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Abstract—We advance the theory of the two-dimensional method of
connected local fields (CLF) to the three-dimensional cases. CLF is
suitable for obtaining semi-analytical solutions of Helmholtz equation.
The fundamental building block (cell) of the 3-D CLF is a cube
consisting of a central point and twenty six points on the cube’s surface.
These surface points form three symmetry groups: six on the planar
faces, twelve on the edges and eight on the vertices (corners). The local
field within the unit cell is expanded in a truncated spherical Fourier-
Bessel series. From this representation we develop a closed-form, 3D
local field expansion (LFE) coefficients that relate the central point
to its immediate neighbors. We also compute the CLF-based FD-FD
numerical solutions of the 3D Green’s function in free space. Compared
with the analytic solution, we found that even at a low three points per
wavelength spatial sampling, the accumulated phase errors of the CLF
3D Green’s function after propagating a distance of ten wavelengths
are well under ten percent.

1. INTRODUCTION

Frequency-domain finite-difference (FD-FD) methods using the
classical second-order accurate scheme have been successfully applied
to analyze some passive optical waveguide devices [1, 2]. Classical
FD methods are easy to understand and simple to implement
on digital computers, but they have poor numerical dispersion
characteristics [3, 4]. Recent advancements in highly accurate 2D
FDFD algorithms [5–9] have overcome dispersion problems of the
classical methods. Along these lines in 2010 Chang and Mu published
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work on the method of connected local fields (CLF, [10, 11]). The two-
dimensional CLF method provides alternative semi-analytical solutions
to the 2D Helmholtz equation. At the time we were unaware that
the LFE-9 formulation was identical to the equation given earlier
in 2002 by Hadley who chose a humble title [6] for his great work.
The main difference between our work and Dr. Hadley’s is that we
analytically derived both the local LFE error and the global CLF
dispersion error equations and proved that this LFE-9 equation is
of the sixth-order accuracy, which is theoretically the highest order
of accuracy on a nine-point compact stencil [12] for the 2D discrete
Helmholtz operator. In addition, we also analytically derived the
Fourier-Bessel reconstruction formula for constructing the continuous
field from its 2D discrete sampling of the field. For dielectric media
with discontinuous interfaces, Dr. Hadley derived a modified compact
nine-point stencils for two special cases when the fundamental 3 by 3
grid is divided equally by a horizontal/vertical interface [1] and when
there is a right angle corner in the cell [7]. We are also developing
other special compact stencils to make CLF a viable modeling tool for
studying practical complex waveguide structures.

Under the 2D method of the connected local fields, the entire
solution is made of overlapping or interlocking local fields. Each
square-shape local field centered on a given point is composed of
a truncated Fourier-Bessel (FB) series. Furthermore, these FB
coefficients are algebraically related to the eight points on the corner
and the boundary of a square. In other words, the field in the center
can be written as the weight sum over the eight fields on the square.
Hence, instead of solving the much larger matrix equation for coupled
truncated FB series we may solve for the reduced matrix equation for
these coupled fields. The end result is that solving for the overlapping
local fields is just like solving for any 2D FD-FD equation with a
compact nine point stencil. The main benefit of CLF formulation over
classical FD-FD methods is the significant cost saving in both the
processing time and semiconductor memory. Furthermore, with little
computational effort via the analytical LFE reconstruction formula, we
are able to obtain higher sampling of the field solution using a lesser
CLF sampling density.

There is a tremendous gain in reducing the computational cost
if one may use a coarser mesh size in any 3D computation. Over
the past decade, few attempts were made to construct better discrete
formulas for 3-D Helmholtz equation that would generate very little
numerical dispersion. Sutmann proposed the improved FD-like scheme
for discretizing 3-D Helmholtz equation with source term in an uniform
region [13]. For convenience, Sutmann’s scheme is named FD3D-



Progress In Electromagnetics Research, Vol. 142, 2013 161

6-27, in which the first number denotes the order of accuracy and
the second denotes the total number of the involved points within
a fundamental cube. Similarly, Fernandes and Loula also proposed
a sixth-order accurate, quasi optimal finite difference method for
Helmholtz problem [14] in three dimensions. Their coefficients are
obtained numerically by minimizing a least-squares functional of the
local truncation error for plane wave solutions in any direction. In
this paper we advance the work of the method of connected local
fields (CLF) to the 3-D homogeneous case. For the 3-D homogeneous
Helmholtz equation, we expand the local field at a given point
by spherical Fourier-Bessel series (SFB) and through an elaborated
process, derive the sixth-order accurate analytical formulation, called
LFE3D-27. The result was first presented in December 2012 at an
international photonic conference [15]. Like the 2D case, this LFE3D-
27 formulation is structurally equivalent to a twenty-seven point 3D
FD-FD compact stencil.

2. LITERATURE REVIEW

In this session, we quickly review certain newly-developed improved
FD-like schemes for discretizing 3-D Helmholtz equation in the past
decade. The 3-D homogeneous Helmholtz equation is given by(∇2 + k2

)
u (r̄) = 0. (1)

In Eq. (1), r̄ is position vector, ∇2 represents the Laplace operator,
and k denotes wavenumber. Following the logic for 2D CLF, we aim
to discretize Eq. (1). Fig. 1 shows the basic cubic structure for a 3D
uniformly sampled space (grid size equals ∆ in each direction). Out
of the total 27 sampled-points (nodes, control points) there are four
groups with various symmetry properties:
• A central node: we denote the field on it by u0.
• Six face-centered nodes: we denote summation of these fields by

uf
Σ.

• Twelve edge-centered nodes: we denote summation of these fields
as ue

Σ.
• Eight corner nodes: we represent the summation of these fields by

uc
Σ.

We seek the 3D local field expansion coefficients that would lead to
a compact 27-point FD-like stencil for discretizing 3-D Helmholtz
equation. From a symmetry consideration we expect the general
expression of this equation to be written as:

Wf uf
Σ + Weue

Σ + Wcu
c
Σ −W0u0 = 0, (2a)
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where

uf
Σ

∆= u+00 + u−00 + u0+0 + u0−0 + u00+ + u00−, (2b)

ue
Σ

∆= u++0 + u−+0 + u+−0 + u−−0 + u+0+ + u+0− + u−0+

+u−0− + u0++ + u0−+ + u0+− + u0−−, (2c)

and

uc
Σ

∆= u++++u++−+u+−++u+−−+u−+++u−+−+u−−++u−−−. (2d)

Here each subscript contains three symbols corresponding to the x, y
or z location. Each symbol can be a plus, a minus or a zero sign
indicating the amount of displacement in units of grid spacing ∆ along
the x, y or z direction.

Various FD-like formulae corresponding to different combinations
of coefficients Wf , We, Wc, and W0 have been investigated. We
first review several important FD-like formulae for discretizing 3-D
Helmholtz equation including the classical FD schemes and improved
FD-like formulae.

2.1. Classical FD Formula: FD3D-2-7

Standard discrete Helmholtz form (SDHF) means direct discretization
of the Helmholtz operator of Eq. (1). It can be obtained by
directly applying a finite difference approximation to the partial
differential operators. For the classical SDHF, Laplace operator in
Eq. (1) is replaced by the classical second-order accurate seven-point
formula [16], Eq. (1) is discretized as:

Wf =
1

∆2
, We = 0, Wc = 0, W0 =

6
∆2

− k2. (FD3D-2-7) (3)

This second-order accurate 3D FD stencil involves a total of 7 points is
called FD3D2-7 in which the first number denotes the order of accuracy
and the second denotes the number of considered points within a
fundamental cube. We learn from previous dispersion analysis [17]
that solving problems with the FD2D-2-7 approximation requires more
than twenty sampling points per wavelength to reduce the numerical
dispersion error to less than 1% per single wavelength propagation
distance. Thus we seek for better approximations.

2.2. Classical FD Formula: FD3D-2-27

When we consider using all 27 sampling fields in the basic cube, the
discrete Laplace operator can be derived in a similar way as the second-
order accurate seven-point formula [18]. After replacing the Laplace
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operator in Eq. (1) with the 27-point discrete Laplace operator, we
obtain:

Wf =
7

15∆2
, We =

1
10∆2

, Wc =
1

30∆2
,

W0 =
64

15∆2
− k2. (FD3D-2-27)

(4)

2.3. Nehrbass-Jevtic-Lee’s Formula: RD-FD

In 1998, Nehrbass, Jevtic, and Lee improved the FD3D-27 formula and
derived a new numerical scheme called RD-FD [19]. It reduced the
dispersion error to one half of the classical formula, while maintaining
the same order (second-order) of accuracy. Their work contains 1-D,
2-D and 3-D cases and the formula in the 3D case is given by:

Wf =1, We =0, Wc =0, W0 =6j0(V ), V = k∆. (RD-FD) (5)

In Eq. (5), V = k∆, defined as the normalized frequency. The RD-FD
formulation is the same as our simple 2D CLF form, the LFE3D-7 [10].

2.4. Sutmann’s Formula: FD3D-6-27

Interestingly enough, the Possion equation had a six-order accurate FD
approximation [18] 10 years before the Helmholtz equation attained its
six-order formulae. In 2006, using the information from Helmholtz
equation itself, Singer and Turkel derived the sixth-order accurate
scheme for 2-D Helmoltz equation [9]. Sutmann also derived and
published in 2007 the sixth-order accurate FD-like formula for the 3-D
case [13] and the stencils are given by:

Wf =
7

15∆2

(
1− V 2

21

)
,

We =
1

10∆2

(
1 +

V 2

18

)
, Wc =

1
30∆2

,

W0 =
64

15∆2

(
1−V 2

4
− 5V 4

256
− V 6

1536

)
, V = k∆.

(FD3D-6-27) (6)

We will compare these formulations with our LFE-based equations
later in the numerical simulation section.

3. DERIVATION OF LFE3D-27 FORMULA

Using a different approach from Sutmann, Fernandes and Loula, we
begin our derivation of LFE3D-27 formula by expressing the solution
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of Eq. (1) in a spherical coordinate system:

1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
r2 sin2 θ

∂2u

∂φ2
+k2u = 0. (7a)

The general solution of Eq. (7a) is the well-known spherical Fourier-
Bessel series given by:

u (r, θ, φ)=a0
0j0(kr)+

∞∑

`=1

j`(kr)
∑̀

m=0

Pm
` (cos θ)(am

` cosmφ+bm
` sinmφ).

(7b)

3.1. Simple 3-D CLF Formulae from Three Groups

One of the methods to obtain LFE2D-9 equation is to solve the 8-by-8
linear equation which connects the truncated Fourier-Bessel series with
the eight surrounding points on the boundary of the basic square patch.
The other method is derive the LFE2D-9 equation by considering
the optimal linear combination of two LFE-5s equations along the
plus and the cross coordinated so that the local error is minimized.
Before deriving the LFE3D-27 equation we will examine three simple
local field expansion formulae. They are derived by considering the
contribution of each symmetry group given in Fig. 1. In the process
we shall also obtain local truncation errors for each group. Finally
we shall derive the LFE3D-27 formula with the linear combination of
these three equations that minimize the local error.

 z

 x

 y

  Face-centered nodes

Edge-centered nodes

Corner nodes

Central node

Figure 1. Basic cube and the 27 associated points for the 3D CLF.
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3.1.1. Step 1: LFE3D-07 (Face-centered LFE)

As demonstrated in Eqs. (2)–(7), which list all 3D compact FD-FD
formulae, these 3D stencils have identical coefficients for the points on
faces, edges and corners. Hence we need to consider the expression
for summation of wave fields for the face-centered, edge-centered and
corner groups. First we consider the face-centered field using Eq. (7b),
we have:

u+00 = u(∆, 0, 0)=u0j0 (k∆)+
∞∑

`=1

j` (k∆)
∑̀

m=0

[Pm
` (0) am

` ], (8a)

u−00 = u(−∆, 0, 0)=u0j0 (k∆)+
∞∑

`=1

j` (k∆)
∑̀

m=0

[(−1)mPm
` (0)am

` ],(8b)

u0+0 = u0j0 (k∆) +
∞∑

`=1

j` (k∆)





[ `−1
4 ]∑

m=0

[
P 4m+1

` (0) b4m+1
`

]
+

[ `−2
4 ]∑

m=0

[
(−1)P 4m+2

` (0) a4m+2
`

]

+
[ `−3

4 ]∑

m=0

[
(−1)P 4m+3

` (0) b4m+3
`

]
+

[ `
4 ]∑

m=0

[
P 4m

` (0) a4m
`

]





, (9a)

u0−0 = u0j0 (k∆) +
∞∑

`=1

j` (k∆)





`−1
4∑

m=0

[
(−1)P 4m+1

` (0) b4m+1
`

]
+

`−2
4∑

m=0

[
(−1)P 4m+2

` (0) a4m+2
`

]

+

`−3
4∑

m=0

[
P 4m+3

` (0) b4m+3
`

]
+

`
4∑

m=0

[
P 4m

` (0) a4m
`

]





, (9b)

u00+ = u0j0 (k∆) +
∞∑

`=1

j` (k∆) a0
` . (10a)

u00− = u0j0 (k∆) +
∞∑

`=1

(−1)` j` (k∆) a0
` . (10b)

Here we use the Gauss bracket symbol [x] to denote the integer part
of x.
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By summing up Eqs. (8a)–(10b), we have the contributions of all
six face-centered fields toward the central point u0. The result is:

uf
Σ = 6u0j0 (k∆) + 2

∞∑

`=1

j` (k∆)
[ `
2 ]∑

m=0

[
P 2m

` (0) a2m
`

]
+ 2

∞∑

`=1

j2` (k∆) a0
2`

+2
∞∑

`=1

j` (k∆)





[ `−2
4 ]∑

m=0

[
(−1)P 4m+2

` (0) a4m+2
`

]
+

[ `
4 ]∑

m=0

[
P 4m

` (0) a4m
`

]




.

(11)

We can further simplify Eq. (11) by considering the following properties
of associated Legendre polynomials:

P 4m
` (0) =

{
0, ` + 4m is odd ⇔ ` is odd
non-zero, ` + 4m is even ⇔ ` is even

. (12)

We obtain:

uf
Σ = 6u0j0 (k∆) + 2

∞∑

`=1

j2` (k∆)



a0

2` + 2

`
2∑

m=0

[
P 4m

2` (0) a4m
2`

]


,

= 6u0j0 (k∆) + 2j2 (k∆)
[
2P 0

2 (0) + 1
]
a0

2

+2
∞∑

`=2

j2` (k∆)



a0

2` + 2

`
2∑

m=0

[
P 4m

2` (0) a4m
2`

]


. (13)

We also know P 0
2 (0) = −1/2. Thus,

uf
Σ − [6j0 (k∆)]u0 = OLFE3D-7,

OLFE3D-7 = 4
∞∑

`=2

j2` (k∆)





a0
2`

2
+

[ `
2 ]∑

m=0

[
P 4m

2` (0) a4m
2`

]




.
(14)

Here OLFE3D-7 is the truncation function for the simple compact
LFE3D-7 formula.

Wf uf
Σ + Weue

Σ + Wcu
c
Σ −W0u0 = 0,

Wf =
1

∆2
, We = 0, Wc = 0, W0 =

6j0 (k∆)
∆2

.
(LFE3D-7) (15)
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3.1.2. Step 2: LFE3D-13 (Edge-centered LFE)

Next we consider the twelve edge-centered fields using Eq. (7b). We
further divide the twelve points into three sub-groups. We have, for
points located on the y = 0 plane:

u+0+=u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

[
Pm

`

(
1√
2

)
am

`

]
, (16a)

u+0−=u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

[
Pm

`

(−1√
2

)
am

`

]
, (16b)

u−0+=u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

[
(−1)m Pm

`

(
1√
2

)
am

`

]
, (16c)

u−0−=u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

[
(−1)m Pm

`

(−1√
2

)
am

`

]
.(16d)

For fields located on the z = 0 plane:

u++0 = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
` (0)

[
am

` cos
(mπ

4

)
+ bm

` sin
(mπ

4

)]
, (17a)

u−+0 = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
` (0)

[
am

` cos
(

3mπ

4

)
+ bm

` sin
(

3mπ

4

)]
, (17b)

u+−0 = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
` (0)

[
am

` cos
(mπ

4

)
− bm

` sin
(mπ

4

)]
, (17c)

u−−0 = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
` (0)

[
am

` cos
(

3mπ

4

)
− bm

` sin
(

3mπ

4

)]
. (17d)
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And finally, for fields located on the x = 0 plane:

u0++ = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
`

(
1√
2

)

[
am

` cos
(m`π

2

)
+ bm

` sin
(m`π

2

)]
, (18a)

u0−+ = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
`

(
1√
2

)

[
am

` cos
(mπ

2

)
− bm

` sin
(mπ

2

)]
, (18b)

u0+− = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
`

(−1√
2

)

[
am

` cos
(mπ

2

)
+ bm

` sin
(mπ

2

)]
, (18c)

u0−− = u0j0

(√
2k∆

)
+

∞∑

`=1

j`

(√
2k∆

) ∑̀

m=0

Pm
`

(−1√
2

)

[
am

` cos
(mπ

2

)
− bm

` sin
(mπ

2

)]
. (18d)

We sum up the fields for each sub group to obtain:

u+0+ + u+0− + u−0+ + u−0− = 4u0j0

(√
2k∆

)

+2
∞∑

`=1

j`

(√
2k∆

) [ `
2 ]∑

m=0

[
P 2m

`

(
1√
2

)
+P 2m

`

(−1√
2

)]
a2m

` . (19a)

u++0 + u+−0 + u−+0 + u−−0 = 4u0j0

(√
2k∆

)

+2
∞∑

`=1

j`

(√
2k∆

)∑̀

m=0

Pm
` (0)

[
cos

(mπ

4

)
+cos

(
3mπ

4

)]
am

` , (19b)

u0++ + u0+− + u0−+ + u0−− = 4u0j0

(√
2k∆

)

+2
∞∑

`=1

j`

(√
2k∆

)∑̀

m=0

[
Pm

`

(
1√
2

)
+Pm

`

(−1√
2

)]
cos

(m`π

2

)
am

` . (19c)
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Next we apply the following properties for the associated Legendre
polynomial:

Pm
` (z) is

{
odd, if m + ` is odd
even, if m + ` is even . (20a)

P 2m
`

(
1√
2

)
+ P 2m

`

(−1√
2

)
=

{
0, ` is odd
2P 2m

`

(
1√
2

)
, ` is even (20b)

P 2m
`

(
1√
2

)
+ P 2m

`

(−1√
2

)
=

{
0, ` is odd
2P 2m

`

(
1√
2

)
, ` is even . (20c)

Considering that:

cos
(mπ

4

)
+ cos

(
3mπ

4

)
=

{
2 (−1)m , m = 4k,
0, m otherwise, (21a)

cos
(mπ

2

)
=





1, m = 4k,
0, m = 4k + 1,
−1, m = 4k + 2,
0, m = 4k + 3.

(21b)

we obtain:

ue
Σ = 12u0j0

(√
2k∆

)
+ 4

∞∑

l=1

j2l

(√
2k∆

) l∑

m=0

[
P 2m

2l

(
1√
2

)
a2m

2l

]

+4
∞∑

`=1

j2`

(√
2k∆

) [ `
2 ]∑

m=0

[
(−1)m P 4m

2` (0) a4m
2`

]

+4
∞∑

`=1

j2`

(√
2k∆

) l∑

m=0

[
(−1)m P 2m

2`

(
1√
2

)
a2m

2`

]
. (22a)

We can further combine the second and the last term of the above
equations to obtain:

ue
Σ = 12u0j0

(√
2k∆

)
+ 8

∞∑

`=1

j2`

(√
2k∆

) [ l
2 ]∑

m=0

[
P 4m

2`

(
1√
2

)
a4m

2`

]

+4
∞∑

`=1

j2`

(√
2k∆

) `
2∑

m=0

[
(−1)m P 4m

2` (0) a4m
2`

]
. (22b)

Finally, we notice that the coefficient for j2` is 2P 0
2

(
1/
√

2
)

+ P 0
2 (0).

These two terms happen to negate each other so we have the final
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compact equation for sum of all edge fields as:

ue
Σ = 12u0j0

(√
2k∆

)
+ 4

∞∑

`=2

j2`

(√
2k∆

)

`
2∑

m=0

[
2P 4m

2`

(
1√
2

)
+ (−1)m P 4m

2` (0)
]

a4m
2` . (22c)

This leads to the following edgepoint based LFE3D-13 formula:

Wf uf
Σ + Weue

Σ + Wcu
c
Σ −W0u0 = 0,

Wf =0, We =
1

∆2
, Wc =0, W0 =

12j0

(√
2k∆

)

∆2
,

(LFE3D-13) (23a)

with the truncation function, OLFE3D-13 given by:

OLFE3D-13
∆= ue

Σ − 12j0

(√
2k∆

)
u0 = 4

∞∑

`=2

j2`

(√
2k∆

)

`
2∑

m=0

[
2P 4m

2`

(
1√
2

)
+ (−1)m P 4m

2` (0)
]

a4m
2` . (23b)

3.1.3. Step 3: LFE3D-09 (Corner-point LFE)

We now turn to the focus on the contribution of the remaining eight
corner fields. Using Eq. (7b) we have:

u+++ = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(
1√
3

) (
am

` cos
mπ

4
+ bm

` sin
mπ

4

)
, (24a)

u++− = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(−1√
3

) (
am

` cos
mπ

4
+ bm

` sin
mπ

4

)
, (24b)

u+−+ = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(
1√
3

) (
am

` cos
mπ

4
− bm

` sin
mπ

4

)
, (24c)
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u+−− = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(−1√
3

) (
am

` cos
mπ

4
− bm

` sin
mπ

4

)
, (24d)

and

u−++ = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(
1√
3

)(
am

` cos
3mπ

4
+ bm

` sin
3mπ

4

)
, (25a)

u−+− = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(−1√
3

)(
am

` cos
3mπ

4
+ bm

` sin
3mπ

4

)
, (25b)

ux−y−z+ = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(
1√
3

)(
am

` cos
3mπ

4
− bm

` sin
3mπ

4

)
, (25c)

ux−y−z− = u0j0

(√
3k∆

)
+

∞∑

`=1

j`

(√
3k∆

)

∑̀

m=0

Pm
`

(−1√
3

)(
am

` cos
3mπ

4
− bm

` sin
3mπ

4

)
. (25d)

Summing up Eqs. (24a)–(25d), we have:

uc
Σ = 8j0

(√
3k∆

)
u0 + 4

∞∑

`=1

j`

(√
3k∆

)

[ `
4 ]∑

m=0

{
(−1)m

[
P 4m

`

(
1√
3

)
+ P 4m

`

(−1√
3

)]
a4m

`

}
. (26)



172 Chang and Mu

Next we apply the following properties for the associated Legendre
polynomial:

P 4m
`

(
1√
3

)
+ P 4m

`

(−1√
3

)
=

{
0, ` is odd
2P 4m

`

(
1√
3

)
, ` is even , (27a)

P 0
2

(
1√
3

)
=

1
2

(
3 cos2 θ − 1

)∣∣∣∣
θ=cos−1

(
1√
3

) = 0. (27b)

We have the final equation for the sum of all corner fields:

uc
Σ =8j0

(√
3k∆

)
u0+8

∞∑

`=2

j2`

(√
3k∆

) [ `
2 ]∑

m=0

[
(−1)m P 4m

2`

(
1√
3

)
a4m

2`

]
, (28)

and the corner-point LFE3D-9 formula:

Wf uf
Σ + Weue

Σ + Wcu
c
Σ −W0u0 = 0,

Wf = 0, We = 0, Wc = 1
∆2 , W0 =

8j0(
√

3k∆)
∆2 ,

(LFE3D-9) (29a)

with the truncation function, OLFE3D-9 given by:

OLFE3D-9
∆= uc

Σ − 8j0

(√
3k∆

)
u0

= 8
∞∑

l=2

j2`

(√
3k∆

) [ `
2 ]∑

m=0

[
(−1)m P 4m

2`

(
1√
3

)
a4m

2`

]
. (29b)

3.1.4. Step 4: LFE3D-27 (All 26 Bordering Points Considered)

As mentioned earlier that LFE2D-9 equation can be derived from a
linear combination of two LFE-5s equations along the plus and the
cross coordinates so that the local error is minimized. So far to the
best of our knowledge the only way to derive the sixth-order accurate
LFE3D-27 formula is to look for the linear combination of LFE3D-
07 (Eq. (15)), LFE3D-13 (Eq. (23a)) and LFE3D-09 (Eq. (29a)).
We chose combinations that will reduce the local truncation error or
global dispersion error. From the fact that the first leading term of
the local truncation function for LFE2D-9 equation is the 8th-order
Bessel function of the first kind, we suspect that the first leading term
of the local truncation function for LFE3D-27 will be the 8th-order
spherical Bessel function of the first kind. Closer examination of the
three LFE3D truncation functions OLFE3D-07, OLFE3D-13, OLFE3D-09

indicates that they all share two things in common: first the leading
term function is the 4th-order spherical Bessel function of the first kind
j4(k∆) and that they do not contain any odd term Bessel functions.
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Hence we will focus on the elimination of both j4(k∆) and j6(k∆)
terms.

From Eqs. (15), (23b), (29b) we know:

OLFE3D-07
∆= uf

Σ − 6j0 (k∆)u0

= 4j4 (k∆)
{[

1
2

+ P 0
4 (0)

]
a0

4 + P 4
4 (0) a4

4

}

+4j6 (k∆)
{[

1
2

+ P 0
6 (0)

]
a0

6 + P 4
6 (0) a4

6

}

+O1h

(
(k∆)8

)
, (30a)

OLFE3D-13
∆= ue

Σ − 12j0

(√
2k∆

)
u0

= 4j4

(√
2k∆

){[
2P 0

4

(
1√
2

)
+ P 0

4 (0)
]

a0
4

+
[
2P 4

4

(
1√
2

)
− P 4

4 (0)
]

a4
4

}

+4j6

(√
2k∆

) {[
2P 0

6

(
1√
2

)
+ P 0

6 (0)
]

a0
6

+
[
2P 4

6

(
1√
2

)
− P 4

6 (0)
]

a4
6

}
+ O2h

(
(k∆)8

)
, (30b)

OLFE3D-09
∆= uc

Σ − 8j0

(√
3k∆

)
u0

= 8j4

(√
3k∆

)[
P 0

4

(
1√
3

)
a0

4 − P 4
4

(
1√
3

)
a4

4

]

+8j6

(√
3k∆

) [
P 0

6

(
1√
3

)
a0

6 − P 4
6

(
1√
3

)
a4

6

]

+O3h

(
(k∆)8

)
. (30c)

The higher-order terms, O1h in (30a), O2h in (30b), and O3h in (30c),
are respectively defined as:

O1h

(
(k∆)8

)
=4

∞∑

`=4

j2` (k∆)





a0
2`

2
+

[ l
2 ]∑

m=0

[
P 4m

2` (0) a4m
2`

]




(31a)

O2h

(
(k∆)8

)
=4

∞∑

`=4

j2`

(√
2k∆

)
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[ `
2 ]∑

m=0

[
2P 4m

2`

(
1√
2

)
+(−1)m P 4m

2` (0)
]

a4m
2` (31b)

O3h

(
(k∆)8

)
= 8

∞∑

`=4

j2`

(√
3k∆

) [ `
2 ]∑

m=0

[
(−1)m P 4m

2`

(
1√
3

)
a4m

2`

]
. (31c)

The associated Legendre polynomials have following values:




P 0
4 (0) =

3
8
; P 0

4

(
1√
2

)
=
−13
32

; P 0
4

(
1√
3

)
=
−7
18

P 4
4 (0) = 105; P 4

4

(
1√
2

)
=

105
4

; P 4
4

(
1√
3

)
=

140
3

P 0
6 (0) =

−5
16

; P 0
6

(
1√
2

)
=
−19
128

; P 0
6

(
1√
3

)
=

2
9

P 4
6 (0) =

−945
2

; P 4
6

(
1√
2

)
=

9× 945
16

; P 4
6

(
1√
3

)
= 560

(32)

Substituting Eq. (32) into Eqs. (31a)–(31c) we will have:

OLFE3D-07 = j4 (k∆)
(

7
2
a0

4 + 420a4
4

)

+j6 (k∆)
(

3
4
a0

6 − 1890a4
6

)
+ O1h

(
(k∆)8

)
, (33a)

OLFE3D-13 = j4

(√
2k∆

)(−7
4

a0
4 − 210a4

4

)

+j6

(√
2k∆

)(−39
16

a0
6 +

13× 945
2

a4
6

)
+O1h

(
(k∆)8

)
,(33b)

OLFE3D-09 = j4

(√
3k∆

)(−28
9

a0
4 −

1120
3

a4
4

)

+j6

(√
3k∆

)(
16
9

a0
6 − 4480a4

6

)
+ O3h

(
(k∆)8

)
. (33c)

Let {
α = 28

9 a0
4 + 1120

3 a4
4

β = 2
3a0

6 − 1680a4
6

, (34a)

and 



h1 = j4 (k∆)
h2 = j4

(√
2k∆

)
h3 = j4

(√
3k∆

) ,





q1 = j6 (k∆)
q2 = j6

(√
2k∆

)
q3 = j6

(√
3k∆

) . (34b)
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Substituting Eqs. (34a)–(34b) into Eqs. (33a)–(33b) we have:

OLFE3D-07 = h1

(
9α

8

)
+ q1

(
9β

8

)
+ O1h

(
∆8

)
, (35a)

OLFE3D-13 = h2

(−9α

16

)
+ q2

(−117β

32

)
+ O2h

(
∆8

)
, (35b)

OLFE3D-09 = h3 (−α) + q3

(
8β

3

)
+ O3h

(
∆8

)
. (35c)

We now have the local truncation functions of the three LFE3D
formulae. We are ready to combine them to obtain our LFE3D-
27 equation. By denoting C1 (k∆), C2 (k∆) and C3 (k∆) as the
corresponding coefficient functions for the superpositioning of LFE3D-
7, LFE3D-13 and LFE3D-9, we now construct the LFE3D-27 formula
as follows:

C1u
f
Σ + C2u

e
Σ + C3u

c
Σ + C0u0 = OLFE3D-27. (36)

Here C0 (k∆) is given by:

C0 (k∆) =− [6C1 (k∆) j0 (k∆)

+12C2 (k∆) j0

(√
2k∆

)
+ 8C3 (k∆) j0

(√
3k∆

)]
, (37)

and the associated truncation function is given by:

OLFE3D-27 =C1(k∆)O1h

(
∆8

)
+C2(k∆)O2h

(
∆8

)
+C3(k∆)O3h

(
∆8

)
.

(38)
With a few steps omitted, we show the following must hold true:

α

[(
9h1

8

)
C1 +

(−9h2

16

)
C2 + (−h3) C3

]

+β

[(
9q1

8

)
C1 +

(−117q2

32

)
C2 +

(
8q3

3

)
C3

]
= 0. (39)

Because α and β (defined in Eq. (34a)) can not all be zero. Eq. (39)
holds true if and only if:(

9h1

8

)
C1 +

(−9h2

16

)
C2 + (−h3) C3 = 0,

(
9q1

8

)
C1 +

(−117q2

32

)
C2 +

(
8q3

3

)
C3 = 0.

(40)



176 Chang and Mu

After solving for the above underdetermined equations, we have the
following conditional equations for C1, C2 and C3:

C1 : C2 : C3 =

∣∣∣∣∣
−9h2

16 −h3

−117q2

32
8q3

3

∣∣∣∣∣ :

∣∣∣∣∣
−h3

9h1
8

8q3

3
9q1

8

∣∣∣∣∣ :

∣∣∣∣∣
9h1
8

−9h2
16

9q1

8
−117q2

32

∣∣∣∣∣

=
(

h2q3 +
39
16

h3q2

)
:
(

3
4
h3q1 + 2h1q3

)

:
(

351
128

h1q2 − 27
64

h2q1

)
. (41)

One of the solutions for these coefficient functions is given as below:

C1 = j4

(√
2k∆

)
j6

(√
3k∆

)
+

39
16

j4

(√
3k∆

)
j6

(√
2k∆

)
,

C2 =
3
4
j4

(√
3k∆

)
j6 (k∆) + 2j4 (k∆) j6

(√
3k∆

)
,

C3 =
351
128

j4 (k∆) j6

(√
2k∆

)
− 27

64
j4

(√
2k∆

)
j6 (k∆) .

(42)

With these specific coefficients we arrive at the following LFE3D-27
formula — the discretized three dimensional Helmholtz equation:

WLFE
f uf

Σ + WLFE
e ue

Σ + WLFE
c uc

Σ −WLFE
0 u0 = 0,

WLFE
f = j4

(√
2k∆

)
j6

(√
3k∆

)
+

39
16

j4

(√
3k∆

)
j6

(√
2k∆

)
,

WLFE
e =

3
4
j4

(√
3k∆

)
j6 (k∆) + 2j4 (k∆) j6

(√
3k∆

)
,

WLFE
c =

351
128

j4 (k∆) j6

(√
2k∆

)
− 27

64
j4

(√
2k∆

)
j6 (k∆) ,

WLFE
0 = 6j0 (k∆)WLFE

f + 12j0

(√
2k∆

)
WLFE

e

+ 8j0

(√
3k∆

)
WLFE

c ,

(43a)

or

u0 =
WLFE

f uf
Σ + WLFE

e ue
Σ + WLFE

c uc
Σ

6j0 (k∆)WLFE
f + 12j0

(√
2k∆

)
WLFE

e + 8j0

(√
3k∆

)
WLFE

c

.

(LFE3D-27) (43b)

We have also confirmed that the LFE3D-27 equation is accurate to the
sixth-order (in k∆) and the leading term of the truncation function is
j8(k∆), the 8th-order spherical Bessel function of the first kind.
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4. STANDARDIZATION OF COEFFICIENTS

So far we have derived the LFE3D-27 equation which gives us a
highly accurate 3D compact FD-FD stencil for the Helmholtz equation.
However, one more issue remains: the discrete form of 3D Helmholtz
operator of Eq. (1). Let L be the exact system operator of (1):

L = ∇2 + k2 (44)

The general discretized form of (1) constructed on the compact 27-
point stencil can be expressed as:

A
(
WLFE

0 u0 + WLFE
f uf

Σ + WLFE
e ue

Σ + WLFE
c uc

Σ

)
= 0. (45)

Here A is a normalization constant. Eq. (45) is standardized if it
satisfies:

lim
∆→0

A
(
WLFE

0 u0 + WLFE
f uf

Σ + WLFE
e ue

Σ + WLFE
c uc

Σ

)
= Lu0. (46)

This is the same definition we used in the standardization process of
LFE2D-9 [10]. Now we consider three classic finite difference schemes
for discretizing the L operator. The first one is the second-order
accurate, seven point stencil equation FD3D-2-07 as given below:

Lu0 ≈ L̂FD3D-2-07 {u0} =
uf

Σ − 6
(
1− k2∆2

6

)
u0

∆2
. (47a)

The second one FD3D-2-13, is given by:

Lu0 ≈ L̂FD3D-2-13 {u0} =
ue

Σ − 12
(
1− k2∆2

3

)
u0

4∆2
. (47b)

And the third one FD3D-2-9:

Lu0 ≈ L̂FD3D-2-09 {u0} =
uc

Σ − 8
(
1− k2∆2

2

)
u0

4∆2
. (47c)

We compare these three equations with the corresponding second-
order accurate LFE3D equations which we derived earlier in Eq. (14),
(LFE3D-07), Eq. (23a) (LFE3D-13) and Eq. (29a) for LFE3D-09. We
have:

Lu0 ≈ L̂LFE3D-07 {u0} =
uc

Σ − 6j0 (k∆)u0

∆2
, (48a)

Lu0 ≈ L̂LFE3D-13 {u0} =
ue

Σ − 12j0

(√
2k∆

)
u0

4∆2
, (48b)

Lu0 ≈ L̂LFE3D-09 {u0} =
uc

Σ − 8j0

(√
3k∆

)
u0

4∆2
. (48c)
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Next we superimpose the forementioned three operators:

Lu0 ≈ L̂LFE3D-27 {u0} = A1L̂LFE3D-07 {u0}+ A2L̂LFE3D-13 {u0}
+A3L̂LFE3D-09 {u0} . (49)

We require that these coefficients must add up to one

A1 + A2 + A3 = 1. (50)

And that they must also retain the following ratio:

A1 : A2 : A3 = WLFE
f : 4 WLFE

e : 4 WLFE
c . (51)

Thus, we have:

A1 =
WLFE

f

W
, A2 =

4WLFE
e

W
, A3 =

4WLFE
c

W
, (52a)

and
W = WLFE

f + 4 WLFE
e + 4 WLFE

c . (52b)

From Eqs. (50)–(52), we have the standardized LFE3D-27 equation:

L̂LFE-27-3D {u0} = A0u0 + A1uf
Σ + A2u

e
Σ + A3u

c
Σ, (53a)

A0 =
WLFE

0

∆2W
, A1 =

WLFE
f

∆2W
,

A2 =
WLFE

e

∆2W
, A3 =

WLFE
c

∆2W
.

(53b)

where W is previously defined in Eq. (52b).

5. RECONSTRUCTION FORMULA FOR LFE3D-27

Unlike the 2D-CLF a “straight forward” closed-form reconstruction
formulae for CLF in the 3D case does not exist. In 3D-CLF cases, a
local field the basic patch is a cube. Refereeing to Fig. 1, the size of
the compact stencil will be twenty seven. On the boundary of the cube
there are a total of twenty six points — six on the faces, twelve on the
edges and eight on the vertices (corners). It is not an easy task to
carry out the 3D LFE extension. We note that, there are only a total
of twenty five terms in the truncated series of the spherical harmonics
up the 4th order harmonics. With the last term, j4(kr)P 4

4 (cos θ) sin 4φ,
not contributing to any of these neighboring points on the surface of
the cube, we are faced with the problem of setting up 26 equations
with 24 unknowns. As we look further into this subject, we discover
that there are more terms which are linearly dependent on their lower-
order terms when evaluated at these CLF controlling points on the
cubic surface.
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Consider the local field expressed by the linear combination of all
SFB harmonics up the 8th order:

u(r, θ, φ)≈a0
0j0(kr)+

7∑

`=1

j` (kr)
∑̀

m=0

Pm
` (cos θ)(am

` cosmφ+bm
` sinmφ).

(54)
There are all together 63 candidates. Among these the 37 dependent
(marked in red strikethrough) and 26 independent terms and are listed
below:

a0
0

a0
1 a1

1 b1
1

a0
2 a1

2 b1
2 a2

2 b2
2

a0
3 a1

3 b1
3 a2

3 b2
3 a3

3 b3
3

a0
4 a1

4 –b1
4 a2

4 b2
4 –a3

4 –b3
4 a4

4 –b4
4

a0
5 a1

5 b1
5 –a2

5 –b2
5 –a3

5 –b3
5 –a4

5 –b4
5 –a5

5 –b5
5

a0
6 –a1

6 –b1
6 –a2

6 –b2
6 –a3

6 –b3
6 –a4

6 –b4
6 –a5

6 –b5
6 –a6

6 –b6
6

–a0
7 –a1

7 –b1
7 –a2

7 b2
7 –a3

7 –b3
7 –a4

7 –b4
7 –a5

7 –b5
7 –a6

7 –b6
7 –a7

7 –b7
7

(55)

The selection rules are: I, it must not be all zero on these 26 control
points, II, it must be linearly independent with its lower-order cousins
and III, there must be exactly 26 independent terms to form a square
matrix. We expect that the analytical reconstruction formula based
on these independent SFB harmonics, if derived, will be too complex
to be practical. And thus we will resort to the following numerical
inversion to obtain the 3D CLF reconstruction formula:

u (r, θ, φ) ≈ a0j0 (kr)+
3∑

n=1

n∑

m=0

am
n Am

n (r, θ, φ)+
3∑

n=1

n∑

m=1

bm
n Bm

n (r, θ, φ)

+a0
4A

0
4 (r, θ, φ) + a1

4A
1
4 (r, θ, φ) + a2

4A
2
4 (r, θ, φ)

+b2
4B

2
4 (r, θ, φ) + a4

4A
4
4 (r, θ, φ) + a0

5A
0
5 (r, θ, φ)

+a1
5A

1
5 (r, θ, φ)+b1

5B
1
5 (r, θ, φ)+a0

6A
0
6 (r, θ, φ)

+b2
7B

2
7 (r, θ, φ) =

6∑

FC, j=1

CFC
j (r, θ, φ) uFC

j

+
12∑

EC, j=1

CEC
j (r, θ, φ) uEC

j +
8∑

CR, j=1

CCR
j (r, θ, φ) uCR

j ,(56a)

where
Am

n (r, θ, φ) = jn (kr) Pm
n (cos θ) cosmφ,

Bm
n (r, θ, φ) = jn (kr) Pm

n (cos θ) sinmφ.
(56b)
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Thus, to find the local field with a given cube the best we can do
is to numerically obtain by inverting the 26 by 26 matrix, the SFB
coefficients from the nodal points on the surface of the cube.

6. COMPUTATION OF THE 3D FREE SPACE GREEN’S
FUNCTION

Consider the 3-D Helmholtz equation with a point source located at
origin (r = 0): (∇2 + k2

)
G (x, y, z) = −δ(r). (57)

The analytic solution of Eq. (57) can be obtained by reducing it to
the following one-dimensional differential equation in the spherical
coordinate system:

[
1
r2

d

dr

(
r2 d

dr

)
+ k2

]
G (r) = − δ(r)

4πr2
, G (r) =

e−jkr

4πr
. (58)

To test our LFE3D-27 stencil, we repeat the computation in 3D
Cartesian coordinate system. Due to the central symmetry in this
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Figure 2. Comparison of 3D numerical Green’s functions computed
with LFE3D-07 and FD3D-2-07 stencils. The calibration point is
located at (0, 0, λ). The exact 3D Green’s function solution is
the continuous solid with circled points indicating the discrete field
sampling location.
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problem we compute only for the octant in the positive x, y and z-
axes region. Evensymmetry boundary conditions are applied to planes
x = 0, y = 0 and z = 0. The transparent/absorbing boundary
conditions (TBC/ABC) are applied to the remaining three faces on
the cube. A simple but effective impedance condition is applied to any
point ua on the ABC planes. When the location of the point source is
known we may use the following expression for relating this field to its
nearest corresponding fields uin inside the computational domain:

ua = uin

(
rin

ra

)
exp (−jk (ra − rin)) . (59)

where ra is the distance from the said point to the origin and rin

the distance of the neighboring interior point to the origin. In
our numerical experiments the point source is always located at the
origin. Also the computed numerical and analytic Green’s functions
are normalized so that both are equal at a specific calibration point.
We first computed and compared results between the classical second-
order accurate FD3D-2-07 coefficient and the face-centered LFE3D-
07 stencil. The solutions are plotted in Fig. 2. Starting from
the calibration point, and at a sampling density of ten points per
wavelength (Nλ = 10), to a distance of five wavelengths, both results
are reasonably close to the solid curve of the exact solution. We also
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Figure 3. Comparison of 3D numerical Green’s functions computed
with LFE3D-07, FD3D2-07 and LFD3D-27 stencils. The calibration
point is located at (λ, λ, λ).
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included the result from our LFE3D-27 formulation in Fig. 3 along the
(1, 1, 1) direction with the end point 8.5λ from the origin. In these
calculations, there were up to a total of 125,000 unknowns (a cube
containing 50 points in each dimension). This is the largest problem
we can do with the 4G-DRAM on board. The linear equations are
solved by a direct solver with our custom software which does its
own virtual memory manipulation based on a block-tridiagonal LU
factorizing scheme. The maximum run time is just under two minutes
independent of whichever 3D compact stencil is used.

At a reduced sampling density Nλ = 7, results from LFE3D-07,
FD3D2-07 begin to degrade as the field propagates away from the
origin. However the sixth-order accurate FD3D6-27 results are still
very accurate as we can see in Fig. 4 where the green plus points sit
squarely in the black circles. As further reduced to a lower sampling
density Nλ = 5, the results from LFE3D-07 are completely out of sync
with the exact solution. We also see in Figs. 5 and 6, a clear deviation
of the FD3D6-27 plus points from the exact circles near the end of the
curves. However the results from our best 3D stencil LFE3D-27 are
still correct as we see the red squares override the black circles.

At a much reduced sampling density Nλ = 3, results from FD3D6-
27 begin to degrade soon after they travel away from the origin as can
be seen in Figs. 7 and 8. Results from LFE3D-27 stencil are still quite
acceptable as we see the red crosses are still tracking the black circles.
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Figure 4. Comparison of 3D numerical Green’s functions computed
with LFE3D-07, FD3D2-07 and FD3D6-27 stencils at a reduced
sampling density Nλ = 7. The calibration point is located at (λ, 0, 0) .
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Figure 5. Comparison of 3D numerical Green’s functions computed
with LFE3D-07, FD3D6-27 and LFE3D-27 stencils at a low sampling
density Nλ = 5. The calibration point is located at (λ, 0, 0).
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Figure 6. Same as Fig. 5 except for a new direction and a new
calibration point at (λ, λ, λ).
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Figure 7. Comparison of 3D numerical Green’s functions between
FD3D6-27 and LFE3D-27. Results are computed at a very low
sampling density Nλ = 3. The calibration point is located at (0, 0, λ).
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Figure 8. Same as Fig. 7 except for a new direction and a new
calibration point at (λ, 0, λ).

Finally, we ran the simulation at Nλ = 2.5, just for the sake of
finding the threshold of our LFE3D-27 stencil. At this sampling density
we are able to compute the 3D Green’s function for a cube of twenty
wavelengths in each dimension. We see from Fig. 9 that the red crosses
are no longer sitting inside the black circles but they are still near-by.
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Figure 9. Results of 3D numerical Green’s function of LFE3D-27
computed at 2.5 points per wavelength. The calibration point is
located at (λ, λ, 0).

7. DISCUSSIONS

While running these numerical experiments, we have discovered an
interesting fact that one can not use the 3D LFE3D-09 or the LFE3D-
13 stencil when one wishes to compute 3D fields due to a point
excitation. These formulas are based on the edge/corner points only.
These nodes are located further from the central point than those
face-center ones. As a result, solutions of the numerical Green’s
function using LFE3D-09/LFE3D-13 formulation contain many zero
fields all over the entire solution domain. Closer examination of
the situation reveals that the disturbance propagates forward and
backward “diagonally” causing unreachable gaps in the computational
process of a single point-source. Hence the LFE3D-09 and LFE3D-13
stencils must be combined with the face-center LFE3D-07 stencil.

So far we have analytically derived the LFE3D-27, a SFB-based
discrete form of the 3D Helmholtz operator in a homogeneous medium.
We also investigated the accumulated amplitude and phase errors
for this LFE3D-27 equation by numerically solving the 3-D Green’s
function and comparing it with the known analytic solution. There
are many properties of this new formulation to be investigated. In a
separate paper, we will derive an analytical expression for the local
truncation error function of the standardized LFE3D-27 formula. The
global error behavior will also be investigated via plane wave dispersion
studies.
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The recent advancements in highly accurate 2D FDFD algorithms
enables us to simulate even larger and more complex 2-D problems.
However, unlike 2-D cases, solving 3-D Helmholtz problems by FD-
FD methods require solving significantly larger matrix equations. If
N is the number of unknowns along an edge of a cube, a 3D FD-
FD computation using a direct solver will have a storage requirement
proportional to the fifth power of N and a computational cost
proportional to the seventh power of N . In comparison, cost factors
for a 3D FD-TD computation are reduced to N3 for storage and N4 for
CPU. Some may argue that using an iterative sparse linear solver will
help reduce the computational needs for 3D FD-FD methods. There
are, unfortunately, no known robust iterative Helmholtz equation
solvers [20]. That has been the reason why there were only a handful
of applications in applying the FD-FD method to 3-D Helmholtz
problems. This situation is about to change as we have seen from the
2D CLF dispersion analysis: at one percent phase error, the classical
second-order accurate FD formulation requires a sampling density of
twenty points per wavelength while 2D CLF requires only four. In 3D
FD-FD calculation, this five-factor reduction in linear sampling density
will translate to a factor of eighty thousand (five to the seventh power)
in computational time cost saved. Such significant savings makes 3D
CLF-based EM field simulations practical in some 3D EM applications.

There are still many lingering CLF related issues waiting to be
solved. We have only considered the homogeneous case for the 3D
Helmholtz equation. For complex passive optical waveguide/device
problems we have to consider 3D EM wave fields in inhomogeneous
media. We need to develop special LFE3D-27 stencils for cells near a
dielectric interface. We also have to consider a vector formulation
for 3D structures containing dielectric interfaces with large index
contrasts. The method of connected local fields is still in an early
stage of development, and requires further research before it becomes
a viable tool for modeling 3D complex dielectric devices.

8. CONCLUSIONS

We have advanced the method of connected local fields to the three-
dimensional case for obtaining semi-analytical solutions of Helmholtz
equation. The fundamental building block in this 3-D CLF is a cube
made of twenty seven points. By expanding the local field with a
truncated spherical Fourier-Bessel series we develop closed-form, 3-D
local field expansion coefficients called LFE3D-27. We also show that
this novel formula has a very small local truncation error of the eighth-
order. As in the 2D CLF, we are able to keep this 3D CLF structurally
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equivalent to a standard 3-D FD-FD formulation using a compact 27-
point stencil. With the development of the inhomogeneous 3D CLF
method complete, all existing 3D FD-FD software can be modified
with minimal effort to benefit from this new memory and CPU saving
semi-analytical approach for solving the Helmholtz equation.
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