 2 and 3, we obtain
∣∣∣∣
f(xk)− f(xk + dk)− (f(xk)− ϕk(dk))

f(xk)− ϕk(dk)

∣∣∣∣ 6 2M ‖dk‖2

‖gk‖min
{

∆k
1−σ , ‖gk‖

‖B‖
}

6 2M ‖∆k‖2

‖gk‖min
{

∆k
1−σ , ‖gk‖

‖B‖
}

The definition of ∆k, ∆k → 0 as ‖β∗‖ → 0 implies that
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∣∣∣f(xk)−f(xk+dk)−(f(xk)−ϕk(dk))
f(xk)−ϕk(dk)

∣∣∣ → 0, i.e., f(xk)−f(xk+dk)
f(xk)−ϕk(dk) → 1

From the definition of ρk, we obtain

ρk = f(xk)−f(xk+dk)
f(xk)−ϕk(dk) → 1 > c0

Therefore, we can obtain trial step dk after finite computation, i.e.,
Algorithm 3.1 is well defined.

Lemma 5. Suppose that Assumption 1 and 2 hold, and is the
sequence generated by Algorithm 3.1, then

lim
k→∞

‖gk‖ = 0

Proof. This proof is similar to that of Lemma 2 [7].
Lemma 6. The sequence {xk} is generated by Algorithm 3.1

and converging to x∗. Suppose that lim
k→∞

‖(Bk−∇2f(x∗))dk‖
‖dk‖ = 0, where

∇2f(x∗) is positive definite. Therefore, the convergence rate is
superlinear. Moreover, suppose that ∇2f(x) is Lipschitz-continuous
in a neighborhood N(x∗, δ) =

{
x ∈ RN |‖x− x∗‖ < δ

}
, i.e., L(δ) > 0

exists such that∥∥∇2f(x)−∇2f(y)
∥∥ 6 L(δ) ‖x− y‖ , ∀x, y ∈ N(x∗, δ)

{xk} then quadratically converges to x∗.
Proof. Given that

lim
k→∞

‖(Bk−∇2f(x∗))dk‖
‖dk‖ = 0

therefore, ∥∥(Bk −∇2f(x∗))dk

∥∥ = o(‖dk‖) (9)

Using Eq. (9) and the Taylor theorem, we obtain

|f(xk)− f(xk + dk)− (f(xk)− ϕk(dk))|

=

∣∣∣∣∣−gT
k dk − 1

2
dT

k∇2fkdk−o
(
‖dk‖2

))
+

(
gT
k d

1−αT
k d

+
1
2

dT Bkd(
1−αT

k d
)2

)∣∣∣∣∣
(∵ αk → 0 as xk → x∗)

6
∣∣∣∣
1
2
dT

k

(
Bk−∇2f

)
dk

∣∣∣∣+o
(‖dk‖2

)
61

2

∥∥dT
k

∥∥∥∥(Bk−∇2f
)
dk

∥∥+o
(‖dk‖2

)

6 1
2

∥∥dT
k

∥∥ o(‖dk‖) + o
(
‖dk‖2

)
= o

(
‖dk‖2

)

Thus,
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∣∣∣∣
f(xk)− f(xk + dk)

f(xk)− ϕk(dk)
− 1

∣∣∣∣ =
∣∣∣∣
f(xk)− f(xk + dk)− (f(xk)− ϕk(dk))

f(xk)− ϕk(dk)

∣∣∣∣

6 o(‖dk‖2)∣∣∣∣
gT

k d

1−αT
k d

+ 1
2

dT Bkd

(1−αT
k d)2

∣∣∣∣
6 o(‖dk‖2)∣∣1

2dT
k Bkdk

∣∣(k →∞, ‖gk‖ → 0, αk → 0)

6 o(‖dk‖2)
‖dk‖2 → 0 as k →∞.

Therefore,
f(xk)−f(xk+dk)

f(xk)−ϕk(dk) > µ

xk+1 = xk + dk holds for all sufficiently large k, and Algorithm 3.1 be-
comes the Newton method or quasi-Newton method that superlinearly
converges. Therefore, the sequence {xk} converges to x∗ superlinearly.
∵ xk → x∗, ∴ ∃k̃ > 0,∀k > k̃, xk ∈ N(x∗, δ). Set δk = xk − x∗. Using
the mean value theorem, we obtain

δk+1 = xk+1 − x∗ = xk − x∗ + dk = δk − βkgk

= δk − βk(gk − g∗)− βkg
∗ (g∗ = g(x∗))

= βk

[
∇2f(xk)δk −

∫ 1

0
∇2f(x∗ + tδk)δkdt

]
− βkg

∗

= βk

[∫ 1

0

[∇2f(xk)−∇2f(x∗ + tδk)
]
δkdt

]
− βkg

∗

Thus,

‖δk+1‖ =
∥∥∥∥βk

[∫ 1

0

[∇2f(xk)−∇2f(x∗ + tδk)
]
δkdt

]
− βkg

∗
∥∥∥∥

6 ‖βk‖
∫ 1

0

∥∥∇2f(xk)−∇2f(x∗ + tδk)
∥∥ ‖δk‖ dt + ‖βkg

∗‖

6 ‖βk‖L(δ) ‖δk‖2
∫ 1

0
tdt +

∥∥∇2f(xk)−1
∥∥ ‖g∗‖

∴ lim
k→∞

‖δk+1‖
‖δk‖2 6 1

2
L(δ) ‖βk‖

(
lim

k→∞
‖g(xk)‖ = ‖g∗‖ = 0

)

implying that {xk} converges to x∗ quadratically. Finally, the general
algorithm is derived by minimizing the cost function, obtaining optimal
weight vector Wo, and outputing amplitude pattern |p(Wo, θ)|. The
algorithm is described as follows:
Step 1. The cost function F (W,A) is constructed as Eq. (3).
Step 2. Let X = (W1 W2 A) then, computing ∇XF and ∇2

XF
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Eqs. (A21) and (A43) respectively (see the details in Appendix A).
The two formulas are essential to optimizing algorithm. Finally,
Algorithm 3.1 is used to minimize the cost function F (X).
Step 3. Base on the previous analysis, vector W converges a optimal
solution, if F

(180/∆θ) → 0, then array amplitude pattern is outputed.

4. SIMULATION RESULTS

In this section, several simulations are performed to test the multi-
beam synthesizing patterns validity.

4.1. Simulation 1: Comparison with NACTRM [16]

Consider a synthesis problem using a 12-element half-wave-length
spacing linear array with the following configurations: θ1 = −26.0,
θ2 = −24.5, θ3 = −15.5, θ4 = −14.0, θ5 = 14.0, θ6 = 15.5, θ7 = 24.5

Table 1. Comparison of the SICTRM and NACTRM algorithms.

No. Algorithm r m ∆θ ACF
DPMLL

(dB)

PSLL

(dB)

Time

(s)

1 SICTRM 23.0 0.5 0.2 0.3028 0.1845 −20.23 23.35

NACTRM 23.0 0.5 0.2 0.9219 0.03314 −15.16 50.43

2 SICTRM 25.0 0.5 0.2 0.2687 0.2188 −19.33 20.65

NACTRM 25.0 0.5 0.2 0.8534 0.2127 −18.16 51.24

3 SICTRM 25.0 0.5 0.3 0.2334 0.1741 −19.58 21.06

NACTRM 25.0 0.5 0.3 0.7644 0.0189 −19.37 45.61

4 SICTRM 20.0 0.4 0.3 0.4261 0.1341 −21.86 23.78

NACTRM 20.0 0.4 0.3 0.2254 0.4850 −20.04 47.53

5 SICTRM 20.0 0.4 0.3 0.3404 0.2610 −22.40 23.56

NACTRM 20.0 0.4 0.3 0.6873 0.0293 −16.46 49.57

6 SICTRM 22.0 0.5 0.3 0.3252 0.2955 −22.58 23.68

NACTRM 22.0 0.5 0.3 0.2818 0.3398 −19.82 44.72

7 SICTRM 20.0 0.4 0.1 0.4477 0.2155 −21.37 32.02

NACTRM 20.0 0.4 0.1 0.3815 0.2191 −18.71 58.12

8 SICTRM 22.0 0.3 0.1 0.7938 0.0599 −23.35 25.33

NACTRM 22.0 0.3 0.1 0.8815 0.1273 −18.71 50.32

9 SICTRM 22.0 0.3 0.1 0.7128 0.0966 −24.32 23.31

NACTRM 22.0 0.3 0.1 0.7923 0.2247 −20.68 49.84

10 SICTRM 23.0 0.2 0.1 0.5263 0.1236 −24.97 23.97

NACTRM 23.0 0.2 0.1 0.7128 0.0966 −24.19 54.64
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and θ8 = 26.0. The simulations based on the SICTRM and NACTRM
algorithms were executed 10 times independently, the results are listed
in Table 1.

The two iterative algorithms optimize same cost functions in every
stimulation, but the results show their distinct performance. Under
NACTRM, average wasted time, average DPMLL (the difference of
peak mainlobe level) and average PSLL (the peak sidelobe level) are
50.20 second, 0.1786 dB and −19.13 dB, under SICTRM, they are
24.07 second, 0.1763 dB and −21.99 dB respectively. Undoubtedly,
compared with NACTRM, the SICTRM algorithm exhibits stronger
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Figure 2. (a) Radiation pattern and (b) cost function variety of 12-
element line antenna array under SICTRM algorithm.

Table 2. Optimal solution of 12-element line antenna array under
SICTRM algorithm.

Element W1 W2 Element W1

1 −0.019499 0.007891 2 −0.039725
4 0.043818 −0.020758 5 0.086723
7 −0.042839 0.020464 8 −0.087299
10 0.019820 −0.009886 11 0.041093
α1,2 0.009870 0.008293 α3,4 0.007958
W2 Element W1 W2

0.020580 3 −0.021394 0.011094
−0.043317 6 0.045457 −0.022992
0.043599 9 −0.044590 0.022598
−0.020637 12 0.019018 −0.008572
0.007903 α5,6 0.008166 0.009430
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search ability in these simulations. The reported minimum PSLL
for synthesis of 12-element multi-beam array is −24.76 dB in [11],
our results is better than their result. We show the optimal
normalized AF amplitude pattern, ACF variety and optimal solution
in Figures 2(a), (b) and Table 2 respectively.

4.2. Simulation 2: Comparison with DA Proposed in [7] and
Dynamic Differential Evolution (DDE) [13]

The DA method, a gradient-based optimizing algorithm, adopts a
computing inequality to define step length for improving computation
efficiency, the method has exhibited strong convergence properties.
DDE is a new version of differential evolution algorithm, which
used only one array to search the optimization. DDE significantly
outperforms the differential evolution strategy in efficiency, robustness,
and memory requirement [21].

Consider a synthesis problem using a 17-element half-wave-length
spacing linear array with the following configurations: θ1 = −24.0,
θ2 = −23.0, θ3 = −17.0, θ4 = −16.0, θ5 = 26.0, θ6 = 27.0, θ7 = 33.0
and θ8 = 34.0. Executing the three algorithm 10 times independently
and listing results in Table 3 as following.

Under DA, average iterative time, minimum PSLL, average
DPMLL and PSLL are 36.07 second, −28.75 dB, 0.3471 dB, and
−22.98 dB, respectively. Similarly, under DDE, they are 1818.34
second, 26.71 dB, 0.3421 dB, and −23.96 dB, respectively. However,
under SICTRM, they are 25.79 second, −30.15 dB, 0.2347 dB, and
−25.88 dB, respectively. Obviously, the result indicates that the
proposed algorithm has stronger ability to suppress sidelobe level.
Finally, we show the optimal radiation pattern, ACF variety and
optimal solution in Figures 3(a), (b), and Table 4, respectively.

4.3. Simulation 3: SICTRM Performance with 17 Mutual
Coupling Elements

In this simulation, we test the SICTRM performance in the presence
of antenna elements coupled to each other. Taking the mutual
coupling into account, the SICTRM is closer to the actual situation.
The coupling coefficient Between any two antenna elements can be
calculated [22]. In the case of an uniform linear array, these coefficients
can be represented by a symmetric Toeplitz matrix [23, 24]. The
mutual coupling between two elements is inversely related to their
distance, and thus it is assumed that when the distance between
two array elements is more than k inter-element spacing, the mutual
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Table 3. Comparison of the SICTRM, DA and DDE algorithms.

No. Algorithm r m ∆θ ACF
DPMLL

(dB)

PSLL

(dB)

Time

(s)

1 SICTRM 22.0 0.3 0.1 0.6952 0.1517 −25.51 28.31

DA 0.6822 0.3641 −19.30 37.90

DDE 0.7138 0.2143 −21.65 1537.82

2 SICTRM 22.0 0.4 0.1 0.3952 0.2257 −24.10 22.43

DA 0.6865 0.3624 −23.47 32.17

DDE 0.6457 0.3574 −23.74 1645.46

3 SICTRM 22.0 0.4 0.4 0.7492 0.1919 −22.87 30.58

DA 0.7674 0.1616 −20.55 42.92

DDE 0.8614 0.4827 −21.44 1785.78

4 SICTRM 22.0 0.4 0.6 0.8206 0.1264 −21.50 23.29

DA 0.8640 0.1058 −18.44 34.48

DDE 0.7589 0.2414 −22.37 1814.24

5 SICTRM 22.0 0.2 0.1 0.6975 0.3874 −28.77 22.85

DA 0.7648 0.3513 −28.75 30.87

DDE 0.5894 0.4267 −25.67 1874.67

6 SICTRM 22.0 0.2 0.1 0.7333 0.2103 −25.31 32.21

DA 0.7449 0.5621 −27.47 38.24

DDE 0.8457 0.5248 −26.71 1977.24

7 SICTRM 24.0 0.1 0.1 0.7958 0.2118 −23.91 23.05

DA 0.8653 0.3822 −21.22 30.37

DDE 0.6981 0.3140 −22.89 1867.44

8 SICTRM 22.0 0.1 0.1 0.7946 0.2367 −28.32 25.35

DA 0.7512 0.3641 −21.74 38.24

DDE 0.8017 0.2078 −24.75 1878.64

9 SICTRM 23.0 0.2 0.1 0.6881 0.3241 −28.38 22.23

DA 0.6587 0.3781 −22.61 40.35

DDE 0.7149 0.4108 −24.11 1904.67

10 SICTRM 22.0 0.3 0.1 0.7252 0.2814 −30.15 27.65

DA 0.6004 0.4393 −26.24 35.24

DDE 0.7089 0.2413 −26.33 1897.23

coupling coefficients are assumed to be zero. Therefor, the mutual
coupling matrix can be sufficiently modeled as follows:

M = Topelitz
(
1, c1, c2, . . . , ck−1, 01×(N−k)

)
(10)
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Figure 3. (a) Radiation pattern and (b) cost function variety of 17-
element line antenna array under SICTRM.

Table 4. Optimal solution of 17-element line antenna array under
SICTRM.

Element W1 W2 Element W1

1 −0.001240 0.000190 2 −0.025837
4 0.059069 0.001514 5 0.102814
7 −0.135771 −0.127609 8 −0.038699
10 0.019190 0.165329 11 0.018093
13 0.001669 −0.012582 14 −0.088523
16 0.035043 −0.004278 17 0.025260
α1,2 0.011523 0.012739 α3,4 0.009282
W2 Element W1 W2

0.013814 3 −0.026250 0.006116
0.027050 6 −0.021201 −0.015251
−0.055074 9 0.050524 0.174523
−0.092873 12 0.076608 −0.162537
0.071074 15 −0.046368 0.018256
0.001108
0.009612 α5,6 0.011771 0.009866

Under this model, the true steering vector should be rewritten as

St = MS(θ) (11)

Make minor modifications to the original program accordingly and
execute 10 times. The results are shown in Table 5. In the simulation,
the mutual coupling matrix
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Table 5. SICTRM performance with 17 mutual coupling elements.

No. Algorithm r m ∆θ ACF
DPMLL

(dB)

PSLL

(dB)

Time

(s)

1 SICTRM 22.0 0.3 0.1 0.8641 0.1231 −25.47 19.14

2 SICTRM 22.0 0.4 0.1 0.7080 0.2823 −24.04 22.46

3 SICTRM 22.0 0.4 0.4 0.7995 0.3248 −19.13 29.48

4 SICTRM 22.0 0.4 0.6 0.8633 0.3561 −20.86 26.34

5 SICTRM 22.0 0.2 0.1 0.8813 0.3119 −23.57 32.16

6 SICTRM 22.0 0.2 0.1 0.8233 0.1766 −20.84 35.41

7 SICTRM 24.0 0.1 0.1 0.6569 0.2319 −19.60 25.61

8 SICTRM 22.0 0.1 0.1 0.8361 0.3594 −19.98 29.44

9 SICTRM 23.0 0.2 0.1 0.7384 0.3549 −19.95 27.42

10 SICTRM 22.0 0.3 0.1 0.7742 0.2330 −22.34 32.17

M = Topelitz
(
1, 0.2 + 0.25j, 0.1 + 0.2j, 0.09 + 0.1j, 01×13

)

Other parameters are same as those of simulation 2.
Under SICTRM, average iterative time, minimum PSLL, average

DPMLL and PSLL are 27.96 second, −25.47 dB, 0.2754 dB and
−21.57 dB, respectively. The results show that our algorithm is valid
even in the presence of larger array element coupling. Finally, we
show the comparing radiation patterns in isolated and coupled cases,
ACF variety and optimal solution in Figures 4(a), (b) and Table 6
respectively. These two patterns are well matched.
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Figure 4. (a) Comparing radiation patterns and (b) cost function
variety of 17-element line antenna array under SICTRM.



Progress In Electromagnetics Research B, Vol. 53, 2013 283

Table 6. Optimal solution of 17-coupled-element line antenna array
under SICTRM.

Element W1 W2 Element W1

1 0.001015 0.001615 2 −0.027010
4 0.042089 0.013591 5 0.091644
7 −0.082260 −0.134630 8 −0.026376
10 −0.021683 0.154256 11 0.025531
13 0.008818 −0.015877 14 −0.100060
16 0.045868 0.004018 17 0.033354
α1,2 0.011728 0.019533 α3,4 0.017368
W2 Element W1 W2

0.001287 3 −0.040886 −0.003572
0.056793 6 −0.000699 −0.002109
−0.076570 9 0.006163 0.141027
−0.057479 12 0.106361 −0.133212
0.048884 15 −0.060390 0.013171
0.008770
0.018190 α5,6 0.020401 0.010581

5. DISCUSSION

We have designed three simulations to validate our algorithm.
Simulation results indicate that the proposed algorithm is valid to
multi-beam antenna array pattern synthesis in both isolated and
coupled cases. Of course, the performance of the algorithms relates
to some pre-assumed parameters. In these parameters, the parameter
r has impact on the convergence of the algorithm greatly. If r is too
small (r < 20), antenna sidelobe level will not be suppressed effectively.
However, if r is too is too large, the algorithm is difficult to converge.
The simulations results show that our assumptions (20 ≤ r ≤ 24) are
reasonable. Generally, parameter m > 0. In the three simulations, m is
more than 0.1 and less than 0.4. Similarly, if it is too big, the algorithm
is difficult to converge. In theory, when the angle resolution ∆θ is
smaller, the antenna sidelobe level will be suppressed more effectively.
But that will increase the computational burden. In fact, ∆θ = 0.1 is
a good choice. The parameter ACF is a convergence indicator and is
assumed less than 1.
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6. CONCLUSION

In this paper, we have presented a multi-beam model for antenna
array pattern synthesis problem. Under the model, an antenna is able
to create multibeams simultaneously. In order to quickly calculate
the objective function to obtain the optimal solution, an iterative
optimization algorithm named SICTRM is proposed. The SICTRM
algorithm, unlike traditional trust region methods that resolve sub-
problems, can improve computational efficiency as indicated by the
theoretical analysis and stimulation results. Computer simulations
illustrate the general algorithm’s good performance as it is applied
to the AAPS problem.

APPENDIX A. THE DERIVATION OF GRADIENT AND
HESSIAN MATRIX OF COST FUNCTION

The similar derivation can be seen in [7]. Let t1 = ST
1 W1, t2 = ST

2 W2,
t3 = ST

2 W1, and t4 = ST
1 W2, we obtain

∇W1P = 2 ((t1 + t2)S1 + (t3 + t4)S2) (A1)

For convenience, let F11 = (α1 − P )2 +
(

P
α1

)m
, F12 = (α2 − P )2 +(

P
α2

)m
, F13 = (f1 − P )2 +

(
P
f1

)m
, F14 = (β − P )2, F15 = (f2 − P )2 +(

P
f2

)m
, and F16 = (α3 − P )2 +

(
P
α3

)m
. Thereof,

∇W1F11 = 2 (P − α1)∇W1P +
m

α1

(
P

α1

)m−1

∇W1P (A2)

Similarly,

∇W1F12 = 2 (P − α2)∇W1P +
m

α2

(
P

α2

)m−1

∇W1P (A3)

∇W1F13 = 2 (P − f1)∇W1P +
m

f1

(
P

f1

)m−1

∇W1P (A4)

∇W1F14 = 2 (P − β)∇W1P (A5)

∇W1F15 = 2 (P − f2)∇W1P +
m

f2

(
P

f2

)m−1

∇W1P (A6)

∇W1F16 = 2 (P − α3)∇W1P +
m

α3

(
P

α3

)m−1

∇W1P (A7)



Progress In Electromagnetics Research B, Vol. 53, 2013 285

From Eqs. (A1)–(A7), we obtain,

∇W1F1(W,A) =
∑

1

∇W1F11 +
∑

2

∇W1F12 +
∑

3

∇W1F13

+
∑

4

∇W1F14 +
∑

5

∇W1F15 +
∑

6

∇W1F16 (A8)

Similarly,

∇W1F2(W,A) =
∑

7

∇W1F21 +
∑

8

∇W1F22 +
∑

9

∇W1F23

+
∑

10

∇W1F24 +
∑

11

∇W1F25+
∑

12

∇W1F26 (A9)

where

∇W1F21 = 2 (P − α4)∇W1P +
m

α4

(
P

α4

)m−1

∇W1P (A10)

∇W1F22 = 2 (P − f3)∇W1P +
m

f3

(
P

f3

)m−1

∇W1P (A11)

∇W1F23 = 2 (P − β)∇W1P (A12)

∇W1F24 = 2 (P − f4)∇W1P +
m

f4

(
P

f4

)m−1

∇W1P (A13)

∇W1F25 = 2 (P − α5)∇W1P +
m

α5

(
P

α5

)m−1

∇W1P (A14)

∇W1F26 = 2 (P − α6)∇W1P +
m

α6

(
P

α6

)m−1

∇W1P (A15)

So,
∇W1F (W,A) = ∇W1F1(W,A) +∇W1F2(W,A) (A16)

Similarly,
∇W2P = 2 ((t4 − t3)S1 + (t1 + t2)S2) (A17)

Thereof, Eq. (A17) is substituted ∇W1P above equations correspond-
ingly and obtains the formulations of ∇W2F1(W,A) and ∇W2F2(W,A).
Finally, we get

∇W2F (W,A)=∇W2F1(W,A) +∇W2F2(W,A) (A18)

∵ (F11)′α1
=2(α1 − P )−mPmα−m−1

1 ,

(F13)′α1
=2(f1−P )(f1)′α1

−mPmf−m−1
1 (f1)′α1

, (F14)′α1
=2r(β−P ),
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(F15)′α1
=2(f2 − P )(f2)′α1

−mPmf−m−1
2 (f2)′α1

,

(F22)′α1
=2(f3 − P )(f3)′α1

−mPmf−m−1
3 (f3)′α1

,

(F23)′α1
=2r(β−P ), (F24)′α1

=2(f4−P )(f4)′α1
−mPmf−m−1

4 (f4)′α1
,

(lg α1)′=1/α1

∴ F ′
α1

=
∑

1

(F11)′α1
+

∑

3

(F13)′α1
+

∑

4

(F14)′α1
+

∑

5

(F15)′α1

+
∑

8

(F22)′α1
+

∑

9

(F23)′α1
+

∑

10

(F24)′α1
−λ/α1 (A19)

Similarly, it is not difficult to compute F ′
αi

(i = 2, 3, . . . , 6), finally, we
can obtain

∇AF =
(
F ′

α1
F ′

α2
. . . F ′

α6

)T (A20)

Using Eqs. (A16), (A18) and (A20), we obtain the formulation
∇XF (W,A) as following:

∇XF = (∇W1F ∇W2F ∇AF ) (A21)
Next, we calculate the Hessian matrices of the cost function. First,

let
h11=(t1+t2)S1+(t3+t4)S2∈RN×1, h1 =h11⊗hT

11+hT
11⊗h11∈RN×N

h21=S1 ⊗ ST
1 + S2 ⊗ ST

2 ∈ RN×N , h2 = h21 + hT
21 ∈ RN×N

h31=(t4−t3)S1+(t1+t2)S2∈RN×1, h3 =h31⊗hT
31+hT

31⊗h31∈RN×N

then
∇2

W1
F11

= 2
(
2+m(m−1)Pm−2α−m

1

)
h1+

(
2(P−α1)+mPm−1α−m

1

)
h2 (A22)

∇2
W1

F12

= 2
(
2+m(m−1)Pm−2α−m

2

)
h1+

(
2(P−α2)+mPm−1α−m

2

)
h2 (A23)

∇2
W1

F13

= 2
(
2+m(m−1)Pm−2f−m

1

)
h1+

(
2(P−f1)+mPm−1f−m

1

)
h2 (A24)

∇2
W1

F14=4h1 + 2(P − β)h2 (A25)
∇2

W1
F15

= 2
(
2+m(m−1)Pm−2f−m

2

)
h1+

(
2(P−f2)+mPm−1f−m

2

)
h2 (A26)

∇2
W1

F16

= 2
(
2+m(m−1)Pm−2α−m

3

)
h1+

(
2(P−α3)+mPm−1α−m

3

)
h2 (A27)

∇2
W1

F21

= 2
(
2+m(m−1)Pm−2α−m

4

)
h1+

(
2(P−α4)+mPm−1α−m

4

)
h2 (A28)
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∇2
W1

F22

= 2
(
2+m(m−1)Pm−2f−m

3

)
h1+

(
2(P−f3)+mPm−1f−m

3

)
h2 (A29)

∇2
W1

F23 = 4h1 + 2(P − β)h2 (A30)
∇2

W1
F24

= 2
(
2+m(m−1)Pm−2f−m

4

)
h1+

(
2(P−f4)+mPm−1f−m

4

)
h2 (A31)

∇2
W1

F25

= 2
(
2+m(m−1)Pm−2α−m

5

)
h1+

(
2(P−α5)+mPm−1α−m

5

)
h2 (A32)

∇2
W1

F26

= 2
(
2+m(m−1)Pm−2α−m

6

)
h1+

(
2(P−α6)+mPm−1α−m

6

)
h2 (A33)

∇2
W1

F =
∑

i

∇2
W1

F1i +
∑

i

∇2
W1

F2i (i = 1, 2, . . . , 6) (A34)

Similarly, h3 is substituted h1 above Eqs. (A22)–(A33) correspondingly
and obtains the formulations of ∇2

W2
F1i and ∇2

W2
F2i. Finally, we get

∇2
W2

F =
∑

i

∇2
W2

F1i +
∑

i

∇2
W2

F2i (i = 1, 2, . . . 6) (A35)

Based on the definition of Hessian matrix, we obtain ∇2
AF and

∇2
W1W2

F as following:

∇2
AF =




∂
∂α1
∂

∂α2

...
∂

∂α6



(

∂F
∂α1

∂F
∂α2

. . . ∂F
∂α6

)
=




∂2F
∂2α1

∂2F
∂α1∂α2

. . . ∂2F
∂α1∂α6

∂2F
∂α2∂α1

∂2F
∂2α2

. . . ∂2F
∂α2∂α6

...
...

. . .
...

∂2F
∂α6∂α1

∂2F
∂α6∂α2

. . . ∂2F
∂2α6




(A36)

∇2
W1W2

F =




∂
∂w1

1
∂

∂w1
2

...
∂

∂w1
N




(
∂F
∂w2

1

∂F
∂w2

2
. . . ∂F

∂w2
N

)

=




∂
∂w1

1

(
∂F
∂w2

1

)
∂

∂w1
1

(
∂F
∂w2

2

)
. . . ∂

∂w1
1

(
∂F

∂w2
N

)

∂
∂w1

2

(
∂F
∂w2

1

)
∂

∂w1
2

(
∂F
∂w2

2

)
. . . ∂

∂w1
2

(
∂F

∂w2
N

)

...
...

. . .
...

∂
∂w1

N

(
∂F
∂w2

1

)
∂

∂w1
N

(
∂F
∂w2

2

)
. . . ∂

∂w1
N

(
∂F

∂w2
N

)
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= (∇W1(∇W2F )1 ∇W1(∇W2F )2 . . . ∇W1(∇W2F )N)N×N(
∵ ∇W2F =

(
∂F

∂w2
1

∂F

∂w2
2

. . .
∂F

∂w2
N

)T
)

(A37)

Similarly,

∇2
W1AF =(∇W1(∇AF )1∇W1(∇AF )2 . . .∇W1(∇AF )6)N×6 (A38)

∇2
W2W1

F =
((∇2

W1W2
F

)T
)

N×N
(A39)

∇2
W2AF =(∇W2(∇AF )1 ∇W2(∇AF )2 . . . ∇W2(∇AF )6)N×6 (A40)

∇2
AW1

F =
((∇2

W1AF
)T

)
6×N

(A41)

∇2
AW2

F =
((∇2

W2AF
)T

)
6×N

(A42)

Using Eqs. (A36)–(A41), we finally obtain

∇2
XF =




∇2
W1

F ∇2
W1W2

F ∇2
W1AF(∇2

W1W2
F

)T ∇2
W2

F ∇2
W2AF(∇2

W1AF
)T (∇2

W2AF
)T ∇2

AF




(2N+6)×(2N+6)

(A43)
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